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Abstract: Modern agriculture demands for comprehensive information about the plant itself. Con-
ventional chemistry-based analytical methods - due to their low throughput and high associated
cost - are no longer capable of providing these data. In recent years, remote reflectance-based
characterization has developed as one of the most promising solutions for rapid assessments for
plant attributes.

However, in many cases, expensive equipment is required because accurate quantifications
need assessment of the full reflectance spectrum. We examined the versatility of visible colour
sensors as reflectance measuring devices for biological / biochemical quantifications on sweet
basil (Ocimum basilicum). Our results indicate for the wide potential of spectral colour sensors for
quantitative determination of leaf phenolic compounds, flavonoids in particular, and non-invasive
plant phenotyping in agricultural applications by low-cost sensors.
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1. Introduction

The emergence of modern precision agriculture (the so-called Agriculture 4.0) can be
described as a fortuitous resonance of several technical and scientific advancements [1].
The complete sequencing of many plant genomes [2] and the rapid advances in genetic
and metabolic engineering [3] lead to a deeper understanding of many biological and
biochemical processes in plants and allow extensive manipulations of plant metabolic
network. Soil-independent agricultural techniques such as hydroponics, aquaponics
or aeroponics shift plant production from crop field to indoor plant factories. Here, a
wide range of modern technologies control plant cultivation [4]. Automation [5], sensors
[6], unmanned aerial vehicles (UAV) [7] and telecommunication techniques [8] enable a
round-the-clock, real-time, multi-faceted monitoring and controlling of the production
process. The quantum leap improvements in data science, artificial intelligence (AI) [9],
computer processing power, speed and capacity of internet connectivity [10], enable the
creation of sophisticated decision-making algorithms with minimal human intervention
and unprecedented speed as well as precision that was just fantasy a few decades ago.
These technologies demand on high quality and real time data. Thus, it is desirable to
collect similar powerful methods to collect plant-related data for crop quality assess-
ments.
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A variety of information can be achieved by analytical chemistry and molecular bi-
ology such as taste, flavours, ripeness, nutrient contents or small concentrations of
numerous active compounds. While the methods themselves are very accurate and
reliable, many are comparable slow, destructive, low-throughput and high cost both in
terms of time and money. In addition, these often require well-equipped laboratories and
skilful technicians. These drawbacks are increasingly evident considering the changes in
agriculture in the first decades of the 21st century. Recently, new approaches for the rapid
quantification of plant biology and biochemistry parameter were established [11]. The
method described herein employs the same principle known by farmers for thousands
of years: reflectance-based measurements. When light reaches the surface of the plant,
it can either be absorbed by plant tissues (absorbance), transmitted through the plant,
and emerged on the other side (transmittance), or be reflected (reflectance). The degree
of reflection depends on many factors including the light’s wavelength, the angle of
incidence and, importantly, the optical characteristics of plant tissues, which are in turn
determined by its structural, biological, and biochemical properties (e.g., plant structure,
surface roughness, tissue thickness and density, pigment contents) [12]. Therefore, it
should be possible to receive information about plants from reflectance. The endeavour
to elucidate this relationship gives rise to several new interdisciplinary research areas
that were developed in recent years: remote sensing, hyperspectral imaging, optical
contactless measurements or chemometrics [13].

Reflectance spectra of green leaf materials typically show low reflectance in blue and red
regions, high for green wavelengths and strong for near-infrared (NIR) wavelengths [14].
Such features are attributed to the occurrence of two major plant pigments: chlorophylls
and carotenoids. The concentration and ratio of these pigments serve as direct indicator
of plant status. For example, low chlorophyll content indicates nitrogen deficiency, or a
low chlorophyll/carotenoid ratio point to advanced senescence status. The first genera-
tion of reflectance-based plant analysis methods relies on a small number of wavelengths,
from which information regarding the abundance of chlorophylls and carotenoids was
estimated. The simplicity and robustness of this approach supports its popularity across
a wide range of conditions [15]. The necessary sensors are readily available at low
cost. Because the relationship between plant status and its pigment composition is
established, interpretation of data is straightforward on one hand. On the other hand,
only a limited number of plant traits can be characterized from pigment information only.

Most plant phenotypes do not correlate directly to reflectance. For example, many
secondary metabolites are colourlessness and occur at low concentrations. They leave
small, almost invisible reflectance footprints. Their production is generally independent
from chlorophyll and carotenoid biosynthesis, thus there is no direct correlation with
pigment contents. Their relationship to reflectance is therefore indirect with many in-
termediate factors. To predict such phenotypes, it is necessary to treat the connection
between the complete reflectance spectra and the corresponding plant phenotypes as a
black box and apply the principles of machine learning (ML) to build prediction models
for the latter based on the former [16]. The measured reflectance spectra range between
the visible (350 - 700 nm) and NIR regions (700 - 1100 nm) and often extends to short-
wave infrared wavelengths (1100 - 2500 nm). The major advantage of this approach is
that a priori knowledge regarding the relationship between reflectance and biological
information is not required, therefore it is supposedly applicable for a much greater
number of plant traits [17–19]. However, this approach is not without caveats because
equipment for acquisitions of full spectra, such as spectrophotometer or hyperspectral
camera, are expensive. Their cost and size were significantly reduced in recent years but
still high enough to hold up widespread applications. We combine the positive features
of the approaches, the utilization of ML algorithms with reflectance data collected from
low-cost optical sensors. Advancement of sensor technology in recent years, which
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resulted in a new generation of inexpensive, compact yet very powerful colour sensors
make an application in agriculture possible.

A photodiode is the central element of a colour sensor. It consists of a semiconduc-
tor p-n junction device to convert an incident light-photon to electrical current. In
general, this current is small and should be converted and amplified by an operational
amplifier (OPAM). Subsequently, the analogue signal is converted into a digital one by
an analogy-digital-converter (ADC). Besides these core and signal processing elements,
optical filters are another essential element of colour sensors. Singular colour sensors -
such as red, green, or blue filter detect the corresponding wavelengths of incident light.
Simple singular colour sensors were generally utilized for monitoring the brightness
levels of a specific colour. Often, these have limited specifications such as photodiodes or
optical sensors from Hamamatsu [20]. Alternatively, several specific wavelength range
filters can be combined for a more complex type of colour sensors called spectral sensors.
Currently, very sophisticated spectral sensors with higher spectral wavelength channels
such AS7341 (8 visible optical channels, 3 extra channels of Clear, Flicker and NIR, size
3.1x2x1, 1.8 V and operate from -30° C to 70° C), AS7343 (14 visible and IR channel, see
Figure 1) or AS7265x (18 visible and NIR channels form 410 nm to 940 nm, 16-bit ADCs)
are commercially available and can be integrated into cameras [21–25]. In recent years,
the cost of colour sensors was reduced significantly, allowing a much wider range of
applications including those in agriculture or horticulture [25].

A large potential for the application of such simple and tiny colour sensors in fully

Figure 1. AS7343 provides a fast and accurate spectral measurement of incident light for crop
cultivation (Source: Osram [25])

automated vertical farming facilities can be predicted. Effective contactless monitoring
and controlling of the plant status is feasible and comparable to results from hyper-
spectral imaging, less expensive, though. With such systems, the growth, development,
health status of plants and their interaction with environment conditions (temperature,
humidity, light, water, and fertilizer) can be accurately and continuously measured
and optimized. For practical applications, the performances of visible spectral sensors
regarding stability, accurateness, and reliability are superior to those of far-infrared (FIR),
NIR and ultraviolet (UV)-sensors. These sensors often suffer from high signal to noise
ratios, degradation or input value shifting.

This work intends to provide a pre-feasibility study for potential applications in low-
cost colour sensors to describe different biological and biochemical properties of plants.
Therefore, the following restrictions were set:

This work intends to provide a pre-feasibility study for potential applications in low-
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cost color sensors to describe different biological and biochemical properties of plants.
Therefore, the following restrictions were set:

• Instead of a hyperspectral imaging camera, we collected reflectance data by taking
many point measurements of the leaf upper side (adaxial) reflectance. It simulates
the action of a colour sensor array.

• Unlike hyperspectral imaging cameras, colour sensors do not yield spatial infor-
mation and cannot distinguish between plant substructures. Therefore, within
one plant we could not distinguish between leaves with different leaf age or leaf
position.

• Reflectance was measured in the visible wavelength range, i.e., from 380 nm to 800
nm, which is comparable to visible sensors in practical applications.

• Plants of different ages and from different cultivation conditions were analysed,
reflecting the natural variation of plant-characteristics under these conditions.

We intend to determine which biological/ biochemical characteristics could still be
reliably observed based on reflectance data and to evaluate the capability of low-cost
colour sensors for phenotyping. As a model we chose sweet basil (Ocimum basilicum),
a well-known herb used by humans for centuries. The basil system has several advan-
tages: fast plant growth and simple cultivation; the plant is rich in secondary metabolic
compounds with varying concentrations depending on age and growth conditions. Six
plant parameters were chosen for analysis: specific leaf weight (SLW), total phenolic
content (TPC), total flavonoid content (TFC) and the concentration of main pigments:
chlorophyll a (ChA), chlorophyll b (ChB) and total carotenoids (CaT).

2. Materials and methods
2.1. Overview of the experimental plan

In total, 27 basil plants were used for the study. These were divided into three
groups of nine plants each, three weeks after sowing. Each group was cultivated under
three different light conditions: white light, red light, and blue/ red light mixture for
another three weeks. After 5, 14 and 21 days from the onset of the experiments, three
plants from each group were taken for analysis (Figures 2, 3). From each plant, ten leaf

Figure 2. Cultivation of sweet basil under three different light conditions

discs were excised for the determination of SLW as well as for reflectance measurements.
The latter was performed on each leaf disc and the average of ten measurements was
considered as representative for the whole plant. The rest of the leaf material was frozen
in liquid nitrogen and treated for extraction of secondary coloured compounds.
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Figure 3. Overview of the experimental plan for determination of plant reflectance
spectrum and biological and biochemical properties. SLW - Specific Leaf Weight; TPC -
Total Phenolic Content; TFC - Total Flavonoid Content.

2.2. Plant cultivation

Ocimum basilicum (cultivar Genovese) was cultivated in soil pots (Fruhstorfer Erde
Typ T, Hawita) under greenhouse conditions. Temperature was maintained between 19°
C - 23° C with relative humidity at 50 - 60%. Three weeks after sowing, 27 young plants
were transferred to a phytochamber (temperature 20°C, relative humidity 50%). Here,
they were divided into three groups of nine plants each. These groups were further
cultivated under three different light conditions: White-, red-, and blue / red -light
combination (3/1). The day / night cycle was set at 16 h light: 8 h dark. Light intensity
measured at the upper leaves was 100 µmol/m2 · s. The lights were adjusted daily to
keep the light intensity constant as the plants grew. The spectra of the three lights used
in the experiments are shown in Figure 4.

Figure 4. Absolut spectral power distributions of the three light conditions used in the
experiments
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2.3. Analysis of plant’s parameters

Determination of specific leaf weight (SLW): From each plant, ten leaf discs (0.95
cm in diameter) were randomly excised and immediately placed on a pre-weighed water
agar plate (1%) to avoid desiccation (Figure 5). The agar plate weight was measured
again and the difference (∆W) estimated. SLW can be calculated with the following
formula:

SLW [
g

cm2 ] =
Leaf weight
Leaf surface

=
∆W

10 · π · 0.952 (1)

Within 10 minutes after excision, the leaf discs on the agar plate were used for reflectance

Figure 5. Leaf discs on agar plate

measurements.

2.4. Plant extracts

The remaining leaf material was frozen in liquid nitrogen and homogenized. Leaf
powder weight was assessed. For extraction of phenolic compounds and flavonoids,
1 mL of methanol/water/acetone (60/30/10 v/v/v , freshly prepared) was added to
each 250 mg of leaf material. The suspension was mixed vigorously and incubated at
4°C for 15 minutes. Subsequently, cell debris was removed by centrifugation at 4°C and
13, 000 rpm for 10 minutes. The clear supernatant was transferred to a fresh tube. The
extraction was repeated once more, and the supernatants were combined.

For extraction of photosynthetic pigments, 10 mL methanol was pre-treated with 150 mg
calcium carbonate. To each 150 mg of frozen leaf powder, 1 mL pre-treated methanol
was added, and the mixture centrifuged at 4°C and 13, 000 rpm for 10 minutes. The
extraction was repeated twice, and the supernatants were combined.

2.5. Quantification of total phenolic contents (TPC)

TPC of the methanol/water/acetone extract was determined with the Folin-Ciocalteu-
Assay [26]. A calibration curve was created with standard solutions of gallic acid ranging
from 250 to 750 mg/L. The total amount of phenolic content in the extract was deter-
mined from comparison to the calibration curve. TPC was calculated as the total amount
of phenolic content per fresh weight unit.

TPC [
mg gallic acid equivalent

g fresh weight
] =

Total amount of phenolic compounds in extract
Fresh weight used for extraction

(2)
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2.6. Quantification of total flavonoid contents (TFC)

TFC of the methanol/water/acetone extract was determined by colorimetric mea-
surement according to Zhishen et al. [27]. For calibration, solutions of (+)-catechin with
concentrations ranging from 100 to 250 mg/L were used. TFC was calculated as the
total amount of flavonoids per fresh weight unit.

TPC [
mg catechin equivalent

g fresh weight
] =

Total amount of flavonoids in extract
Fresh weight used for extraction

(3)

2.7. Quantification of chlorophyll a, chlorophyll b and total carotenoids

The concentrations of chlorophyll a (ChA), chlorophyll b (ChB) and total carotenoids
(CaT) were determined from the absorbance at 470 nm, 653 nm, and 666 nm [28] using
the following equations:

ChA [mg/L] = 15.65 · A666 nm − 7.34 · A653 nm (4)

ChB [mg/L] = 27.05 · A653 nm − 11.21 · A666 nm (5)

CaT [mg/L] =
1000 · A470 nm − 2.86 · [Chlorophylla]− 129.2 · [Chlorophyllb]

245
(6)

Pigment content was calculated by dividing the pigment concentration in the extract by
the fresh weight of plant material used for extraction.

2.8. Spectral reflectance – Measurement systems and spectral features

The measurement of leaf reflectance (Figure 6) requires a light source (LS), spectral
camera (CS), white standard (WST) and leaves (L). The task of the light source LS
is to generate a stable spectrum S(λ)that does not change regardless of the operating
temperature or burning time. The standard spectral reflectance WST(λ) of the white
light standard, which consists of the BaSO4 material, is approximately 1.0 across the full
visible wavelength range (from 380 to 780 nm) according to the manufacturer. Initially,
the spectral camera CS2000 measured the spectral production S(λ) · WST(λ) (Figure 6,
left). Subsequently, the light source spectrum can be determined by Eq. 7.

S(λ) =
S(λ) · WST(λ) measured by CS

WST(λ) supplied by the manufacturer
(7)

Next, (Figure 6, right), white standard was replaced by a leaf (spectral reflectance L(λ)).

Figure 6. Measurement system and principle of spectral reflectance

The spectral production S(λ) · L(λ) was measured by a spectral camera CS. The light
source spectrum (Eq. 7) and the spectral reflectance of the leaf was determined by Eq. 8.

L(λ) =
S(λ) · L(λ) measured by CS

S(λ) determined previously in Eq. 7
(8)
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2.9. Plant parameter indicated by reflectance data

Mathematical description: to build a model, the equations 9 - 14 are introduced.
The investigated parameters - TPC, TFC, ChA, ChB, CaT and SLW - are called generally
Parameter X.

The spectral reflectance is represented by a matrix (26 x 401) with the matrix elements
(Ri,j, j = 380 − 780, i = 1 − 26). This matrix modified by a weighting function was also
called weighting vector with the elements of W1 to W780.

The matrix multiplication of the spectral reflectance matrix and its weighting vector
results in the intermediate vectors with the elements (Xinterm., k, k = 1 − 26), shown in
Eq. 9. This intermediate vector was used for calculation of the prediction vector with
linear equation as Eq. 10.

 Xintern.,1
...

Xintern.,26

 =

 R1,308 ... R1,780
... ... ...

R26,308 ... R26,780

 ·

 W1
...

W780

 (9)

 Xpredic.,1
...

Xpredic.,26

 = a ·

 Xintern.,1
...

Xintern.,26

+ b (10)

For next steps, the statistical parameters ErrorVector, Sum of Square Error (SSE), the
average values between the experimental values and their mean values (AVR.) and R2

are calculated like in Eq.11 to Eq. 14.

ErrorVector =

 Xpredic.,1
...

Xpredic.,26

−

 Xexper.,1
...

Xexper.,26

 (11)

SSE =
26

∑
i

ErrorVectori
2 (12)

AVR. =
26

∑
i
(Xexperi.,i −

∑26
i Xexperi.,i

26
)

2

(13)

R2 = 1 − SSE
AVR.

(14)

* Optimization algorithm: Subsequently, the optimization algorithm, was applied to de-
termine parameter of the model. The optimization algorithm is described schematically
in Figure 7. In our experiments, the plants were cultivated under different conditions to
create a comprehensive experimental database for constructing the prediction models.
Specifically, the following parameter: TPC, TFC, ChA, ChB, CaT and SLW of the culti-
vated plants were measured, processed, and determined to create the biological database
(denoted Database 1 in Figure 7). The spectral (Section 2.8), represents Database 2 (Figure
7). The processing of Databases 2 with equations Eq. 9 to Eq. 14 results in the statistical
values sum the square error (SSE) and R2. Both the weighting elements of the weighting
vector (W1 − W780 in Eq. 9) and linearity parameters (a and b in Eq. 10) are generated by
the optimization algorithm. The optimization loop is implemented automatically and
continuously until SSE is minimal and R2 is maximal. The achieved results represent
the weighting vectors and linearity parameters of the model.
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Figure 7. The schematic description of the synthesis optimization algorithm for predic-
tion models

3. Results
3.1. Analysis of biological and biochemical parameter (Database 1)

We analysed six different parameters: TPC, TFC, ChA, ChB, CaT and SLW from 27
plants, which were cultivated under three different light conditions: white, red, and
blue/red light; and harvested at three different days: day 5 (D5), day 14 (D14) and day
21 (D21) after the onset of the experiment (Figure 8).

Our results indicate for significant variation of investigated plants, even in those from
the same group (i.e., cultivated under the same light conditions and harvested at the
same day). We performed the Kruskal-Wallis test to compare between plant groups
categorized by either growth light conditions (White (W), Red (R) and Blue/Red (B/R))
or by age (i.e. the harvesting day Day 5 (D5), 14 (D14) and 21 (D21)). Our results (Table
1) indicate that there is no statistically significant difference (p > 0.05) of different light
conditions. However, the age of the plants modified five out of the six investigated
parameters significantly (p < 0.05).

Table 1: Kruskal–Wallis test performed on plants grouped by growth light conditions
(White (W), Red (R) and Blue/Red (B/R)) or by age (harvesting on Day 5 (D5), 14 (D14)
and 21 (D21)). SLW – Specific Leaf Weight; TPC – Total Phenolic Content; TFC – Total
Flavonoid Content; ChA, ChB, CaT: chlorophyll a, chlorophyll b and total carotenoids
contents

KRUSKAL-WALLIS TEST
Light condition groups (W, R, B/R) Age groups (D5, D14 & D21)
χ2 d f p χ2 d f p

SLW 4.361 2 0.113 SLW 6.62 2 0.037
TPC 2.384 2 0.304 TPC 10.31 2 0.006
TFC 0.575 2 0.75 TFC 13.04 2 0.001
ChA 2.931 2 0.231 ChA 8.6 2 0.014
ChB 2.215 2 0.33 ChB 8.7 2 0.013
CaT 5.527 2 0.063 CaT 2.93 2 0.231
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Figure 8. Analysis of six different plant parameters. Each symbol represents an
individual plant. GAE – Gallic Acid Equivalent; CE – Catechin Equivalent; FW –
Fresh Weight

3.2. Measurement of plant’s reflectance (Database 2)

The spectral reflectance of leaves growing under different light conditions (red,
blue/red and white) measured at different time points (5, 14 and 21 days after the start
of the experiment) are depicted in Figure 9. Each plant is represented by 10 different
point measurements, which were taken with 10 randomly excised leaf discs. All spectra
share the same common pattern with a left slope at about 525 nm and a flatter right
slope at about 600 nm, which meet at the maximal point at about 550 nm. Furthermore,
a concave point at about 690 nm with an amplitude of about 10% for all leaves was
observed. The region above 700 nm is characterized by a steep slope, which appears at
about 710 nm and levels off from 720 nm to a plateau with an amplitude of about 60%.
We also observed minor differences among 10 measured points. Such differences were
highest after 5 days and then decreased. After 21 days, spectral reflectance was nearly
constant.

3.3. Building the prediction models

The six investigated parameters - TPC, TFC, ChA, ChB, CaT and SLW - were opti-
mized and synthesized with our optimization algorithm (Table 2). It can be concluded
that only in the case of TPC and TFC, good correlations between experimental values
and the prediction models based on the optimized weighting functions exist. In the four
remaining cases of SLW, ChA, ChB and CaT, the correlation to the experimental values
are weak (R2 = 0.209 with SLW, R2 = 0.198 with ChA and R2 = 0.151 with ChB) or
very weak (R2 = 0.021 with CaT).

3.4. Correlations between reflectance and TPC/TLC

* Total Phenolic Content (TPC): optimization results of Total Phenolic Contents
(TPC) are shown in detail in Figure 10. The upper subplot, depict the comparison be-
tween the experimentally determined and the predicted TPC shows a significant linear
correlation. Statistical parameters R2, d f e, Adj. − R2 and RMSE are 0.96179, 24, 0.9602
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(a) Leaves under different light conditions (R=red, B=blue, W=white) after 5 days

(b) Leaves under different light conditions (R=red, B=blue, W=white) after 14 days

(c) Leaves under different light conditions (R=red, B=blue, W=white) after 21 days

Figure 9. Spectral reflectance of leaves under different light sources after 5, 14 and 21 growth days

and 0.086236, respectively. Linearity parameters - aeval. = 0.9972 and beval. = 0.0034217 –
also compare favourably with the ideal ones aeval. = 1 and beval. = 0. The residual plot
(middle subplot) shows that all absolute residuals are under 0.2.

Of importance for the optimization algorithm is the weighting function. Only af-
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Table 2: Optimization results of all parameter cases

Parameter R2 SSE d f e Adj.R2 RMSE aeval. beval.
Total Phenolic
Content (TPC)

0.962 0.179 24 0.96 0.086 0.998 0.0034

Total Flavonoid
Content (TFC)

0.876 1.886 25 0.88 0.274 1.004 0.0067

Specific Leaf
Weight (SLW)

0.209 8.8 · 10−5 25 0.178 0.0019 0.998 0.209

Chlorophyll a
(ChA)

0.151 0.45 25 0.12 0.13 7.296 4.516

Chlorophyll b
(ChB)

0.198 0.211 25 0.166 0.092 1.061 0.028

Total Carotenoids
(CaT)

0.021 0.064 25 -0.019 0.019 0.055 0.071

Figure 10. The prediction model, absolute residuals, and weighting function plots of
the total phenolic content (TPC)

ter the weighting function has been optimized the other parameters of the equations
Eq. 9 to Eq. 14 could be completed. The weighting function is displayed in the lower
subplot. Here, the important wavelength ranges occur in the short wavelength range of
from 380 nm to 500 nm and in the long wavelength range between 640 nm and 680 nm,
which differs to the wavelength range of between 500 nm and 640 nm and from 680 nm
to 780 nm remaining low and constant.

* Total Flavonoid Content: A comparable situation occurs in the case of TFC (Fig-
ure 11). The statistical parameter of the TFC model is somewhat inferior to the TPC
ones but still very good with R2 = 0.87546 and SSE = 1.8862. Absolute values are also
larger. In the TFC weighting function, wavelength intensities stay relatively low and
constant in regions between the 520 nm - 640 nm and between 700 nm - 780 nm. Like in
the TPC model, the weighting function for TFC is dominated by two wavelength ranges
of 380 nm - 520 nm and 640 nm - 700 nm. However, the patterns in these ranges are more
complex.

4. Dicussion

In our experiment, large variations between plant individuals were observed even
when they belong to the same light condition or age group. Plant-to-plant variations are
an inherent and often problematic aspect in plant study since a large sample variance
can easily mask the small but evident effects. In order to reduce the variance and thus
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Figure 11. The prediction model, absolute residuals, and weighting function plots of
the total flavonoid content (TFC)

enhance the power of the analysis, it is necessary to increase the sample size, i.e. to
increase the number of investigated plants. Thanks to the low cost, high throughput
and rapid rate of data acquisition associated with reflectance measurements, a much
larger number of plants can be analysed by this method compared to the conventional
chemistry-based analysis.

Accurate predictions of various biological and biochemical parameters of basil based on
its reflectance properties have been achieved elsewhere [29,30]. However, the practical
applicability of these findings is limited by the high cost of reflectance measuring equip-
ment. As stated above, we applied several restrictions to our experiments to simulate
the real life’s limitations of colour sensors, including the mode of acquisition (point
measurements instead of hyperspectral imaging) and wavelength range (visible region
only). It is significant that even under these restrictions, we were able to establish good
correlations between reflectance data and TPC respectively TFC. These two parameters
represent the content of phenolic substances or flavonoids – two classes of secondary
metabolites with important roles in the health-promoting effects as well as in the taste
and flavour of sweet basil. Our results imply that the applications of colour sensors for
quantification of TPC/TFC promises a reasonable probability of success and should be
further investigated.

Both multi-channel spectral sensors and low-cost sensors can be utilized for such appli-
cations. The former, as seen in the examples of [21–25] can process many wavelength
channels simultaneously. Using the established weighting functions (Figures 10, 11),
the measured reflectance from these channels can be converted by simple mathematic
transformations into the predicted TPC/TFC values. On other hand, low-cost sensors
often have only one or a couple of photodiodes and some simple built-in electronic
elements. They will require a different approach. We propose that in this case, the
weighting functions should be physically processed by additional optical filters which
are specifically tailored to match the features of the weighting functions. In the regions
where wavelength intensities stay relatively low and constant (500 nm - 640 nm and 680
nm - 780 nm in case of TPC and 520 nm - 640 nm and 700 nm - 780 nm in case of TFC),
simple optical filters will be sufficient. On the other hand, for the dominant regions (380
nm - 500 nm and 640 nm - 680 nm in case of TPC and 380 nm - 520 nm and 640 nm - 700
nm in case of TFC), sophisticated filter designs will be required.
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5. Conclusion306

Our study confirms the applicability and scope of visible colour sensors for analysis307

and quantification of important plant properties In particular the content of valuable308

substances such as phenolic compounds and flavonoids (corresponding to Technical309

Readiness Level TRL3). Further work will be required to shift this concept into higher310

TRL levels. The establishment of the TPC and TFC weighting functions represents a311

significant step forward. Only with these weighting functions the successive processing312

techniques of colour sensors could be realized for the envisaged fully automated and313

accurately monitored/controlled vertical farming systems.314
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