
Stacking ensemble of machine learning methods for landslide susceptibility mapping in 

Zhangjiajie City, Hunan Province, China 

Yuke Huan 1, Lei Song 2, Umair Khan 1 and Baoyi Zhang 1,* 

1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring 

(Ministry of Education)/ School of Geosciences and Info-Physics, Central South University, Changsha 410083, 

China.; 205012144@csu.edu.cn (Y.H.); Umair77@csu.edu.cn (U.K.) 

2. Hunan Institute of Geological Disaster Investigation and Monitoring, Changsha 410004, China; 

894469474@qq.com (L.S.); 

* Correspondence: zhangbaoyi@csu.edu.cn; Tel.: +86-731-88877676 (B.Z.) 

 

Abstract: The current study aims to apply and compare the performance of six machine learning algorithms, 

including three basic classifiers: random forest (RF), gradient boosting decision tree (GBDT), and extreme 

gradient boosting (XGB), as well as their hybrid classifiers, using the logistic regression (LR) method (RF+LR, 

GBDT+LR, and XGB+LR), in order to map the landslide susceptibility of Zhangjiajie City, Hunan Province, 

China. First, a landslide inventory map was created with 206 historical landslide points and 412 non-landslide 

points, which was randomly divided into two datasets for model training (80%) and model testing (20%). Second, 

a landslide factor database was initially established by selecting 15 landslide conditioning factors from the 

topography, hydrology, climate, geology, and artificial activities. Thereafter, the multicollinearity test and 

information gain ratio (IGR) technique were applied to rank the importance of the factors. Subsequently, we used 

a series of metrics (e.g., accuracy, precision, recall, f-measure, area under the ROC (receiver operating 

characteristic) curve (AUC), kappa index, mean absolute error (MAE), and root mean square error (RMSE)) to 

evaluate the accuracy and performance of the six models. Based on the AUC values derived from the models, the 

GBDT+LR model with the highest AUC value (0.8168) was identified as the most efficient model for mapping 

landslide susceptibility, followed by the XGB+LR, XGB, RF+LR, GBDT, and RF models, which achieved AUC 

values of 0.8124, 0.8118, 0.8060, 0.7927, and 0.7883, respectively. The results from this study suggest that the 

stacking ensemble machine learning method is promising for use in landslide susceptibility mapping in the 

Zhangjiajie area and is capable of targeting the areas prone to landslides. 
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1. Introduction 

Landslides describe various processes that lead to the downward and outward movement of slope-forming 

materials, including rock, soil, and artificial fill, or a combination of these (Cruden and Varnes, 1996). Different 

natural phenomena and artificial disturbances cause landslides. Natural triggers include meteorological changes 

(e.g., heavy rainfall or snowmelt) and rapid tectonic forcings (e.g., earthquakes or volcanic eruptions). Artificial 

disturbances includes land-use change, deforestation, excavation, slope profile change, irrigation, etc. (Guzzetti 

et al., 2005). Landslides are the seventh most destructive natural disaster globally, destroying transportation, 

farmland, and villages, and causing loss of life or property, and economic collapse (Petley, 2012). 

Landslide susceptibility refers to the probability of landslide occurring in a certain area based on the influence 

of artificial, terrain, and environmental conditions; that is, the probability of slope damage given certain artificial 

and natural conditions (Guzzetti et al., 2006). Landslide susceptibility mapping (LSM) in a geographic 

information system (GIS)-integrated environment is the key to formulating disaster prevention measures and 

reducing future risks. 

Generally, specific methods developed for LSM include: (1) inventory-based and knowledge-driven methods, 

such as the analytic hierarchy process (Sur et al., 2020); (2) bivariate and multivariate statistical methods, such as 

frequency ratio (Abedini and Tulabi, 2018), statistical index (Nahayo et al., 2019), evidential belief function 



(Mondal and Mandal, 2020), index of entropy (Demir, 2019), weighted linear combination (Gigović et al., 2019), 

certainty factors (Lin et al., 2021), logistic regression (Kalantar et al., 2018 , Hong et al., 2016), weights-of-

evidence (Aghdam et al., 2017), and fuzzy logic (Zhao et al., 2021); (3) machine learning methods, such as support 

vector machines (Kalantar et al., 2018), artificial neural network (Sadighi et al., 2020 , Kalantar et al., 2018), and 

decision tree (Pham et al., 2020a). It has been documented that machine learning methods produce more accurate 

LSM predictions than statistical techniques when evaluating parameters with different statistical distributions and 

complex feature spaces (Chen et al., 2020b). 

Previous comparative studies have found that machine learning models based on ensemble learning are 

superior to single machine learning models in accuracy and robustness, which can increase the availability of 

high-resolution LSM (Merghadi et al., 2020 , Sadighi et al., 2020 , Pham et al., 2017). In particular, some ensemble 

learning algorithms based on decision tree (DT) have improved the accuracy and efficiency of landslide 

classification (Merghadi et al., 2020). DT is a basic classifier of various bagging (Breiman, 1996) and boosting 

(Freund, 1990) ensemble machine learning algorithms. Kadavi et al. (2019) applied a DT classification method to 

predict the areas with high potential for future landslide occurrence and reported that the prediction accuracy of 

the DT model is better than the LR model. Bagging, which stands for boostrap aggregation, is a technique for 

repeated sampling with put-back from data based on a uniform probability distribution (Breiman, 1996). Random 

forest (RF) is a typical bagging ensemble machine learning model consisting of DTs that can be trained 

independently or in parallel (Breiman, 2001). Thai Pham et al. (2018) applied different machine learning 

algorithms for the modeling of landslide susceptibility in the Luc Yen district, Northern Vietnam, and found that 

the RF method could be applied for better landslide susceptibility mapping and management. Lai and Tsai (2019) 

developed a systematic approach with the RF method to apply satellite remote sensing images, geographic 

information system (GIS) datasets, and spatial analysis for multi-temporal and event-based landslide susceptibility 

assessments on a regional scale. Unlike bagging, boosting is a weight-based integration of multiple resampled 

weak classifiers to form a strong classifier (Freund, 1990). Boosting ensemble machine learning models, such as 

AdaBoost (Pham et al., 2015), MultiboostAB (Webb, 2000), the gradient boosting decision tree (GBDT) (Jerome, 

2001), and extreme gradient boosting (XGB) (Chen and Guestrin, 2016), are widely used in landslide 

susceptibility prediction. Chen et al. (2020a) reported that the GBDT method outperformed the other machine 

learning methods, and was able to provide strong technical support for producing landslide susceptibility maps in 

the Three Gorges Reservoir (TGR) area. Sahin (2020) produced a landslide susceptibility map using three featured 



regression DT-based ensemble methods, including GBDT, XGB, and RF, and the results showed that the XGB 

method achieved a lower prediction error and higher accuracy than the other ensemble methods.  

The aforementioned bagging and boosting ensemble learning methods are homogeneous in that they combine 

several identical models into one prediction method. However, due to the heterogeneity of topographic, 

geological, hydrological, and artificial conditions in different landslide areas, homogeneous ensemble learning 

may not be suitable for all LSM scenarios. Stacking is a typical heterogeneous classifier composition framework 

proposed by Wolpert (1992). By generalizing the outputs of multiple classifiers, a stacking ensemble uses the 

outputs of the previous classifier as the learning input information of the next layer so that the previous learning 

can be fully used in the subsequent induction process to discover and correct classification deviations, in order to 

achieve higher classification accuracy than the single classifiers. Althuwaynee et al. (2014) proved the efficiency 

and reliability of ensemble DT and LR models in LSM. He et al. (2014) introduced a model that combines GBDT 

with LR, outperforming either of these methods on its own by over 3%. Ma et al. (2015) proposed a novel 

framework to identify gene variation using LR and RF. According to the above literature results, it is feasible to 

stack DT-based machine learning models with a logistic regression model to improve the prediction accuracy and 

performance of landslide susceptibility prediction models.  

The current study aims to carry out LSM for Zhangjiajie City, Hunan Province, China, and to improve LSM 

effectiveness for decision-makers. In order to achieve this purpose, the RF, GBDT, and XGB methods were used 

for LSM and compared with the hybrid models RF+LR, GBDT+LR, and XGB+LR. Whereafter, we used a series 

of criteria to evaluate the performance of the six models, including accuracy, precision, recall, f-measure, area 

under the ROC (receiver operating characteristic) curve (AUC), kappa index, and root mean square error (RMSE). 

In addition, the frequency ratio method was used to conduct quantitative analysis on the prediction effect of each 

machine learning model. Finally, based on the above evaluations, suggestions were drawn for landslide disaster 

risk prevention and management in the study area. 

2. Study Area and Dataset 

2.1. Study Area 

There are a total of 18,567 potential geological disaster sites in Hunan Province, accounting for 6.5% of the 

total sites and ranking fourth in China, threatening a population of 712,600 people and property worth CNY 29.824 

billion. The types of potential disaster sites in Hunan Province are mainly landslides, with a total of 11,405 sites. 

Therefore, Zhangjiajie City is one of the key objects of geological disaster prevention and control in Hunan 

Province. 



Zhangjiajie City (located between 28°52′ and 29°48′ north latitude, 109°40′ and 111°20′ east longitude) is in 

the northwest part of Hunan Province with an area of 9516 km2 (Fig. 1). The elevation ranges from 67 to 1840 m 

above sea level (asl). Notable alluvial terraces and karst landscapes have been formed in the Zhangjiajie area, 

located in the Wuling Range between the Yun-Gui Plateau to the northeast and the mountainous area of 

northwestern Hunan Province, with the mountainous area accounting for 76% of the total area (Yang et al., 2011). 

The lithostratigraphy within this area is comprised of Silurian, Devonian, Permian, Triassic, and Quaternary strata. 

The Silurian and Devonian strata account for most of the total area  (Hunan Bureau of Geology and Mineral 

Resources, 1988). The study area belongs to the mid-tropical monsoon climate, with abundant and concentrated 

precipitation, with an average annual precipitation of 1200–1500 mm. Rainfall is an important external condition 

for the occurrence and development of landslides in the study area, especially the shallow accumulation body. 

The rivers and streams in Zhangjiajie City are crisscrossed, and the water system is dominated by the Lishui River 

and the Loushui River. The largest land-use types in Zhangjiajie City are forest land and cropland. The permanent 

resident population of Zhangjiajie City has reached more than 1.51 million. 

 

Fig 1. Location map of the study area: (a) location of the study area in Hunan Province, and (b) elevation of the 

study area along with location of landslide points in that. 

 



2.2. Dataset 

In this study, a landslide inventory map containing 206 historical landslide sites in the Zhangjiajie City of 

Hunan Province, China was get based on field survey and high-resolution remote sensing image interpretation 

carried out by the Hunan Institute of Geological Survey (oa.hnsddy.com, Changsha, China). Most of these 

historical landslides belong to small and medium-sized scale, and the general movement type is clay/silt sliding 

with the characteristics of high frequency and wide distribution, which can be classified as shallow soil landslide 

according to the classification standard of landslides (Hungr et al., 2014). Landslide points and non-landslide 

points are extracted as positive and negative samples, respectively. To avoid the close proximity of the positive 

and negative samples, 412 non-landslide points were randomly extracted outside the 1000 m buffer zone of the 

landslide sites. Subsequently, 80% of the points were chosen for model training and 20% for testing.  

Based on the existing literature and data availability, we chose 15 conditioning factors from multi-disciplines 

that have an effect on the occurrence of landslide, such as geomorphology, hydrology, climate, geology, and 

artificial activities. These LCFs include altitude, slope, aspect, plane curvature, profile curvature, relief, 

roughness, rainfall, topographic wetness index (TWI), normalized difference vegetative index (NDVI), distance 

to roads, distance to rivers, land use/land cover (LULC), soil texture, and lithology (Tables 1 and 2). All the LCFs 

were converted into a raster form with a spatial resolution of 90 m (Fig. 2). 

Table 1 The landslide conditioning factors (LCFs) used in this study. 

NO. LCF Classes Data source 
Resolution 

(Scale) 
Description 

1 
Altitude 

(m) 

67–317, 317–527, 

527–750, 750–1037, 

and 1037–1840. 

Digital elevation model (DEM) 90 × 90 m 

Affecting rainfall 

and related surface 

runoff (Botzen et 

al., 2013). 

2 Slope (°) 

0–8.382, 8.382–

15.680, 15.680–

23.664, 23.664–

33.440, and 33.440–

71.275. 

DEM 90 × 90 m 

Influencing slope 

stability as well as 

surface runoff, 

infiltration, and 

drainage density 

(Nefeslioglu et al., 

2008). 

3 Aspect 

flat (–1), north (0–

22.5°), northeast 

(22.5–67.5°), east 

(67.5–112.5°), 

southeast (112.5–

157.5°), south 

DEM 90 × 90 m 
The orientation of 

the slope. 



(157.5–202.5°), 

southwest (202.5–

247.5°), west (247.5–

292.5°), northwest 

(292.5–337.5°), and 

north (337.5–360°). 

4 
Plane 

curvature 

−6.555 to −0.460, 

−0.460 to 0.120, 

−0.120 to 0.137, 

0.137 to 0.478, and 

0.478 to 4.314. 

DEM 90 × 90 m 

Reflecting the 

divergence and 

convergence of 

water on the 

surface (Huang et 

al., 2020). 

5 
Profile 

curvature 

−5.902 to −0.569, 

−0.569 to 0.178, 

−0.178 to 0.116, 

0.116 to 0.507, and 

0.507 to 6.575. 

DEM 90 × 90 m 

Affecting the flow 

velocity variation 

of slope (Pham et 

al., 2017). 

6 
Relief 

(m) 

0-45, 45-80, 80-120, 

120-176, and 176-

756. 

DEM 90 × 90 m 

Difference of the 

maximum and 

minimum 

elevations within a 

certain area. 

7 Roughness 

1–1.054, 1.054–

1.137, 1.137–1.261, 

1.261–1.509, and 

1.509–3.321. 

DEM 90 × 90 m 

Undulation 

changes and 

erosion degree of 

the ground surface. 

8 
Rainfall 

(mm/yr) 

0–1000, 1000–1200, 

1200–1400, 1400–

1600, and 1600–

2000. 

Hunan Provincial Institute of Land 

Resources Planning 

(www.hngtghy.com, Changsha, China) 

 

1000 ×

 1000 m 

An important 

external condition. 

9 TWI 

–1.025–3.277, 

3.277–6.456, 6456–

9.542, 9.542–12.067, 

and 12.067–22.822. 

DEM 90 × 90 m 

Predicting areas 

susceptible to the 

surface of saturated 

soil. 

10 NDVI 

0.244–0.500, 0.500–

0.632, 0.632–0.736, 

0.736–0.816, and 

0.816–0.900. 

Resource and Environment Science 

Data Center 

(www.resdc.cn, Beijing, China)  

30 × 30 m 

Measuring the 

degree of 

vegetation 

coverage and the 

status of vegetation 

growth (Tien Bui 

et al., 2019). 

http://www.hngtghy.com/
http://www.resdc.cn/


11 
Distance to 

rivers (m) 

0–603.738, 603.738–

1297.998, 1297.998–

2012.461, 2012.461–

2747.58, 2747.581–

3520.369, 3520.369–

4374.037, 4374.037–

5331.313, 5331.313–

6468.114, and 

6468.114–9198.070. 

OpenStreetMap  

(www.openhistoricalmap.org, 

Cambridge, UK)  

90 × 90 m Erosion of river. 

12 
Distance to 

roads (m) 

0–576.281, 576.281–

1297.998, 1297.998–

2056.259, 2056.259–

2871.550, 2871.550–

3798.171, 3798.171–

4923.749, 4923.749–

6321.179, 6321.179–

8375.321, and 

8315.321–

11783.128. 

OpenStreetMap  90 × 90 m 

Reflecting the 

intensity of  

human influence. 

13 LULC 

cropland, forests, 

grassland, wetland, 

water bodies, and 

artificial surfaces. 

GLOBELAND30  

(www.globallandcover.com, Beijing, 

China)  

30 × 30 m 

The soil properties 

of cohesive force, 

friction angle, soil 

bulk density, and 

pore pressure will 

change under 

different land 

covers (Nguyen et 

al., 2019). 

14 
Soil 

texture 

haplic acrisols, 

humic acrisols, ferric 

alisols, haplic alisols, 

cumulic anthrosols, 

dystric cambisols, 

ferralic cambisols, 

rendzic leptosols, 

haplic luvisols, 

chromic luvisols, 

ferric lixisols, 

calcaric regosols, 

dystric regosols, and 

water bodies. 

Harmonized World Soil Database 

(HWSD) built by the Food and 

Agriculture Organization of the United 

Nations (UNFAO, www.fao.org, Rome, 

Italy) and the International Institute for 

Applied Systems Analysis (IIASA, 

iiasa.ac.at, Laxenburg, Austria) 

1:5000000 

Representing the 

texture of the soil 

materials that 

influence landslide 

occurrence. 

http://www.openhistoricalmap.org/
http://www.globallandcover.com/
http://www.fao.org/


15 Lithology As shown in Table 2. Geological map database of China  1:500000 

Influencing the 

occurrence of 

erosion, ground 

stability, and 

landslide 

(Arulbalaji et al., 

2019). 

 

Table 2 Lithological units and their description of the study area. 

 
Lithological 

Unit 
Description Age Era 

1 K2 Red sandstone, calcium mudstone, glutenite. Cretaceous 

2 K1 Red siltstone, mudstone, glutenite, basalt. Cretaceous 

3 K Union layer. Cretaceous 

4 J1+2 Upper and middle series coexisted. Jurassic 

5 J1 
Sandstone, feldspar quartz sandstone, shale, conglomerate, 

basalt. 
Jurassic 

6 T3 Sandstone, mudstone, shale, quartz conglomerate. Triassic 

7 T2 Variegated calcareous mudstone, siltstone, dolomite. Triassic 

8 T1 Limestone, dolomite, argillaceous limestone. Triassic 

9 P 
Upper series: siliceous rock, shale, limestone, sandstone; lower 

series: chert limestone, magnesian marl. 
Permian 

10 D2+3 Middle series and lower series cobedded. Devonian 

11 D1 Purple sandstone, shale, glutenite. Devonian 

12 S Siltstone, shale, sandy limestone, shell limestone. Silurian 

13 O Parallel beds. Ordovician 

14 ϵ3 Dolomite, limestone. Cambrian 

15 ϵ2+3 Syncretism of the upper and middle series. Cambrian 

16 ϵ2 Limestone, dolomite, shale. Cambrian 

17 ϵ1 Limestone, marl, shale, carbonaceous shale. Cambrian 

18 Z Syncline. Sinian 

19 𝑃𝑡3
1𝑏𝑥 

Banxi group. Purple slate, metamorphic sandstone, limestone, 

pebbled sandstone, mafic rock. 

Lower Upper 

Proterozoic 

 



 

Fig 2. LCFs for landslide susceptibility mapping (LSM): (a) altitude, (b) slope, (c) aspect, (d) plane curvature, 

(e) profile curvature, (f) relief, (g) roughness, (h) rainfall, (i) topographic wetness index (TWI), (j) normalized 

difference vegetative index (NDVI), (k) distance to roads, (l) distance to rivers, (m) land use/land cover 

(LULC), (n) soil texture, and (o) lithology. 

3. Methods 

The LSM scheme is presented in Fig. 3, and the main procedures are described as follows. 



(1) Selecting and ranking LCFs: in total, 15 landslide conditioning factors were selected from topography, 

hydrology, climate, geology, and artificial activities, which included altitude, slope, aspect, plane curvature, profile 

curvature, relief, roughness, rainfall, TWI, NDVI, distance to roads, distance to rivers, LULC, soil texture, and 

lithology. We used multicollinearity analysis to detect factor multicollinearity and information gain ratio (IGR) 

technology to measure the importance of LCFs, so as to independently evaluate the correlation of factors and 

eliminate irrelevant or redundant factors. 

(2) Modeling: we first used several machine learning methods as basic classifiers to model landslide 

susceptibility, including the RF model with the bagging method, and the GBDT and XGB models with the 

boosting method. Subsequently, these DT-based ensemble models were stacked with the logistic regression (LR) 

linear classifier model, then the RF+LR, GBDT+LR, and XGB+LR models were constructed for landslide 

susceptibility prediction. 

(3) Model validation and comparison: we used a series of machine learning evaluation methods and error-

based evaluation methods to measure and compare the performance of the six models, including accuracy, 

precision, recall, f-measure, area under the ROC (receiver operating characteristic) curve (AUC), kappa index, 

and root mean square error (RMSE). 

(4) Visualization of landslide susceptibility map: we made landslide susceptibility prediction maps to 

qualitatively evaluate the prediction capabilities of each model, and used the frequency ratio method to 

quantitatively evaluate the prediction results and overall performance of all models in detail. 

 



 

Fig 3. Flowchart of LSM using the stacking ensemble machine learning models. 

3.1. Importance Analysis of LCFs 

Choosing appropriate landslide conditioning factors (LCFs) as model input is of great significance for 

landslide susceptibility evaluation. Information gain ratio (IGR) (Nhu et al., 2020a) is the ratio of node information 

gain to node split information measure. It is a factor ranking technique that can independently evaluate different 

factors' correlations and detect the irrelevant or redundant factors. 

We used the IGR method to rank and choose the factors that affect landslide susceptibility.  

It is assumed that T is the total number of input tuples for each factor in the training dataset, Tj is the total 

number of positive or negative tuples in the training dataset, v is the total number of classes in the dataset, and S 

is one of the factors influencing landslide disaster. The specific calculation of IGR(S) is as follows: 

𝐼𝐺𝑅(𝑆) =
𝐺𝑎𝑖𝑛(𝑆)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑆)
 (1) 

where: 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑆) = − ∑
|𝑇𝑗|

|𝑇|

𝑣

𝑗=1

𝑙𝑜𝑔2(
|𝑇𝑗|

|𝑇|
) (2) 



𝐺𝑎𝑖𝑛(𝑆) = 𝐼(𝑃, 𝑁) − 𝐸(𝑆) (3) 

𝐸(𝑆) = − ∑
𝑃𝑖 + 𝑁𝑖

𝑃 + 𝑁

𝑘

𝑖=1

𝐼(𝑃𝑖 , 𝑁) (4) 

𝐼(𝑃𝑖 , 𝑁) = −
𝑃

𝑃 + 𝑁
𝑙𝑜𝑔2

𝑃

𝑃 + 𝑁
−

𝑁

𝑃 + 𝑁
𝑙𝑜𝑔2

𝑁

𝑃 + 𝑁
 (5) 

where: E(S) represents the entropy of the S factor in the training dataset, I(P,N) shows the information required to 

satisfy the given training dataset, P is the total number of positive tuples in the training dataset, N illustrates the 

total number of negative tuples in the training dataset, Pi and Ni mean the number of positive and negative tuples 

of the i-th S factor, respectively, and k represents the number of values of the S factor. 

3.2. Multicollinearity Analysis 

Multicollinearity refers to the mutual dependence, lack of independence, and complete or nearly complete 

linear relationship between the variables in the regression equation (Farrar and Glauber, 1967). By analyzing 

whether there is multicollinearity in the model, high multicollinearity factors should be removed to minimize the 

bias of the model and to optimize the prediction results. Multicollinearity is usually analyzed by variance inflation 

factor (VIF) and tolerance (TOL) (Green and Stephenson, 1986). Their equations are as follows: 

𝑇𝑂𝐿 = 1 − 𝑅𝑗
2 (6) 

𝑉𝐼𝐹 =
1

𝑇𝑂𝐿
 (7) 

where: Rj is the negative correlation coefficient between the j-th independent variable xj and the other independent 

variables. 

The value of VIF increases with the increase of 𝑅𝑗
2. Generally, if the TOL value is <0.10 or 0.20 and the VIF 

value is >5 or 10, the results indicate a high degree of multicollinearity between variables (Band et al., 2020). 

3.3. Basic Classifiers 

The RF classifier is an improved form of bagged DT-based classifier, which is used to solve complex 

problems of prediction and multi-classification. It combines the bagging integrated learning algorithm with the 

random subspace algorithm, making it a powerful classification tool capable of recognizing large-scale and 

multivariable data. RF consists of four parts, i.e., random selection of samples (put-back sampling), random 

selection of features, construction of decision trees, and random forest voting (averaging) (Breiman, 2001). 

Gradient boosting decision tree (GDBT) is a multiple decision tree ensemble machine learning method based 

on a boosting scheme. The GBDT algorithm builds the model by iteratively forming regression DT as a weak 

classifier. The weak classifier of each round is generated through multiple iterations, trained on the residuals of 



the previous round (Jerome, 2001). The GBDT algorithm uses multiple classifiers to create hundreds of trees that 

can minimize the over-fitting of the decision tree algorithm. Moreover, the design of each sub-classifier is simple, 

and the training progress can be accelerated accordingly.  

Extreme gradient boosting (XGB) is a highly scalable decision tree integrated machine learning method 

based on the principle of gradient boosting machines (Chen and Guestrin, 2016). The XGB algorithm improves 

the GBDT by optimizing the function space gradient descent algorithm from a first-order Taylor expansion to a 

second-order Taylor expansion, and by adding a regular term to avoid over-fitting (Zhang et al., 2021). 

The LR method is a predictive analysis process that combines linear regression with a sigmoid function, 

using events as dependent variables while causal factors in categorical, continuous, or binary variables as 

independent variables (Hong et al., 2016). In the process of landslide sensitivity analysis, the independent 

variables are the LCFs, and the dependent variable is the variable of landslide occurrences. The output value of 

the model is between 0 and 1. Usually, 0 represents a non-landslide event (negative cell), and 1 represents a 

landslide event (positive cell). The closer the value is to 1, the higher the probability of landslide occurring; on 

the contrary, the closer the value is to 0, the lower the probability of landslide occurring. 

3.4. Stacking Ensemble 

The stacking ensemble method is an integration model proposed by Wolpert (1992) for compiling several 

different algorithms on training processes, which works by estimating raw classifiers with poor performance 

relative to independent or bootstrapped training data (Dou et al., 2020).  

The stacking model fusion system is designed as a two-layer structure, as shown in Fig. 4. The first layer is 

integrated by N boosted tree models to form the basic classifier layer of the fusion system. The output of each tree 

is used as the classification input of the second-layer sparse linear classifier, thereby fusing the N basic models. 

Assuming that the input feature is xi, the h-th basic classifier in the first layer is Fh, and the meta-classifier in the 

second layer is F, then the output of the h-th basic classifier of the first layer is Fh(xi), which is used as the input 

feature of the meta-classifier of the second layer, and the output yi is the final prediction result. As shown in 

Equation (8): 

𝑦𝑖 = 𝐹(𝐹1(𝑥𝑖), … , 𝐹ℎ(𝑥𝑖)), … , 𝐹𝑚(𝑥𝑖) (8) 

Essentially, the GBDT+LR model is a binary classifier model with a stacking design, so it can be used to 

solve binary classification problems. The RF+LR and XGB+LR models have therefore been proposed on this 

basis. The ensemble decision tree is used instead of the single decision tree to build the model because the 

expression ability of a single tree is not sufficient to express multiple distinguishing feature combinations. The 



expression ability of multiple trees can better find effective features and feature combinations. 

The detailed process of stacking of the three DT-based basic models with the LR model is shown in Fig. 4. 

First, after RF random sampling with put-back and GBDT and XGB random sampling without put-back, their 

respective original training datasets are obtained. Second, the basic model trains the original training dataset and 

obtains a binary classifier. One-hot encoding is the process of representing categorical variables as binary vectors. 

When the basic model makes a prediction, the output is not the probability value, but the one-hot coding used to 

record the position of the leaf node where the predicted probability value of each tree in the model is binarized as 

1 or 0. Since each weak classifier has only one leaf node to output the prediction results, while in a basic model, 

there are a weak classifiers and a total of b leaf nodes, each training data will be converted into a sparse vector of 

1 ∗  𝑏 dimension, in which a elements are 1 and the rest of 𝑏 − 𝑎 elements are 0. Thus, a new training dataset is 

constructed as an input of the LR model. Next, the new training dataset and labels derived from the original 

training dataset are inputted into the LR classifier for final training. Finally, the prediction results of RF+LR, 

GBDT+LR, and XGB+LR are obtained. After the basic model extracted the original dataset into a new dataset, 

not only did the input data of the LR model become sparse, but also, due to the influence of the numbers of weak 

classifiers and leaf nodes, the feature dimension of the new training data may be too large. Therefore, the 

regularization method needs to be used in the LR model to reduce the risk of overfitting. 

 

Fig. 4 Stacking ensemble structures for random forest (RF), gradient boosting decision tree (GBDT), and 

Extreme gradient boosting (XGB) with logistic regression (LR). 



4. Results 

4.1. Correlation among LCFs 

In this study, we used variance inflation factor (VIF) and tolerances (TOL) to evaluate the multicollinearity 

of LCFs. Table 3 shows the VIF and TOL of the 15 LCFs. The results show that the VIF value of the “relief” 

factor is greater than 5.0 and has multicollinearity, which needs to be excluded from the LCFs. However, the 

remaining 14 LCFs have no obvious correlation and can be used as input variables to model landslide susceptibility. 

Table 3 Multicollinearity of the LCFs. 

Factors TOL VIF 

Altitude 0.565 1.771 

Slope 0.337 2.970 

Aspect 0.976 1.024 

Profile curvature 0.763 1.311 

Plane curvature 0.739 1.353 

TWI 0.742 1.347 

NDVI 0.834 1.200 

Relief 0.194 5.152 

Roughness 0.225 4.435 

Distance to roads 0.765 1.307 

Distance to rivers 0.733 1.364 

Rainfall 0.767 1.303 

LULC 0.936 1.068 

Soil texture 0.905 1.105 

Lithology 0.884 1.131 

 

4.2. Importance of LCFs  

Table 4 shows the average merit (AM) value of the LCFs calculated using the information gain ratio (IGR) 

method. The results show that the AM values of all factors are greater than 0; therefore, all factors can be added 

to the landslide susceptibility modeling process. Among the 15 factors, profile curvature (AM = 0.610) is the most 

significant factor, followed by roughness (AM = 0.609), LULC (AM = 0.525), altitude (AM = 0.525), distance to 

roads (AM = 0.443), TWI (AM = 0.358), lithology (AM = 0.339), NDVI (AM = 0.292), slope (AM = 0.291), 

distance to rivers (AM = 0.200), plane curvature (AM = 0.185), aspect (AM = 0.177), soil texture (AM = 0.176), 

and rainfall (AM = 0.147). 

Table 4 The most effective factors for landslide occurrence. 

Factors Rank Average merit 

Profile curvature 1 0.610 



Roughness 2 0.609 

LULC 3 0.525 

Relief 4 0.443 

Altitude 5 0.413 

Distance to roads 6 0.364 

TWI 7 0.358 

Lithology 8 0.339 

NDVI 9 0.292 

Slope 10 0.291 

Distance to rivers 11 0.200 

Plane curvature 12 0.185 

Aspect 13 0.177 

Soil texture 14 0.176 

Rainfall 15 0.147 

 

4.3. Validation and Evaluation of Models 

In this study, we used RF, GDBT, XGB, RF+LR, GBDT+LR, and XGB+LR models to execute the modeling 

process on the training set and obtained evaluation results. We applied the 10-fold cross-validation method to 

prevent overfitting and to reduce model variability, then applied the grid search method to find the best hyper-

parameters for each model (Table 5). Accuracy, precision, recall, f-measure, area under the ROC (receiver 

operating characteristic) curve (AUC), kappa index, mean absolute error (MAE), and root mean square error 

(RMSE) were used to evaluate the performance of the six models. Higher values of model accuracy, precision, 

recall, f-measure, AUC, and kappa, as well as lower values of RMSE and MAE, mean better performance of the 

model. 

Table 6 lists the machine learning–based assessment results of five indicators: accuracy, precision, recall, f-

measure, and AUC. Both the accuracy and precision values of GBDT+LR are greater than 0.800, which is higher 

than the other five models. The XGB model yielded the highest recall and f-measure values. In addition, the 

performance of the RF+LR and GBDT+LR models is better than that of the RF and GBDT models in terms of all 

the statistical measures. As shown in Fig. 5, the AUC values of the GBDT+LR, XGB+LR, XGB, and RF+LR 

models are above 0.800, indicating that the above four models demonstrate very satisfactory prediction capability. 

Furthermore, the GBDT+LR model is better than the other models, due to it obtaining the highest AUC value. 

In terms of error-based assessment results (Table 7), the highest kappa index value was obtained by the 

GBDT+LR model, followed by XGB, GBDT, RF+LR, RF, and XGB+LR models. The kappa index values show 



the compatibility and reliability of the LSM models. The MAE and RMSE metrics indicate that the GBDT+LR 

model has the smallest errors, followed by the XGB, RF+LR, GBDT, RF, and XGB+LR models. 

The validation results show that the six models have good performance in landslide prediction. Therein, the 

GBDT+LR model has the best accuracy and predictive ability compared with the other models. The analysis of 

the model results also confirms that the stacking ensemble method is a useful tool for improving the accuracy of 

model prediction. 

Table 5 Hyper-parameters of basic classifiers. 

Models Parameters 

RF max_depth = 9, max_features = 0.4, max_leaf_nodes = 100, n_estimators = 20 

GBDT max_depth = 6, max_features = 0.2, max_leaf_nodes = 200, n_estimators = 110 

XGB 
max_depth = 7, n_estimators = 125, reg_alpha = 0.1, reg_lambda = 0.01, 

eval_metric = ['logloss','auc','error'], learning_rate = 0.1, n_jobs = –1 

 

Table 6 Evaluation of LSM models using machine learning metrics. 

Models Accuracy Precision Recall F-measure AUC 

RF 0.766 0.710 0.524 0.603 0.788 

GBDT 0.774 0.675 0.643 0.659 0.793 

XGB 0.790 0.700 0.667 0.683 0.812 

RF+LR 0.782 0.742 0.548 0.630 0.806 

GBDT+LR 0.806 0.800 0.571 0.667 0.817 

XGB+LR 0.758 0.676 0.548 0.605 0.812 

 

Table 7 Evaluation of LSM models using error metrics. 

Models MAE RMSE Kappa index 

RF 0.234 0.484 0.442 

GBDT 0.226 0.475 0.490 

XGB 0.210 0.458 0.526 

RF+LR 0.218 0.467 0.474 

GBDT+LR 0.194 0.440 0.536 

XGB+LR 0.242 0.492 0.434 

  



 

Fig 5. Receiver operating characteristic (ROC) curves of the LSM models. 

 

4.4. Landslide Susceptibility Mapping (LSM) 

After training and validating all models, we ran the models and obtained the output weight (i.e., the landslide 

sensitivity index (LSI)). We mapped the landslide sensitivity of the study area by predicting a LSI value on each 

pixel in the study area. Ultimately, the natural break classification method was used to classify the landslide 

susceptibility of the study area into five categories (i.e., very low, low, moderate, high, or very high) (Fig. 6). 



 

Fig 6. Landslide susceptibility maps using: (a) RF, (b) GBDT, (c) XGB, (d) RF+LR, (e) GBDT+LR, and (f) 

XGB+LR models. 

LSM can only qualitatively assess landslide susceptibility, and further statistical methods can be used for a 

quantitative assessment (Zhou et al., 2021b). The FR method was used to investigate the separation between 

classes (i.e., to assess the classification accuracy of the models), which represents the ratio of the percentage of 

landslides to the percentage of the total area in each class (Arabameri et al., 2019). Generally, models with the 

characteristics of landslide points concentrated in high-prone areas are considered to have strong landslide 

prediction ability. As shown in Table 8 and Fig. 7, the low and very low susceptibility categories of the six 

landslide susceptibility maps account for the majority, exceeding 70%, however, there are fewer landslide points 



in these two areas. Conversely, the high and very high susceptibility categories occupy less than 18% of the study 

area, but all have more than 50% of landslides occurring there. The statistical results show that the FR value 

gradually increases as the landslide susceptibility level increases from very low to very high, which means the six 

landslide susceptibility maps are reasonable and reliable.  

According to the FR analysis results, the GBDT+LR model has the highest reliability of landslide 

susceptibility maps compared with the other five models. In the GBDT+LR maps, the percentage of landslide 

occurrences and the frequency of high susceptibility and very high susceptibility classes are higher than those of 

other models. 

Table 8 Statistics of landslide susceptibility classes with frequency ration (FR). 

Models Class 
Area Landslides 

FR 
(km2) % Nos % 

RF 

Very Low 3448.01 36.23 20 9.71 0.27 

Low 2911.40 30.59 37 17.96 0.59 

Moderate 1604.37 16.86 36 17.48 1.04 

High 2911.40 11.33 65 31.55 2.78 

Very High 474.33 4.98 48 23.30 4.68 

GBDT 

Very Low 6547.39 68.80 58 28.16 0.41 

Low 1177.69 12.38 29 14.08 1.14 

Moderate 639.67 6.72 28 13.59 2.02 

High 1177.69 5.60 30 14.56 2.60 

Very High 618.16 6.50 61 29.61 4.56 

XGB 

Very Low 5711.21 60.02 43 20.87 0.35 

Low 1533.35 16.11 33 16.02 0.99 

Moderate 873.77 9.18 34 16.50 1.80 

High 1533.35 6.89 31 15.05 2.18 

Very High 742.21 7.80 65 31.55 4.04 

RF + LR 

Very Low 4286.66 45.05 20 9.71 0.22 

Low 2205.66 23.18 45 21.84 0.94 

Moderate 1349.37 14.18 36 17.48 1.23 

High 2205.66 10.03 51 24.76 2.47 

Very High 720.07 7.57 54 26.21 3.46 

GBDT + LR 

Very Low 5324.97 55.96 38 18.45 0.33 

Low 1719.70 18.07 35 16.99 0.94 

Moderate 984.55 10.35 21 10.19 0.98 

High 1719.70 7.93 35 16.99 2.14 

Very High 732.19 7.69 77 37.38 4.86 

XGB + LR Very Low 5607.03 58.92 40 19.42 0.33 



Low 1362.08 14.31 31 15.05 1.05 

Moderate 832.00 8.74 26 12.62 1.44 

High 1362.08 7.70 33 16.02 2.08 

Very High 982.55 10.33 76 36.89 3.57 

 

 

Fig 7. Frequency ratio (FR) analysis of landslide susceptibility maps: (a) percentage of class area (%), (b) 

percentage of landslide occurrences (%), and (c) FR. 

We chose the GBDT+LR model with the best model performance and FR analysis result to verify its actual 

predictive ability. Several landslide instances, extracted from Google Earth (www.google.com, Mountain View, 

USA), coincide with areas predicted to have high and very high landslide susceptibility (Fig. 8), which shows that 

the results predicted by the GBDT+LR model are highly consistent with the actual situation.  

http://www.google.com/


 

Figure 8. Landslide instances (extracted from Google Earth) in areas of high and very high landslide 

susceptibility predicted by the GBDT+LR. 

5. Discussion  

Landslides in Zhangjiajie City, Hunan Province, China, have received considerable attention. LSM is of 

great significance for visually analyzing landslide susceptibility. The main goal of this study was to stack several 

DT-based classifiers with a LR classifier to generate RF+LR, GBDT+LR, and XGB+LR models to obtain the 

optimal model for the study area, and to compare them with individual RF, GBDT, and XGB classifiers. 

Subsequently, they were applied in LSM in Zhangjiajie City, Hunan Province, China. 

In LSM, it is important to evaluate the predictive capability of all LCFs. Factor choosing and sorting methods 

mainly include filter, wrapper, and embedded methods, and the IGR technique is a typical filter. In this study, we 

used the IGR technique to identify the LCFs’ predictive capacity. The weight of each LCF was calculated using 

the entropy index. The AM values of 15 LCFs were tested to be greater than 0, indicating varying impacts of 

landslides in the study area. We demonstrated that profile curvature, roughness, LULC, altitude, distance to roads, 

TWI, and lithology are more important LCFs for LSM. In contrast, NDVI, slope, distance to rivers, plane 

curvature, aspect, soil textures, and rainfall were found to be less important in the study area. A systematic review 

of the literature shows that the importance of LCFs is specific to a region and cannot be extrapolated to other 

regions. For instance, Nhu et al. (2020b) identified rainfall as most important gully erosion factor in the Salavat 



Abad saddle, Kurdistan Province, Iran. However, Pham et al. (2020b) discovered that slope is the most influential 

factor in the Muong Lay district in Vietnam. The study of Zhao et al. (2021) showed that the TWI is the most 

important LCF in Longnan City, Gansu Province, China.  

After choosing suitable LCFs, we used six machine learning models to predict the landslide susceptibility 

maps. According to the evaluation results of the model performances, XGB was better than GBDT and RF, and 

the stacking ensemble learning techniques improved the goodness-of-fit and performances of these models. The 

model performance of GBDT+LR was better than RF+LR and XGB+LR. In particular, for RF and GBDT, the 

results after stacking fusion with LR were better than for RF and GBDT alone, respectively. However, XGB alone 

was better than XGB+LR. This is inconsistent with our expectations for two possible reasons: (1) a simple stacking 

ensemble process of XGB model will not necessarily improve its performance; and (2) when there are not enough 

training samples, the effect of XGB + LR tends to deteriorate. In addition, it is not always the case that the 

modeling performance of a fusion model is better than that of a single model. Zhou et al. (2021a) used XGB, RF, 

GBDT, LR, XGB + LR, RF + LR, and GBDT + LR models to study lymph node metastasis (LNM) in patients 

with poorly differentiated-type intramucosal gastric cancer, and suggested that a single machine learning 

algorithm can predict LNM, and that a fusion algorithm cannot improve the performance of machine learning in 

predicting LNM.  

Five landslide susceptibility levels were obtained in the ultimate phase by dividing the LSI (0 to 1) using the 

natural break method. The selection of partitioning methods determines the correctness of LSM. Natural breaks, 

standard deviations, equal intervals, and quantiles have been used in LSM. Among them, the natural break method 

is considered the most popular method, and different classes can be generated based on the inherent characteristics 

of the dataset without any subjective consideration (Chen and Zhang, 2021). As shown in Fig. 7c, among all LSMs 

obtained in this study, the largest FR value belongs to the very high susceptibility category, followed by the high, 

moderate, low and very low susceptibility categories, proving that the models have the ability to effectively 

discriminate landslide occurring areas with different levels of susceptibility. The results also show that the 

prediction abilities of the percentage and FR of landslide occurrences are more reasonable with the stacking 

improvement in LSM.  

The GBDT+LR model is considered to be the most effective prediction model, and it classified 

approximately 7.93% and 7.69% of the land into high and very high susceptibility categories, respectively (Fig. 

7a). The landslide-prone areas of the Zhangjiajie City are distributed in the central and western mountainous areas, 

and the distribution pattern is consistent with the trend of mountains. The results suggest that at least 15.62% of 



the area requires early warning-related preventive measures to enable local authorities to take timely and 

appropriate action to avoid or reduce the impact of landslides.  

6. Conclusions 

We introduced six DT-based ensemble frameworks (RF, GBDT, XGB, RF+LR, GBDT+LR, and XGB+LR) 

for LSM models with good performances in Zhangjiajie City, Hunan Province, China. The multicollinearity 

analysis was effectively able to minimize the LSM model bias, and the IGR analysis was able to independently 

assess the LCFs’ correlation and eliminate redundant LCFs. Machine learning provides efficient approaches for 

data-driven landslide susceptibility mapping. Stacking ensemble of machine learning methods can effectively 

improve the model’s goodness-of-fit and prediction performance. The DT-based models were used to build the 

stacking structures, and the stronger expressive ability of multiple DTs was better able to discover the effective 

features and feature combinations. The following conclusions can be drawn from the results: 

(1) According to the AM values obtained using IGR technology, the profile curvature, roughness, LULC, 

altitude, distance to roads, TWI, and lithology are considered to be the most important influencing LCFs on 

landslides in the study area.  

(2) All DT-based models showed good performance, among which the AUC value of the stacking ensemble 

GBDT+LR model reached 0.8168, showing the best prediction ability compared with the other models. The results 

of RF and GBDT stacking with LR were better than RF and GBDT alone, respectively; however, XGB+LR 

stacking cannot significantly improve the prediction accuracy.  

(3) The results of the FR analysis indicate that low and very low landslide susceptibility categories account 

for the largest proportion in the study area, and a large proportion of historical landslide points are distributed in 

high and very high susceptibility areas. The landslide occurrences and frequency of landslides in the high and 

very high susceptibility categories generated by the GBDT+LR model are higher than those of other models. The 

LSM result of the GBDT+LR model has the best reliability, and can thus help decision-makers in large-scale land-

use planning and geological disaster prevention.  

(4) The stacking ensemble strategy shows many advantages. First, it can effectively combat overfitting by 

adding a regular term, and it does not require much parameter tuning or feature selection. Second, it uses multi-

fold cross-validation to make the model more robust. In addition, it can re-integrate the methods to achieve better 

results. However, the stacking ensemble strategy has low stability and error accumulation shortcomings in 

practice, and it was not effective for the XGB method in this study. In future, we will attempt to further solve 

these problems, focusing on the development of ensemble machine learning technology and deep learning 

technology in LSM.  
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Figure captions 

Fig. 1 Location map of the study area: (a) location of the study area in Hunan Province, and (b) elevation of the 

study area along with location of historical landslide points. 

Fig. 2 LCFs for landslide susceptibility mapping (LSM): (a) altitude, (b) slope, (c) aspect, (d) plane curvature, 

(e) profile curvature, (f) relief, (g) roughness, (h) rainfall, (i) topographic wetness index (TWI), (j) normalized 

difference vegetative index (NDVI), (k) distance to roads, (l) distance to rivers, (m) land use/land cover 

(LULC), (n) soil texture, and (o) lithology. 

Fig. 3 Flowchart of LSM using the stacking ensemble machine learning models. 

Fig. 4 Stacking ensemble structures for random forest (RF), gradient boosting decision tree (GBDT), and 

Extreme gradient boosting (XGB) with logistic regression (LR). 

Fig. 5 Receiver operating characteristic (ROC) curves of the LSM models. 

Fig. 6 Landslide susceptibility maps using: (a) RF, (b) GBDT, (c) XGB, (d) RF+LR, (e) GBDT+LR, and (f) 

XGB+LR models. 

Fig. 7 Frequency ratio (FR) analysis of landslide susceptibility maps: (a) percentage of class area (%), (b) 

percentage of landslide occurrences (%), and (c) FR. 

Fig. 8 Landslide instances (extracted from Google Earth) in areas of high and very high landslide susceptibility 

predicted by the GBDT+LR. 

Table captions 

Table 1 The landslide conditioning factors (LCFs) used in this study. 

Table 2 Lithological units and their description of the study area. 

Table 3 Multicollinearity of the LCFs. 

Table 4 The most effective factors for landslide occurrence. 



Table 5 Hyper-parameters of basic classifiers. 

Table 6 Evaluation of LSM models using machine learning metrics. 

Table 7 Evaluation of LSM models using error metrics. 

Table 8 Statistics of landslide susceptibility classes with frequency ration (FR). 
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