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Abstract: A realistic approach for gathering high-resolution observation of the rainfall rate, R, in the 

vertical plane is to use data from vertical pointing Doppler radars. After accounting for the vertical 

air velocity and attenuation, it is possible to determine the fine, spatially resolved drop size spectra 

and to calculate R for further statistical analyses. The first such results in a vertical plane are reported 

here. Specifically, we present results using MRR-Pro Doppler radar observations at resolutions of 

ten meters in height over the lowest 1.28 km as well as ten seconds in time over four sets of obser-

vations using two different radars at different locations. Both correlation functions and power spec-

tra are useful for translating observations and numerical model outputs of R from on one scale down 

to other scales that may be more appropriate to particular applications such as flood warnings and 

soil erosion, for example. However, it was found in all cases that while locally applicable radial 

power spectra could be calculated, because of statistical heterogeneity, most of the power spectra 

lost all generality and proper correlation functions could not be computed in general except for one 

17 minute interval. Nevertheless, these results are still useful since they could be combined to de-

velop catalogs of power spectra over different meteorological conditions and in different climato-

logical settings and locations. Furthermore, even within the limitations of these data, this approach 

is being used to gain a deeper understanding of rainfall to be reported in a forthcoming paper. 

Keywords: raindrop size distributions (DSD) from Doppler radar; computing radial power spectra 

using radar Doppler spectra; vertical pointing Doppler rain observations  

1. Introduction

Correlation functions and power fits to spectral powers have been used extensively 

to relate measurements of rainfall rates at different temporal and spatial scales (e.g., [1]-[-

5] and many others). However, such studies have concentrated exclusively on the hori-

zontal dimensions and time because of the difficulty of measuring rainfall rate in the ver-

tical especially at high resolution over any significant depth. This study is a first step to-

ward addressing this deficiency.

This is achieved by using vertical observations in rain using the Micro-Rain Radar 

(MRR) that is a continuous wave Doppler radar operating at a wavelength of 1.24 cm as 

described in detail in [6]. It has selectable vertical resolutions, integration times and sam-

pling intervals. In this study, we use a vertical resolution of 10 meters over a depth of 1.28 

km and with 10 s integration and 64 point Doppler spectra over an unambiguous Doppler 

velocity range of approximately 12 m s-1. 

These measurements are affected by both attenuation by the rain and the vertical air 

velocity which can distort the raindrop size spectra and the estimated drop concentrations 

used to calculate the rainfall rates and other parameters. Both effects can be taken into 

account and corrected as described in detail in [7]. The lengthy discussions therein will 
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not be repeated here except to say that the approach uses velocity shifted Doppler spectra 

until the observed and theoretical powers agree. Furthermore, we emphasize that this is 

not a work about what has been done in the past using the MRR particularly in snow, for 

example, nor how to use that radar, but rather the focus here is on an interesting first 

atmospheric application in rain that will be expanded upon further in a future study al-

ready under preparation and that will be described in greater detail at the end of this 

present work. 

However, there is no guarantee that the tools of proper correlation functions and 

power fits will always exist. In particular the correlation function exists only when they 

are independent of the origin of the calculation in space or time over the spatial-temporal 

domain of interest. Similarly, power spectra, whether power fits or otherwise, only have 

generality when the data are wide-spread statistically homogeneous and statistically sta-

tionary (WSS) as emphasized for the rainfall rate in [8]). 

Specifically, then, the first order of business is to see whether or not the temporal-

vertical MRR observations of the rainfall rates are statistically homogeneous. There are 

two components to this determination. First, at all times and in all directions, there has to 

be only one global mean value. Second, the variance must be the same at all times and in 

all directions as well. In order to address the first requirement, the method of inverting 

individual observations is used to look at the distributions of the mean values ([8]-[11]). 

When there is a unitary peak in the resulting distribution, this condition is satisfied. It 

should be noted, however, that while an entire data set may not satisfy these conditions, 

they may be locally satisfied. Whether or not these local regions are useful remains to be 

seen. 

The variance requirement is addressed using the results of Anderson and Kostinski 

([12]-[13] through the analysis of the difference in the number of sequential maxima and 

minimum forward and backward directions in a string of data denoted by the variable  

= Tforeward – Tbackward where T is the total count of record highs and record lows in each di-

rection. For a sample size greater than ten,  is normally distributed with a null mean and 

standard deviation  dependent on the sample size (Figure1 in [14]). Asymmetries in the

variance will then appear as non-zero mean  of a magnitude that can then be statistically 

evaluated with respect to . An example of these applications to MRR data are provided

in the next section with the analyses results for four different sets of data provided subse-

quently. 

While some argue that these two requirements are ‘too restrictive’ for real rain, those, 

unfortunately, are the mathematical requirements for WSS. Furthermore, because the data 

analyzed here are along two orthogonal dimensions, one must apply both criteria in both 

directions to evaluate the appropriateness of WSS over the area. 

2. Examples of the data processing for determining statistical homogeneity for time-

height rainfall rate data

2.1. Convective, variable rain 

 Figure1 is a plot of the time height MRR vertical air velocity, attenuation corrected 

rainfall rates using observations which were collected by one of the MRR radars as part 

of a National Science Foundation project and operated by the College of Charleston lo-

cated near Charleston, South Carolina. It is located on property owned by the College of 

Charleston Foundation that is used for a variety of ecological, educational, and research 

purposes (e.g., see [15]). The methodology for the correction of the data for vertical air 

velocity and attenuation is as explained in [7]. As one would expect for this time of year 

in South Carolina, the rain is associated with convection having a wide-range of rainfall 

rates. The most noticeable feature overall is the vertical structure of the rain that, of course, 

is not surprising in convective rain.  
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However, it does suggest that the determination of statistical homogeneity will have 

a strong dependency on direction. Since truly statistically homogeneous data is independ-

ent of direction of measurement, this means that any regions of such data would be those 

locations where the calculations of statistical homogeneity in both the vertical and the 

horizontal directions overlap. 

Figure 1. Time-height plot of the base 10 logarithm of the vertical air velocity corrected Doppler 

spectra rainfall rate from one of the College of Charleston MRR radars illustrating rain shafts typical 

of summer convective rain there. Areas of black denote missing data. 

Specifically, to explore each direction an optimal way of looking at the two-dimen-

sional data is to stack each column to form two, one dimensional arrays, one for time and 

one for the vertical dimension, as discussed on p. 1406 in [14]. A local regression mean 

curve (a least square error fit over twice the decorrelation length) is then fit to these data 

and the deviations from the mean gives the fluctuations used in the subsequent analyses 

using . The results are illustrated in Figure2a for the temporal dimension and in Figure2b 

for the vertical direction. Obviously, there are significant differences between the two. The 

grey horizontal lines largely correspond to symmetrical regions in the fluctuations so that 

 should be relatively constant. These regions are then used in the analyses. The blue line 

in Figure2b highlight the ever changing values of the fluctuations so that  would also be 

ever changing. Hence the entire region is selected as one block of data as indicated by the 

extended grey line. 
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Figure 2. Data series constructed from (a) stacking the sequential observations in height in Figure 1 

into a single vector (black lines) with the computed mean curve (red) and fluctuations (green) and 

(b) from stacking sequential time observations over all time. As explained in the text, the grey lies

denote the breakdown into regions for subsequent calculations of the statistical homogeneity IXH. 

In (b) the blue line indicates where the fluctuations are constantly changing.

The more symmetric region of fluctuations is identified by the second grey line.In 

each of these sections, the Bayesian analysis is performed to determine the numbers of 

contributing mean value components (Nb). In addition, the  analyses were performed 

separately to yield the  relative dispersion RD = || /  where || is the absolute value

of  and  is the standard deviation of  given by

( )
1 2

4 4 271
/

ln n . = −   (1) 
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where n is the number of measurements in the string of observations (from Jameson 

et al. 2018). In that same article , an index of statistical homogeneity is then defined to be 

the combination of these two factors namely, 

( )
1

1 1 1
2 1 5 1 5

b

RD RD
IXH H N

. .

    
= − − + −   

    (2) 

where H is the Heaviside unit step function requiring RD to exceed 1.5. We refer 

that term to the alpha factor and the second term is the number of mean values (Bayesian) 

factor. In purely statistically homogeneous data,  = 0 and Nb = 1 so that IXH = 0. In reality, 

these are very restrictive conditions rarely seen in real data so that we use IXH  0.5 to be 

a sufficient indication of  statistical homogeneity.  

In truly statistically homogeneous conditions, all results should be the same for the 

temporal and vertical directions. Obviously, in general that is not the case for these data, 

but it does not rule out local regions where such equivalence may be approximately valid 

as suggested by Figure 3 which are plots of the average values over the combined results 

across the sample numbers over the temporal and vertical directions. The shaded regions 

are where the data would be statistically homogeneous. By and large the fluctuations 

never satisfy the requirement for statistical homogeneity except beyond about sample 

number 2500. While there are a few more locations where the mean value factor is satis-

factory, it is only beyond about sample number 2600 when all the conditions for statistical 

homogeneity are met. 

Figure 3. Plots of the IXH averaged over the temporal and height vector series for each of the grey 

areas in Figure2 placed at the mid-points of each region. Only at the right-most part of the figure is 

there any sign of statistical homogeneity. 

To see where in space and time these conditions are met, we first interpolate the IXH 

values in the space series and in time series separately. These are then unstacked to return 
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them to their original time-height locations, and finally, these are then averaged together 

to estimate a combined field. We then impose two requirements for statistical homogene-

ity on the resulting field of data. The first is that IXH  0.5, and the second is that in those 

locations satisfying this first requirement, the absolute value of the difference between the 

two fields for each direction separately be  0.3. This latter requirement is designed to 

satisfy the directional independence of statistical homogeneity. 

The results are illustrated in Figure 4 where the contours of shading indicate where 

statistical homogeneity is possible (brighter areas) and where it is not (darker areas) are 

over laid on the rainfall rates. The first obvious feature is that with the exception of a tiny 

narrow region at the top-left, these data are all statistically heterogeneous. 

Figure 4. A replot of Figure 1 with an overlay of the height and time 2-D IXH. Lighter areas denote 

where there is statistical homogeneity subject to the two requirements discussed in the text, while 

the darker areas denote where there is only statistical heterogeneity. For this set of observation, there 

is only one narrow region of statistically homogeneous data in the top left. 

To see whether these results also apply to other data, we next consider three more 

sets of data all from June 3, 2019 and measured using a NASA MRR-Pro radar located at 

the Wallop’s Island Flight Facility. The rainfall rates have already been previously deter-

mined as explained in [7]). 

These observations were broken into three segments denoted as early, middle and 

later pieces. The rainfall rates and the analysis results for the early period are shown in 

Fiure.5 . Because of the profound convective nature of this part of the storm with widely 

varying rainfall rates over short times, there were no locations of any statistical homoge-

neity in a manner quite similar to the previous case. 
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Figure 5. (a) Time-height plot of the base 10 logarithm of the vertical air velocity corrected Dop-

pler spectra rainfall rate using data from a NASA Wallop’s Island MRR radar (from [7]) during the 

passage of a line of convection and (b) the same plot with the overlay of the 2D IXH results. Note 

that this time there are no regions of statistical homogeneity apparently because of the variability of 

Rw in both height and time. 

However, even during the middle period of much lighter precipitation only a few 

small regions of statistical homogeneity were found at times in the lower few hundred 

meters as plotted in Figure 6. 
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Figure 6. Similar to Figure .5 except for a the subsequent 25 minutes. This time there are larger areas 

of statistically homogeneity but still they are confined and found only at locations below 300 m 

height. 

During the later time period, there was a region of light rainfall followed by a period 

of more intense rain as shown in Figure 7a. In this later period, there were a few larger 

regions of statistically homogeneous data, but still, by and large, the rainfall rates remain 

statistically heterogeneous. 

The result is that for all four of these convective rainfalls, the data must be considered 

to be statistically heterogenous. This means that correlation functions in time and height 

do not exist. In so far as these data are representative of typical convective rain, it also 

seems plausible that this will be true for most convective rain. What happens in steadier, 

more stratiform rain remains to be determined. 
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Figure 7. Similar to the previous figures except for the final sequential 15 minutes that begins with 

lighter rain followed by regions where the rainfall is more intense. Some expanded locations of sta-

tistically homogeneous rain are found in the locations of less intense rain, but they are still rather 

isolated in both dimensions (adapted from Jameson et al. 2021). 

Thus, correlation functions are usually likely to be of little use when trying to tran-

form rainfall rate among different time and/or different spatial scales. Nor can they be 

transformed into power spectra with any general applicability(e.g., see [8]) via the Wie-

ner-Khintchine theorem [16,17]. However, the power spectra of these data fields might 

still serve a useful albeit more narrow purpose. 

To explore further and until we have access to two dimensional spatial data, then, 

the temporal axis is converted into a spatial coordinate by assuming an advection velocity 

of 1 m s-1. This yields horizontal dimensions (i.e., 900 – 1490 m) for the NASA MRR data 

and up to 2280 m for the College of Charleston MRR 49 observations with all having a 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2022                   doi:10.20944/preprints202203.0373.v1

https://doi.org/10.20944/preprints202203.0373.v1


10 of 19 

vertical distances of 1280 m. In each case, the rainfall rate data are then Fourier processed 

to yield the two-dimensional power spectra which can then be transformed into the one-

dimensional spectra in height and in the horizontal (time) for each period. These are illus-

trated in Figure 8. 

Figure 8. One dimensional power spectra in time (a) and height (b) along with power fits as func-

tions of wave number. In (a), the wave numbers per the different times listed in the legend while it 

(b) the wavenumbers are per 1280 m.

All of these power spectra can be fit using power functions to a reasonable degree of

correlation. Many of the exponents are quite similar regardless of being in the vertical or 

in the horizontal (temporal) direction. While the vertical axis covers several orders of mag-

nitude, with the exception the horizontal power spectrum of the MRR49 data, the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2022                   doi:10.20944/preprints202203.0373.v1

https://doi.org/10.20944/preprints202203.0373.v1


11 of 19 

wavenumbers are shy of the two orders of magnitude required for designating them to be 

a ‘power-law’ according to the findings of [18]. On the other hand the general similarity 

of the various fits suggest that it might be useful to combine the data in the two dimen-

sions. 

This is done next by computing the one-dimensional radial spectra regardless of time 

or altitude as illustrated in Figure 9. This is accomplished here first by converting the tem-

poral axis into a spatial dimension assuming a mean advection speed of 1 m s-1. The 2D 

horizontal-vertical coordinate system of the original 2D power spectrum by first using the 

fft2 routine in Matlab and then multiplying by its complex conjugate. This 2D power 

spectrum of values at (Δx,Δy)is then converted into 2D polar coordinate system of (Δr,θ) 

values of the power spectrum so that the radial spectra can then be computed by integrat-

ing over all the angles θ for each Δr. 

Figure 9. The radial power spectra for the data in Figure 8 with k being the wave number for the 

distances indicated in the legend. 

The intercept at k = 1 provides a good measure of the total variability of the data at 

the different times. All of the slopes are quite similar. However, these values are consist-

ently larger in magnitude than many reported in the literature which usually range from 

1 – 2 for large horizontal and temporal domains. As [19] point out and as Molini et al. [20] 

reemphasize, the magnitude of the exponent increases as the time and space scales de-

crease. For the data here, then, it is not surprising to see larger exponents because the 

temporal and spatial domains of these measurements are smaller and finer compared to 

what is normally used. In addition, no other studies have been able to look at the vertical 

plane in this detail thus complicating any comparisons to previous observations. Conse-

quently, we take these observed slopes at face value within the restrictions just presented. 
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However, the exact magnitude also depends upon the assumed average advection 

velocity as illustrated in Figure 10. When the advection velocity is increased to 5 m s-1, the 

negative slope has  

Figure 10. An example of the radial power spectra corresponding to two different assumed advec-

tion velocities. The increase in the magnitude of the negative slope is discussed in the text. 

increased significantly in magnitude. To see why, consider a particular Fourier wave-

length component describing the rain field for the 1 ms-1 advection velocity. When this 

wavelength is instead moving at 5 m s-1, the wavelength is ‘stretched’ compared to what 

it was at the 1 m s-1 velocity. Or to put it another way, the wavelength increases by a factor 

of 5 so that the wave number is decreased by a factor of 5. This means that more and more 

of the spectral energy is moved from shorter toward longer wave lengths so that the radial 

power spectrum now shows a steeper tilt (negative slope). 

This, then, highlights the limitation of trying to convert a time-height profile into 

representative 2-D spatial data so that ultimately, the statistical analysis of 2-D height dis-

tance rainfall data must be based upon using direct simultaneous observations by a line 

of several vertical pointing radars. As a first step toward this goal and part of current 

funding, we will be collecting simultaneous measurements using two MRR Pro radars, 

but, because of extenuating circumstances, have yet to gather such data. 

2.2. Lighter, steadier rain 

Figure 11 is a plot of the rainfall rate in a winter rainstorm at Wallop’s Island, Vir-

ginia. Obviously, the rainfall rates during this period are less intense rain than in the pre-

vious sets of analyzed data above. For these observations, the peak frequency of occur-

rence is at 2.7 mm h-1 and a mean rate at 4.7 mm h-1 but with a few embedded regions of 

more intense rain. Over the entire period, calculations show that IXH = 1.0 so that the data 
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are statistically heterogeneous. Yet within these data, there is a period of apparent lighter, 

steadier rain. 

Figure 11. The air velocity corrected rainfall rate during a winter rain event. The red line is the 

calculated steady  rain index with the dashed line denoting perfectly steady rain. 

To see whether or not the rain in this region from 1340 – 2390 seconds is truly steady, 

we use the approach of Jameson and Kostinski [21] to define a steady rain index (SRIndx) 

using their equations (8) and (11) such that 

22
2

2 2

1
1 nR

P

SRIndx R
n n

 
= = + − 
   (3) 

where 2P is the variance of the rainfall rate having a Poisson distribution of total 

number of raindrops n during the observation and a mean rainfall rate, 𝑅̄, equal to the 

observed mean rainfall rate, 2R is the variance of the observed rainfall rate during the 

observation, 2n is the variance of the observed number of drops during the observation, 

and 𝜎𝑛
2 = 𝑛̄ is the observed mean number of drops.

There are two ways to calculate these latter quantities. One is to look at the data in 

height at each time and the other is to look across all times a particular height. It is the 

former method that makes sense here. The SRIndx is plotted as the solid red line in Figure 

11. When the rain is steady, the number of drops is Poisson [21], and then SRIndx=1 be-

cause for Poisson rain 𝜎𝑛
2 = 𝑛̄. This is indicated by the dashed line in Figure 11.
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There is only one 17.5 minute period when the rain can be considered to be really 

steady between 1340 to 2390 seconds when the solid rain line is very near the dashed. In 

that location the statistical homogeneity index is found to be 0.10 as well so that these 

observations may also be considered statistically homogeneous thus allowing the calcu-

lation of a correlation function and more general radial power law. 

This is illustrated in Figure 12 where an equivalent length radial spectrum for a 

neighboring statistically heterogeneous data is also plotted. Obviously, in this instance 

there is a noticeable difference between the two radial spectra thus emphasizing that one 

cannot just use statistically heterogeneous data as a substitute for statistically homogene-

ous data. For completeness, from the fit in Figure 12, the corresponding correlation func-

tion for the homogeneous data is (x) = x-0.200. 

Figure 12. The computed radial power spectrum assuming an advection velocity of 1 m s-1 for the 

period of steady rain and for the next1060 seconds of statistically inhomogeneous, non-steady rain 

as discussed further in the text. 

Nevertheless, in this particular example, for a fixed mean rainfall rate of 50 mm h-1 

such as might be produced at coarse 5 km resolution by a numerical model or as measured 

by a radar, that acts to filter out fine scale structures [22,23], we generate two synthetic 

time series of data from these different radial spectra fits. This is accomplished using the 

technique of several different investigators (e.g., [24]) in which L complex Fourier ampli-

tudes (A) are created by assigning random phases () to samples of the wavenumbers (k) 

at a fixed interval along L from the fits. That is, the constructed series is 

( )
( )

2

j

j k

S k
A exp i

L
= 

 (4)

where S is the fit to the power spectrum. This series is then Fourier transformed and 

complex conjugated to get a data series consistent with the input spectral power fits. 

These curves (Figure 13a) can be interpreted as observations by instruments over a 5 

km area at one moment or by one instrument one fixed location in time where the time 
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would be distance/VAdv where VAdv is the mean advection speed of the rain. Because of the 

similarity of the two expressions for the spectral power fits, the structures are remarkably 

similar but there are important differences in magnitudes as reflected in the histograms 

(Figure 13b). 

Figure 13. (a)Time series of synthesized data over an 83 minute using the two power spectra in 

Figure 12 showing real differences between the two (b) histograms for each synthesized rainfall 

highlighting the differences in (a). 

The maximum differences are about 10 mm h-1 for the mean R of 50 mm h-1 or about 

20% with an integrated total absolute difference of 1225 mm h-1. While not huge, such 

differences could, at times, become significant, for example, when looking at storm run-

off or at soil erosion. 

While Figure 13a represents what might be seen in time (or a horizontal space of 5 

km for a VAdv = 1 m s-1), Figure 14 shows what one realization might look like over a 2 km 

height not unlike what was observed in some of the data in height at one time presented 

here.  
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Figure 14. An example of the differences in the rainfall rates for statistically homogeneous and het-

erogeneous rain in height using the respective power spectral fits. 

It also suggests how radar observations of rainfall rate might vary with altitude de-

pending upon the radar beam dimensions and geometry of the observations, of course, as 

illustrated in Figure 15 for Marshall-Palmer rain [25]. The limit of the X-axis would imply 

a variation in the radar reflectivity factor of 8 dBZ (a factor of 6) aside from the usual 

statistical signal fluctuations. 
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Figure 15. The radar reflectivity values corresponding to the assumption of a Marshall-Palmer rain 

(Marshall and Palmer 1948) and corresponding to the synthesized rainfall rates in Figure 14. 

5. Concluding Remarks

In this paper, fine scale rainfall rates were calculated using Doppler radar measure-

ments properly corrected for vertical air velocity and attenuation. This produced time-

height profiles of rainfall rates which could be statistically analyzed over periods of vary-

ing length up to 1.28 km height at 10 m/ 10 s resolution for convective types of rain and 

for one case of less intense, steadier rain. With the exception of one period of steadier rain, 

the data were all found to be statistically heterogeneous with only very localized pockets 

of statistically homogeneous rainfall. Consequently, in general it was not possible to con-

struct meaningful correlation functions or to use the Khintchine-Wiener theorem to trans-

form such relations into radial power spectra. Instead it was necessary to directly compute 

2-D power spectra using a Fourier transform after first assuming a fixed advection veloc-

ity of 1 ms-1 so that the temporal axis could be transformed into a spatial axis These, in

turn, could be used to compute 1D radial power spectra applicable to each case only.

 Nevertheless, in all cases, these radial power spectra could be well fit to the wave 

numbers by a power relations with negative exponents ranging from 2.47 to 2.76 for both 

the NASA Wallop’s Island MRR observations and those using the College of Charleston 

MRR radar over a year later and at a different location near Charleston, South Carolina. 

The precise values, however, are shown to depend upon the assumed advection velocity 

so that with greater advection speeds, the wavelengths are stretched leading to larger ex-

ponents as discussed in the text. Consequently, the only way to get estimates of the true 

spectral exponents is to collect measurements using spatially separated radars a process 

being undertaken within current grant. 

 Nevertheless, in spite of the limitations of the current data, useful conclusions are 

still possible. For example, based upon these observations and analyses, it appears likely 

that convective rainfall data will be predominantly statistically heterogeneous. Conse-

quently, rather than looking for universal scaling laws in such precipitation, it will likely 

be more productive to build a catalog of such relations in a wide variety of rainfall types 
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at locations where they are to be used in order to better scale either radar rainfall estimates 

over larger beam dimension above the surface or large scale outputs from numerical fore-

cast models for applications to rain run-off warnings or soil erosion research. Additional 

general findings are also in process. In particular, this research is being extended to ex-

plore the behavior of radial power spectral fits in response to the rainfall rates and to the 

total spectral powers with some interesting findings to appear in a forthcoming paper 

currently under preparation. 
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