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Abstract

In this paper a new monolithic Eulerian formulation in the framework of non-classical continuum is presented
for the analysis of fluid-strucutre interaction problems. In this respect, Cosserat continuum theory taking into
account the micro-rotational degrees of freedom of the particles is considered. Continuum description of the
model and variational formulation of the governing flow dynamics for non-classical -fluid-structure interaction
nCFSI is presented. The model is analyzed by computing a well known benchmark problem by Hecht and
Pironneau [16]. The algorithmic description is presented and implemented using FreeFEM++. Code is validated
with the benchmark solution of Turek and Hron [38] in case of flow around a flag attached with cylinder. New
microstructral behavior of the solution is studied and numerical simulations and results are shown in the form of
figures. Some interesting feature of the flow is observed and microstructural characteristics are discussed.
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1 INTRODUCTION

Among the formulations used for solving fluid-structure interactions FSI problems some are based on
monolithic approach, which finds origin in (Hron and Turek 2006) solve the FSI problems as a single
variational equation for the whole system (Dunne 2006; Heil et al. 2008), or more recently (Pironneau
2016; Hecht and Pironneau 2017; Chiang et al. 2017; Pironneau 2018; Murea 2019). A monolithic Eulerian
approach (Pironneau 2016; Hecht and Pironneau 2017) is similar to the fully Eulerian formulation (Dunne
and Rannacher 2006; Dunne 2006), presents the governing equations of FSI in terms of displacement,
velocity and pressure as usual but in an Eulerian framework. The major difference between two
formulations is that in (Dunne and Rannacher 2006; Dunne 2006) prefer to work with velocities in the
fluid domain and displacement in the solid domain, while monolithic Eulerian approach (Pironneau 2016;
Hecht and Pironneau 2017) proposes to work with velocities everywhere in the problem domain. The fully
Eulerian formulation replaces the well-established ALE, formulates both sub domains fluid and solid,
respectively in Eulerian framework and well suited to problems with large displacements. More work
devoted to this formulation can be seen in the previous studies such as (Richter and Wick 2010; Rannacher
and Richter2011; Richter 2013; Wick 2013).

A partitioned approach is one in which the fluid and solid sub-problems are solved separately using
iterative process: fixed point iterations (Formaggia et al. 2001; Nobile 2001; Tallec and Mouro 2001),
Newton-like methods (Gerbeau and Vidrascu 2003; Fernandez and Moubachir 2005; Dettmer and Peri¢
2006) or optimization techniques (Murea 2006; Mbaye and Murea 2008; Kuberry and Lee 2013).

Among the other formulations for analyzing FSI problems includes arbitrary Lagrangian-Eulerian
formulation (ALE) approach used for simulation in the case of small displacement (Formaggia et al. 2010).
The formulation matches the velocities and stresses at the fluid-structure interface, the fluid equations
are then mapped back into solid domain at every time step during numerical simulation (Tallec and Hauret
2003; Hron and Turek 2006). However, in the case of large displacements the ALE formulation fails that
leads to heavily distortion of fluid mesh (Liu 2016; Basting et al. 2017). Immersed boundary method IBM
(Peskin 2002) is efficient for thin structures but implementation in thick structures remains challenging
(Wang et al. 2017).

Numerical approaches exsisting in literature all are in classical continuum description. Here in this
paper, a monolithic approach is presented but in the framework of non-classical Cosserat continuum
description.

Classical continuum mechanics consider continuum as a simple point-continua with points having
three displacement (dofs) and a symmetric Cauchy stress tensor characterizes the response of a material
to the displacement. Such classical models may not be sufficient for the description of non-classical
physical phenomena, where microstructural effects are observed most in high strain gradients regions.
The Cosserat continuum (micropolar continuum) theory is one of the most prominent theory to model
non-classical physical phenomena, and finds origin in (Eugene and Francois Cosserat 1909). Further, this
concept was applied to describe fluids with microstructures by (Condiff and Dahler 1964; Eringen 1964
&1966) and the mathematical details, with some of its applications, are presented in (Lukaszewicz 1999).
In non-classical continuum theory, the response of the material to the displacement and micro-rotation
is characterized by a nonsymmetric Cauchy stress tensor and couple stresss tensor, respectively.

In the literature, the Cosserat fluids are not studied yet to analyze FSI phenomena due to high
complexity. In the present study, a monolithic Eulerian approach is employed to analyze the Cosserat
fluid-structure interaction CFSI. This benchmark problem was first studied by (Schafer and Turek 1996),
and later by (Turek and Hron 2006; Dunne and Rannacher 2006; Hecht and Pironneau 2017), respectively.
All the above considerations were in the case of Classical continuum but here in this paper a non-classical
continuum framework is utilized to study the flow in particular the Cosserat continuum. The algorithmic
description is presented and implemented using FreeFEM++ (Hecht 2012).
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This paper is organized as follows. In section 2, we describe the Continuum description and notations
used for the Cosserat model. Section 3, deals with the constitutive relations and the derivation of the
governing equations from the conservation laws. In Section 4, we present the variational formulation in
monolithic Eulerian framework for the CFSI problem. In Section 5, the time and spatial discretization is
presented using semi-implicit scheme and the finite element method, respectively. Numerical tests and
results are addressed in detailed in section 6. Future developments and conclusion of the study is
addressed in section 7.

2 CONTINUUM DESCRIPTION AND NOTATIONS

Let Q time dependent computational domain comprises of the fluid region Q;and solid region Q;
such that Q' = ) UQ, Q) NGO =, vt. The interface of fluid and structure is denoted =* = O UQ where
the boundary of computational domain Q' is represented by 9Q'. At initial time the fluid domain Q?, and

the solid domain QS are prescribed. The part of the boundary of computational domain 99, where either

the structure is clamped or the fluid has a no-slip condition is denoted by I' and it is assumed to be time
independent. A schematic of this description is shown in Figure 1 below.

o

Fluid-Structure
Interface

Figure 1: Geometrical representation of the fluid-structure domain.

Based on standard notations in (Ciarlet 1988; Marsden and Hughes 1993; Bath 1996; Tallec and Mouro
2001; Hron and Turek 2006), we consider X: Q2 x 0,7 — Q' : X z°,¢ , the Lagrangian position at time ¢ of

z” € R?,d =2 or 3. The velocity of the deformation is given by u =9 X and d = X 2°,t —2° denotes the

displacement vector of the structure. We represent the transposed gradient of deformation and the Ja-
cobian of the deformation as F, =0 ,X, and J = detF, respectively. Let the density and the stress tensor

at given position x and timet are reprented as p z,t and o z,t . The density p remains constant, in the

fluid domain and in the solid domain for all timet, in the case of incompressible medium. Denoting the
density constants by Py and p_at any point z and timet, we define density by using the set function indi-

1 ifzeq

cator 1% asp x,t :pflgzj z,t +pSlQ§ z,t ,where 1, z = 0 otherwise’

Similarly the stress tensor at point z and timet is defined as o z,t =o,l, =t +ol, at. All spatial
f s

derivatives in this consideration are taken with respect toz € Q' and not with respect toz° € Q°. If ¢ isa

function of z =X 2°,¢t where z° € 0’ then
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V.= [azm] = ‘axoxjam_qﬁ] =FI've. (1)
The deformation gradientF and displacement field d can be seen as function of z,¢ instead of 2°.¢ ,
and are related in the case when X is one-to-one and invertible by
F'=V ,X=V,d+2" =V d+I=F'Vd+I = F=1-vd . (2)
The time convective derivative of ¢ becomes

d
D,¢ ;:a—tcp X2t t =001t +uVeat. (3)

3 CONSTITUTIVE RELATIONS AND GOVERNING EQUATIONS

3.1 Consitutive Relation and Governing Equations for Solid medium

Conservation of mass and conservation of momentum for the solid medium takes form

d
E ‘]10 =0, (4)
pDu=V-o +f (5)

Where frepresents the density of volumetric forces and .Jp = p°in case of incompressible medium.

For the structural part we assume an incompressible hyper-elastic material where constitutive description
is stated as

o, = —pSI—I—psg—;I‘JFT,

(6)

such that the Helmoltz potential ¥ in the case of two dimensional Mooney-Rivilin material is defined as
U F =ctr F'F +¢,{tr F'F " 4? BTF } (7)

Where the constants ¢, and c, are empirically determined (Ciarlet 1988).

3.2 Derivation of Mooney-Rivlin 2-dimensional Stress Tensor

2
Since it is noted that 9 tr F'F =2F and d,tr F'F = 4FF'F. Hence

OpVU =2cF+c, AFF'F—4tr F'F F . (8)

—1
.
let B=FF =|1-Vd I-Vd ,b=detBand ¢ = #B. Then

Oy UF' = 2¢ —4c,c B+4c,B. (9)
Now by applying the Caley-Hamilton theorem B? = ¢B — 11,

OpUF' =2¢ B —4c,bl = 2¢,FF' —4c, det(FF' )L (10)
Again by Caley-Hamilton theorem

B=d—tB'=d—b I1-vd-—vd" +vdvd" . (11)
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Using (11) in (10) one arrives at
OpUF" = 2¢/(c—b)—4dep T+2ch Dd—VdVd' . (12)
After some manipulations above equation becomes
OpUF' =2cdet FF' Dd—vVdvd' + 2¢tr FF' — 2¢ +4c, det FF' L (13)
Hence an incompressible 2 - dimensional Mooney-Rivilin material will have
9pUF =2¢, Dd—VdVd' +al (14)

Where o' = 2¢tr FF' — 2¢, +4c, det FF' is some scalar function of material parameters ¢, andc, .

3.3 Consitutive Relation and Governing Equations for Cosserat Fluid

The mathematical formulation that governs the dynamics of Cosserat fluid is described as in the book
of (Lukaszewicz 1999) and reads

V-u=0, (15)
pﬁ:V-O'f—{—f, (16)
pIc'):V~Cf—|—810'f—|—g. (17)

Where u and o are velocity and microrotation fields, respectively. The body force density, the body
couple density and the microinertia coefficient are denoted byf, g and I respectively. We introduce the
deformation tensor and the microrotaion strain tensor, respectively as

Du= Vu+Vu' , (18)
k= Vao. (19)

For Cosserat fluid we considere the incompressible viscous relations described as
o, =—pl+u VutVa' +u Vu-Vu' -2u¢-o, (20)
C,=atre 1+p K+K +y Kk—K . (21)
Where o,, C, andI are the nonsymmetric stress tensor, the couple stress tensor and the identity ten-
sor, respectively. The pressure field and coefficient of dynamic viscosity are denoted by p and i, respec-
tively. The coefficients of microviscosity are represented as . ,a, # and . The Levi Civita tensor is rep-

resented by ¢ . Subjected to certain prescribed boundary conditions according to the description of the
physical problem and taking into consideration the constitutive equations (20) and (21), the governing
conservation equations (15) - (17), leads to

V-u=0, (22)
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p[g—ltl—ku-Vu]:—VgH— ptp, Au+2u Vo +f, (23)

P Iaa_();Jrlu'v‘D]:/\lAw—i-)\gV Voo —4p,0+2,,(VXu) +g. (24)

Where A\ =B+~ and A, = a+ 3 -~ are positive material parameter related to the microviscosity.

4 Monolithic Eulerian Variational Formulation of CFSI

In this variational formulation the homogeneous boundary conditions on ' ¢ 9Q' are considere i.e.,
either solid is clamped or fluid has a no-slip condtition, and a homogeneous Neumann conditions on

90 \ T. In the case of incompressible material the Cosserat fluid-structure monolithic Eulerian variational
formuation, thus reads

Given 0, 0’ and d, u at ¢t=0, find u,m,p,d,Q;,QZ with u|.=0 and @ |.= 0, such that

f pDu- i — pV-i— PV u+ (u+ 1 )Du: Di—24 (Vx0)- @ d9

0,U0,
+ [¢,(Dd—vavd'): Dad, = [ £-ado (25)
Qg Q; UQ
[ #D 1o 04x VOiVe —AV V-0 -0+4p0-6-2 Vxu -6 di= [ god, (26)
QU Q,UQ,

V(1,®, p) taking |,=0 and @ |,=0, where Q’f and ! are defined incremently by, Dd = u and

= u(X(7),7), Xt e =>X(r)eQ Vre(T), r=sf (27)

The relation in (27) defines € and €. forward in time. Above the notationsB : C = tr(B'C) and

s
¢, = p°c,are used.

5 DISCRETIZATION

In this section, we present the discretization scheme used to approximate the CFSI problem in
equations (25-27). We use a semi-implicit scheme for time discretization and Galerkin discretization finite
element method for space.

5.1 A Monolithic Time — Discrete Formulation of CFSI
Let t e [O,T] be the time of simulation where T'is the total time. Discretize the interval [O,T] into
T
equall sub intervals each of the length 6= Fsuch that ¢=nétwhere n=01--- N. Let

d" = q" + stu"™. Hence

Dd—vVdvd' ~Dd" —vd'd" +& Du™ —vu"™d" —vad"vu™! 4o 6t . (28)
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Now, if X"is a first order approximation of X t"™' —6t definedby X =u X 7 ,7 ,.X "' =2 where

X "' =zsuchthat X" ¢ =z—6tm" z , then afirst order in time approximation for CFSI problem

(25-26) reads:
Find "™ e H) Q""" 0" e H) " p"™ el o Q:j“ and Q"' such that with w"'| =0

b

o =0 and Q" =i UM Yae Hy Q" o Hy Q" pell @ with i|,=0 andé|.=0,

the following holds
f . a™! —u'o X"
P st
Qpuar

+[¢,| Dd"—vd" Va" + 6t Du"! — Vu"'vd" — Vd"va"! :DﬁldQQ = [ taado,
@ Q!

A- "V - pveout! 4 B+ b, Du”“:Dﬁ—QuT Vxe" d dO"

(29)

and

f o 1"

Qpuar
- f g-@dQ".

n 7
Q!

~ N
o' —e"oX

o @+ ) Vo' Ve AV Vo' co+dp o™ -2 Vxu™ @ dQ"

(30)

Now, update d by d"*! =d"oX" +sm"™,and Q" by """ = z+é"" = :2€Q" | where r=s,f.

5.2 A Monolithic Spatial — Discretization with Finite Elements of CFSI

Let V, and W, represents the finite element functional spaces for the velocities, displacements and
micro-rotational velocities, respectively and @), be the functional space for pressure field. Let %2 be a

triangulation of the initial domain Q° with quadratic elements for displacements, translational, micro-
rotational velocities and linear elements for pressure field. Given that that the pressure is different in fluid
domain and structural domain because of the discontinuity of pressure at the fluid-structure interface =
; therefore, the functional space @, is space of piecewise linear functions on the triangulation and is

continuousin Q:H,r = s, f. A small penalization parameter ( < 1needs to be added to impose uniqueness

of the pressure when one desire to use direct linear solver. The discrete variational formulation of CFSI,
thus reads

H n+1 n+1 _ _n+1 ~
Find v, 0, ,p,"" : V@, €V,

o ®, €W, P, €Q,with V,, [.=0and W,
W, , such that

o, lp="0 are subspaces of V, and

u
f P m A, —p"'Ved, —pVeoul T+ g+ p Dt DR, —2u Vxo" ca, QF
e
(31)
+[¢,| Ddy — vy v} + 6t Du)! - V) 'vay —vavat iy a0+ [ Cppd" = [ f£d,d0",

Qo 2puQ! Q!
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and
n+1 n_yn
nyn @y, —thX ~ N+l o~ n+1  ~ n+l o~ n+l  ~ n
[ Hem O A VO Ve, AV Veop e o]y — 2 Vxut 6, d0
anuan (32)
= [ gad

Q';UQQ
To update the triangulation at each vertex (say ¢') of the triangle 7, € 3}, the vertex is moved to a new
position by
qlml =q' + 6’[112’“.
By denoting d :=d" ¢, , it can be seen that

d"ox" ¢ =d" q + 5tuz+1 — 5tuZ‘+1 =d" ¢ .

2 2

This implies that the displacement vector of vertices d; can be copied to di”+1plus with addition of

stu*' " inorder to obtaind}™, i.e.,

4 =dloX" +6m) ¢ =d + 6t g .

7

Moreover, the fluid domain mesh is moved by i which is a solution of the Laplace problem —Au=0

vaev,,,

subjected to u|,=u where Xis Cosserat fluid structure interface and a=o0at the boundaries

rfurs \ 2. Moving the vertices of each triangle 7, € 3} by the above procedure gives a new triangula-

tion 37 *,

6 RESULTS AND DISCUSSION

The monolithic Eulerian formulation is used to compare the non-classical case of Cosserat fluid-
structure interaction CFSI problem with the classical case of fluid-structure interaction FSI. The space
discretization is done by using Lagrangian triangular finite elements with quadratic elements for
displacements, translational, micro-rotational velocities and linear elements for pressure field. The public
domain software FreeFEM++ (Hecht 2012) has been used to implement the algorithms. The presented
model is analyzed by computing a well known benchmark problem FLUSTUK-FSI-3* (Hecht and Pironneau
2017). This benchmark problem was first studied by (Schafer and Turek 1996), and later by (Turek and
Hron 2006; Dunne and Rannacher 2006; Hecht and Pironneau 2017), respectively. The description of the
model problem in consideration is shown schematically in Figure 2. An incompressible hyperelastic

Mooney-Rivlin material, like rectangular flag of size [O,l]x[o,h],is attached at the back of a hard fixed

cylinder in the computational rectangular domain [O,L]x[o, H];the fluid flow enters and leaves freely at
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the left inlet and the right outlet, respectively. The configuration, boundary conditions and intial
conditions for the present test problem are described as follows.

Configuration
The point 0.2,0.2 is the center of a cylinder; other parameters are considered in computation as [ =0.35

, h=20.02, L =2.5 and H = 0.41 which set cylinder slightly below the symmetry line of the computational
domain.

(0,0) -
L

Figure 2: Computational domain of the model problem.

Boundary and Initial Conditions
Top and bottom boundaries satisfies the ‘no-slip’ condition. A parabolic velocity profile is prescribed at
the left inlet,

6y H—y
H2

u 0y =0 , where U is mean inflow velocity with flux UH and U = 2. The zero-stress

o-n = 0is employed at the right outlet using do-nothing approach. Furthermore, the density and the

reduced kinematic viscosity of the fluid takes values p;= 10 kgm > and v, = E —10m2% ", For solid
Py
structure we consider p_ = s € = 10°kgm—s~! and no external force. Initially, all flow velocities and struc-

ture displacements are zero.

The flow starts oscillating and develops a Karman vortex street around time ¢ ~2. The Figure 3
and Figure 4, shows the horizontal and vertical displacement of flagella end tip as a function of time in
non-classical sense for CFSI. The results are obtained using mesh of 2199 vertices and time step size to
0.005 as in (Hecht and Pironneau 2017). The obtained results are compared and validated with the (Hecht
and Pironneau 2017), showing amplitude and frequency roughly same.
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0.615 T T T

——For i =1.0x10°®, ;i_=1.0x10” and A = 1.0x10"

0.61

0.605

0.6

Horizontal displacement of flagella end tip

0.595
0

Time (1)

Figure 3: Horizontal displacement of flagella end tip (control point A) against microrotional
viscosity u, microinnertia u, at different time.

0.26
2 ——For i, = 1.0x10°, u_= 1.0x10" and A = 1.0x10"
el
5
o 0.241 -
o
[#2]
[0]
=2
5 022+
=
Q
£
Q
&8 o02fF
a
@
o
3
£ 0181 .
o | | | | |
>
0 1 2 3 5 6

Time (t)

Figure 4: Vertical displacement of flagella end tip (control point A) against microrotional viscosity u_,
microinnertia u, at different time. The frequency and amplitude is around 455" and 0.03, respectively.

The mesh has 2199and the time step is 0.005

Moreover, the structural material parameter ¢, plays a significant role and effects amplitude of

1
oscillations as in Figure 5. It is found that the amplitude of oscillation decreases with increasing value of

material parameter ¢ and larger mesh can make this relationship smooth as shown in Figure 6.

o 026 T T T T T T

el

5 For ¢ = 0.56
S 024

[5]

&

5 - --Forc=0.65
% 022f

c

g -

S R VAN W ST RN R O B AR R I R AN T T I I For 02110
£ o02F |

[=%

@

o

ERCRETS A= Forc=1.30
§ ‘ ‘ |

= 0 05 1 45 5

Figure 5: Vertical displacement of flafella end tip (control point A) against different values of
material parameterc, .
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0.028~ h

0.026 - 1

0.024 - N

Amplitude

0.022

0.018 1 1 1 | 1 1 1
0.5 0.6 0.7 0.8 09 1 1.1 1.2 1.3

material parameter 'c'

Figure 6: Change in amplitude with increasing value of material parameter c,

Figure 7: Velocity profile V, plots (column 1: t = 0.1,0.3,1.95,2.3& column1: t = 2.44,2.46,2.48,2.52 ).

Furthermore, the non-classical case of Cosserat fluid-structure interaction CFSI has been studied and
obtained results are compared with the classical case of FSI. The classicial case of FSI governing model
equations can be obtained by vanishing micro-rotational coeffinients. In non-classical FSI problems fluid
particles exhibits micro-rotational behavior. The velocity compnents for classical and non-classical case
are compared. It is observed that increasing values of micro-rotional viscosity develop more rotional effect
on velocity components which validates the non-classical phenomena for CFSI problems. The graphical
representation of the results in this case are displayed in Fiures 8-10.
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Figure 8: Comparison of classical and non-classical case for z —components of velocity.
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Figure 9: Comparison of classical and non-classical case for y — components of velocity.
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Figure 10: Comparison of classical and non-classical case for z —components of micro-rotational
velocity.
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In Figure 1, the effect of micro-rotational viscosity #_on vertical displacement of flagella end tip (control

poin A) as a function of time for CFSI problem is shown. The amplitude of the oscillations and micro-
rotaional viscosity varies inversely, which specifies that fluctuations of the control poin A almost disap-
pear by dominating micro-rotational viscosity x_on classical viscosity i of the fluid.
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Figure 11: Effect of micro-rotional viscosity on vertical displacement of flagella end tip

The fluid parameter A\ =X in our notation combines the shear spin and rotational spin viscosities,

respectively shows significant effect on micro-rotation field w, . For a constant value of parameter A, fluid

particles experiences large rotational effect near the control point A and negligible while moving beyond
it in flow direction; consequently vanishes at the boundaries of the computational domain as shown in
Figure 12. It is also observed that micro-rotational effect decreases with increasing value of fluid
parameter A as displayed in Figure 3.
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Figure 12: Micro-rotational velocity at different horizontal positions with fixed A,.
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Figure 13: The effects of A\ on micro-rotational velocity near the control point A at = =0.7.

Consequently, on the bases of results shown in Figure 12 and Figure 13, it is further observed that the
fluid particles near the bottom boundary wall of computational domain preserve clockwise rotation and
anticlockwise rotation near the line y =0.2; and follows the same pattern above the line y=0.2. The
rotational effect becomes minimum near the line y = 0.2 and almost vanishes on it in the computational
domain. In Figure 14, the effect of A\, on the horizontal velocity component of fluid particles is negligible
at all points in computational domain with symmetrical behavior is shown. Moreover, fluid particles
attains parabolic graph by increasing the ) beyond the control point A, which results in maximum
velocity magnitude on the symmetry line.
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Figure 14: The effects \| on z- component of velocity at different horizontal positions.

Furthermore, it is observed that micro-viscosity parameter ) effects vertical component of velocity in

same way but does not follow the particular pattern at different fixed horizontal positions beyond the
control point A as shown in Figure 15. Finally, the results disussed above demonstrate that micro-viscosity

parameter A exhibit a significant effect on micro-rotation fieled as compare to velocity field. All results

are obtaind by using the Reynolds number Re = 200 and mean velocity U = 2,.
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Figure 15: The effects of A\, on y- component of velocity at different horizontal
positions.
7 CONCLUSION

In this research a monolithic Eulerian Cosserat fluid-structure interaction CFSI formulation has been
presented in non-classical sense. The finite element method and semi-implicit scheme are used for
discretizing space and time. The method has been implemented with a public domain software FreeFem
++. The graphical representation of results and color maps of the simulation at different time are also
presented. The rotational effect at micro-structure level for CFSI has been studied and results are have
been validated and compared with classical case of FSI. It is observed that amplitude of the oscillation
decreases with increasing value of the material parameterc, . The obtained results suggest that the

amplitude of oscillations and micro-rotaional viscosity x_varies inversely, which specifies that fluctuation
of the control poin A almost vanishes by dominating micro-rotational viscosity x_on classical viscosity ;.
of the fluid. Moreover, micro-viscosity parameter A, exhibit a significant effect on micro-rotation filed as
compare to velocity field.
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