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Abstract:  

Background: Preterm birth is a major cause of morbidity and mortality in infants and children. Non-

invasive methods for screening the neonatal immune status are lacking. Archaea, a prokaryotic life 

domain, comprise methanogenic species that are part of the neonatal human microbiota and con-

tribute to early immune imprinting. However, they have not yet been characterized in preterm ne-

onates.  

Objective: To characterize the gut immunological and methanogenic Archaeal (MA) signature in 

preterm neonates, using the presence or absence of atopic conditions at the age of 1 year as a clinical 

endpoint.  

Methods: Meconium and stool were collected from preterm neonates and used to develop a stand-

ardized stool preparation method for the assessment of mediators and cytokines and characterize 

the qPCR kinetics of gut MA. Analysis addressed the relationship between immunological bi-

omarkers, Archaea abundance, and atopic disease at age 1.  

Results: Immunoglobulin E, tryptase, calprotectin, EDN, cytokines and MA were detectable in the 

meconium and later samples. Atopic conditions at age 1 year were positively associated with neo-

natal EDN, IL-1β, IL-10, IL-6, and MA abundance. The latter was negatively associated with neona-

tal EDN, IL-1β and IL-6.  

Conclusion: We report a non-invasive method for establishing a gut immunological and Archaeal 

signature in preterm neonates, predictive of atopic diseases at the age of 1 year. 
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1. Introduction 

Preterm birth, defined as delivery at less than 37 completed weeks of gestation, is the 

leading cause of neonatal mortality and morbidity and has long-term adverse health con-

sequences1. The global incidence of preterm births was estimated at 10.6 in 2014, and 9.8 

in 20002. The etiology of preterm birth is multifactorial and not yet fully understood 3. 

However, factors related to preterm birth include maternal or fetal medical conditions, 

genetic and epigenetic4  influences, environmental exposures, infertility treatments, be-

havioral and socioeconomic elements3,5. Preterm infants experience abnormal immune 

and metabolic programming, which might exert a lasting influence on the risk of future 

disease6,7. Preterm-born children have been shown to have immune mediator dysregula-

tion8, impaired innate immunity and adaptive responses characterized by reduced levels 

of immunoglobulin (Ig) G, opsonization and phagocytosis, and increased activation of 

Th1 cells compared to Th2 cells9. Cohort studies showed that preterm-born children were 

at increased risk for preschool wheezing and school-age asthma10, but not for food al-

lergy11,12 or atopic dermatitis (AD)11,13. 

During fetal life, maternal microbiota produces compounds that are transferred to 

the fetus and enhance the generation of innate immune cells14. This process is halted prem-

aturely in preterm infants, leaving them vulnerable to disease9. Preterm infants have an 

inflammatory and hypoxic state, which has a negative impact on lung maturation, the risk 

of respiratory infections and susceptibility to subsequent exposures9,14,15. As early as the 

neonatal period, the gut microbiota imprints a persistent effect on the immune system 

through multiple mechanisms, including the modulation of epithelial functions, the pro-

duction of cytokines and the recruitment and training of immune cells16-18.  

Archaea, considered a separate domain of life from Eukarya, giant bacteria and vi-

ruses, are part of the human microbiota19-21. Gut methanogenic Archaea consume hydro-

gen produced by bacterial fermentation, releasing methane and short chain fatty acids 

(SCFA) and thus taking part in the energy supply to the host19. They interact with the host 

immune system, triggering innate and adaptive immune responses, generation of specific 

T and B cells, and hypersensitivity responses in animals and humans22-24. We have shown 

that the neonatal gut is colonized by methanogenic Archaea from the first postnatal hours, 

possibly starting in utero 21-22. Gut microbiome establishment is altered in preterm and 

low-weight birth infants25,26.  

Clinical investigations and research studies in neonates, including those born before 

term, are usually performed with peripheral blood. However, the search for non-invasive 

alternatives has gained momentum in recent years27,28.  

We hypothesize the existence of an association between intestinal methanogenic Ar-

chaea and the intestinal immunological signature, understood as a pattern of immune bi-

omarkers including cell-specific products, e.g. mast cell tryptase and eosinophil-derived 

neurotoxin (EDN) and major pro- and anti-inflammatory cytokines. The validation of this 

hypothesis would open the prospect of a predictive score for the later occurrence of im-

mune disorders, including atopic diseases. 

We addressed this question through the development of a non-invasive, standard-

ized method for the assessment of the neonatal gut immune and microbial status, imple-

mented in a cohort of preterm infants. The aims of the present study were: (1) establish a 

non-invasive method adequate for the investigation of preterm neonates, (2) characterize 

the gut immune and Archaeal components longitudinally from birth to 6 weeks in the 

study cohort, and (3) correlate the results of gut immune and Archaeal investigations at 

birth and up to 6 weeks to the later occurrence of allergic or atopic conditions. 

2. Methods 

Patients and Sampling  

Stool samples from 43 preterm neonates were collected without the use of preserva-

tives at the Nimes and Montpellier University Hospitals and stored at -80°C. Samples 
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were collected as meconium (n=33) and later stool samples at 2 (n=33), 4 (n=29), and 6 

(n=24) weeks. 

Ethics Statement  

This study was embedded in the Primibiota “Influence of Intestinal Microbiota Im-

plantation in Preterm Infants on Microbiota and Immune Orientation at 3 Years” 

(NCT02738411, principal investigator AF), a population-based prospective cohort study 

from birth to the age of 3 years, enrolling children born preterm in the University Hospi-

tals of Nîmes and Montpellier, France. Written informed consent was obtained from both 

parents at infants’ birth. The ancillary study presented here was approved by a joint com-

mittee of the Clinical Research Departments of the University Hospitals of Nîmes, France 

and the University Hospitals of Marseille, France (Research collaboration agreement 

2018.1238). 

A- Immunological Analysis 

Preparation of fecal samples  

One gram of feces was solubilized in two milliliters of an in-house extraction buffer 

consisting of phosphate buffered saline supplemented with 4 mM 4-(2-aminoethyl)-ben-

zensulphonyl fluoride, 0.26 mM bestatin, 28 µM E-64, 2 µM leupeptin and 0.6 µM apro-

tinin, pH 7.4, and protease inhibitor (Sigma-Aldrich, St. Louis, Minn., USA)29. The stool-

buffer mixture was incubated for 20 minutes at room temperature, prior to centrifugation 

at 2,000 rpm for 15 minutes at 4°C. The supernatant liquids were freeze-dried for 24 hours, 

re-solubilized in one milliliter of extraction buffer and used for mediator and cytokine 

determination (Figure 1). 

 
Figure 1. Fecal extraction protocol. 

Total IgE, tryptase and EDN determination 

The concentration of total IgE, tryptase and EDN were measured using an automated 

fluoro-enzymo-immunoassay with the ImmunoCAP™ 250 platform (Thermo Fisher Sci-

entific, Uppsala, Sweden), according to ISO 15189 standards30. The measurement range 

was 2-5,000 kIU/L (4.8-12,000 µg/L) for total IgE, 1-200 µg/L for tryptase, and 2-200 µg/L 

for EDN. 

Calprotectin and total protein determination 

Fecal calprotectin was measured using the BIOFLASH (Werfen, Barcelona, Spain) 

chemo-luminescent analyzer platform according to ISO 15189 standards. Assay sensitivity 
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was greater than 20 µg/mL. The total protein concentration of the samples was measured 

by the colorimetric method (BCA Protein assay, Thermo Fisher Scientific). 

Immunoassays 

Cytokines (IL-6, IL-10, IL-1β, TGF-β, and TNF-α) were measured by ELISA using 

specific immunoassay kits according to the manufacturer's protocols (R&D systems, Min-

neapolis, USA). The sensitivity of the assays was 1.0 pg/mL. 

B- Microbiological analysis: Methanogenic Archaea by qPCR 

DNA extraction and PCR assays 

For DNA extraction, 0.2 g of each stool sample were mixed in 1.5 mL tubes with 500 

µL of G2 lysis buffer from EZ1®DNA Tissue Kit (QIAGEN, Hilden, Germany). Then, 0.3 

g of acid-washed beads ≤ 106 µm (Sigma-Aldrich, Saint Quentin Fallavier, France) were 

added in each tube and shaken in a FastPrep BIO 101 device (MP Biomedicals, Illkirch, 

France) for 45 seconds for mechanical lysis before 10-minute incubation at 100°C. A 180-

µL volume of the mixture was then incubated with 20 µL of proteinase K (QIAGEN, Hil-

den, Germany) at 56°C overnight before a second mechanical lysis was performed. Total 

DNA was finally extracted with the EZ1 Advanced XL extraction kit (QIAGEN) and 50 

µL eluted volume. Sterile phosphate buffered saline (PBS) (Fisher Scientific, Illkirch, 

France) was used as a negative control in each DNA extraction run. Extracted DNA was 

incorporated into real-time PCR performed using Metha_16S_2_MBF: 5'-CGAACCG-

GATTAGATACCCG -3' and Metha_16S_2_MBR: 5'-CCCGCCAATTCCTTTAAGTT-3' 

primers and the FAM_Metha_16S_2_MBP 6FAM- CCTGGGAAGTACGGTCGCAAG 

probe targeting the 16S DNA gene of methanogens, designed in our laboratory (Euro-

gentec, Angers, France) as previously described31. PCR amplification was done in 20 µL 

volume including 15 µL of mix and 5 µL of extracted DNA. Five µL of ultra-pure water 

(Fisher Scientific, Illkirch, France) were used instead of DNA in the negative controls. The 

amplification reaction was performed in a CFX96 thermocycler (BioRad, Marnes-la-Co-

quette, France) incorporating a protocol with a cycle of 50°C for 2 minutes, followed by 39 

cycles of 95°C for 45 seconds, 95°C for 5 seconds and finally 60°C for 30 seconds. Samples 

with a CT<40 were considered positive. Gene amplification and PCR sequencing were 

performed as previously described25,26,32-34. 

Statistical analysis  

The responses for each quantitative parameter were described using median and 25-

75 percentile (interquartile range, IQR) unless otherwise stated. Analyses were performed 

using the Wilcoxon test when two groups were compared, and the Kruskal-Wallis test 

when more than two groups were compared. The association between the different bi-

omarkers of interest were analyzed, at each sampling time, using Spearman’s correlation 

coefficient. The association profiles between different biomarkers were also analyzed us-

ing a principal component analysis method. Statistical analyses were performed at the 

conventional two-tailed α level of 0.05, using the R 2.13.2 statistical software (R Founda-

tion for Statistical Computing, https://www.r-project.org, Vienna, Austria)  

3. Results 

3.1. Demographic and clinical characteristics of preterm infants  

The 43 preterm neonates included in our study had at birth, an average weight of 

1160.41 g (range 440-1750 g), an average gestational age of 29 weeks (range 24-32 weeks) 

and an average height of 37.11 cm (range 32-47 cm). Thirty-five (81%) were born by cae-

sarean section and 8 (19%) by vaginal delivery. Only five mothers (11.6%) had received 

antibiotic therapy during the peripartum period. As part of the cohort follow-up, clinical 

evaluation (AF) was conducted at 1 year and assessed the presence or absence of health 

conditions, including atopic diseases. When necessary, allergy diagnosis was carried out 
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according to current recommendations35,36. A total of nine children developed an atopic 

condition during the first year, manifested as asthma or cow's milk allergy (CMA) in eight 

and AD in three, with two patients presenting an association of AD, asthma and CMA 

(Table 1). 

Table 1. Clinical data for preterm infants investigated for the presence of fecal biomarkers. VD: 

Vaginal delivery; CMA, cow’s milk allergy; CS: Cesarean section. 

Code 
Meconium 

(M) 

Two-
weeks 
(W2) 

Four-
Week 
(W4) 

Six-
weeks 
(W6) 

Peripartum 
maternal 
antibiotic 
therapy 

Mode of 
delivery 

Gestational 
age 

Weight Size 
Asthma 
or CMA 

Atopic 
dermatitis 

1 0 W2 W4 W6 No VD 30 1275 37 Yes Yes 
2 M W2 W4 W6 Yes CS 27 925 34 Yes No 
3 M W2 W4 W6 No CS 26 565 31 Yes No 
4 0 0 W4 0 No VD 25 820 34 Yes No 
5 M W2 W4 0 No CS 32 1260 39 Yes No 
6 M W2 W4 W6 Yes CS 27 680 31 Yes No 
7 M 0 W4 W6 No CS 29 1565 42 No No 
8 M W2 W4 W6 No CS 28 890 33 No No 
9 0 0 0 W6 Yes CS 30 1150 38 No No 

10 M W2 0 0 No CS 31 1570 43 No No 
11 M W2 W4 0 No CS 32 1575 44 No No 
12 M W2 W4 0 No CS 30 1360 39 No Yes 
13 M W2 0 W6 No CS 25 870 34 Yes Yes 
14 M W2 W4 0 No CS 32 1155 39 Yes No 
15 0 W2 W4 W6 No CS 25 440 28 No No 
16 0 0 0 W6 No VD 30 1590 41 No No 
17 M W2 W4 W6 No CS 24 530 31 No No 
18 M W2 0 0 No CS 26 925 35 No No 
19 M W2 W4 0 No VD 30 1480 41 No No 
20 M W2 W4 0 No VD 30 1460 38 No No 
21 M W2 W4 W6 No CS 29 880 35 No No 
22 0 W2 W4 W6 No CS 28 840 35 No No 
23 M W2 W4 0 Yes VD 30 1670 43 No No 
24 M W2 W4 W6 No CS 31 1120 38 No No 
25 0 W2 0 0 No CS 28 915 36 No No 
26 M 0 W4 W6 No CS 26 925 35 No No 
27 M W2 W4 W6 Yes CS 30 1335 39 No No 
28 M W2 W4 W6 Yes CS 30 1355 47 No No 
29 M W2 0 W6 No CS 30 1480 39 No No 
30 0 W2 W4 W6 Yes CS 28 1010 35 No No 
31 M W2 W4 W6 No CS 29 1050 39 No No 
32 M W2 W4 0 No CS 29 1190 38 No No 
33 0 W2 W4 W6 No CS 30 1175 39 No No 
34 M 0 0 0 No CS 32 1930 44 No No 
35 0 W2 W4 0 Yes CS 29 1430 30 No No 
36 M W2 W4 0 No CS 30 1750 43 No No 
37 M 0 0 0 No CS 27 600 29 No No 
38 M W2 W4 W6 No VD 25 750 32 No No 
39 M W2 0 W6 No CS 31 980 36 No No 
40 M W2 0 W6 No CS 31 1410 39 No No 
41 M 0 0 0 No CS 30 770 33 No No 
42 M 0 0 0 Yes VD 32 1568 41 No No 
43 M 0 0 0 No CS 30 1680 39 No No 

3.2. Immune profiling 

3.2.1. Total protein determination 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 March 2022                   doi:10.20944/preprints202203.0296.v1

https://doi.org/10.20944/preprints202203.0296.v1


 

 

First, we measured the total protein content in all samples. The median concentration 

of fecal proteins was stable from birth to six weeks, ranging from 4.53 to 9.18 g/L (p=0.10; 

Kruskal-Wallis) (Table 2). 

Table 2. Determination of fecal immune biomarkers. 

 Meconiu
m 

  Two weeks  Four weeks  Six weeks   

 n = 33  n = 33  n = 29  n = 24     

 
n (%) 

detectabl
e 

Median IQR 
n (%) 

detectabl
e 

Median IQR 
n (%) 

detectabl
e 

Median IQR 
n (%) 

detectabl
e 

Median IQR 

p-
value 
(frequ
ency) 

p-value 
(levels) 

Total 
Proteins 

(g/L) 
33 (100) 

9.18 (4.51-
13.54) 

33 (100) 5.55 (4.23-6.05) 29 (100) 
4.53 (3.00-

5.52) 
24 (100) 6.46 (5.39-7.76) NS 0.10 

Total IgE 
(µg/L) 

30 
(90.90) 

7.3 (6.4-9.9) 32 (97) 8.47 (6.8-9.8) 
27 

(93.10) 
9.74 (3.39-

0.26) 
24 (100) 

115.08 (41.00-
193.70) 

0.41 
<0.000

1 
Tryptase 

(µg/L) 
3 (9.1) <1 3 (9.1) <1 4 (13.79) <1 

14 
(58.33) 

1.8 (0.0-3.4) 
<0.000

1 
0.61 

Calprotect
in (µg/L) 

33 (100) 
310.4 (151.1-

771.3) 
33 (100) 

291.23 (189.41-
487.87) 

29 (100) 
402.44 (300.06-

607.3) 
24 (100) 

422.37 (335.53-
823.30) 

NC 0.13 

EDN 
(µg/L) 

33 (100) 
83.2 (19.3-

165.0) 
33 (100) 

70.1 (17.8-
152.5) 

29 (100) 
109.0 (44.2-

200.0) 
24 (100) 

98.1 (57.5-
200.0) 

NC 0.21 

TGF-β 
(pg/L) 

24 (72.7) 
121.3 (4.6-

258.9) 
30 (91) 

267.43 (61.71-
1000) 

26 
(89.65) 

384.57 (129.60-
936) 

22 
(91.66) 

466 (104.36-
1430.29) 

0.09 0.014 

IL-1β 
(pg/L) 

13 (39.4) 
0.12 (0.1-

2.7) 
28 (84.8) 1.53 (0.37-6.53) 

25 
(86.20) 

3.27 (0.31-
10.76) 

22 
(91.66) 

6.23 (1.66-
20.84) 

<0.000
1 

0.001 

IL-10 
(pg/L) 

4 (12.12) 3.9 (3.9-3.9) 6 (18.18) 3.9 (3.9-3.9) 5 (17.24) 3.9 (3.9-3.9) 5 (20.83) 3.9 (3.9-3.9) 0.85 0.53 

IL-6 
(pg/L) 

25 
(75.75) 

11.6 (0.5-
43.7) 

7 (21.21) 0.2 (0.2-0.2) 
20 

(68.96) 
0.2 (0.2-0.2) 

20 
(83.33) 

3.77 (1.66-
19.25) 

<0.000
1 

<0.001 

           
Concentrations are expressed as median and interquartile ranges (IQR). n (%): number of samples in which the biomarker was de-

tected (relative frequency of detection). The median and IQR were calculated by restricting the results above the lower LOQ (limit of 

quantitation) for each analyte. Statistical test: Chi-square (frequency), Kruskal-Wallis (concentration). NC, not calculable (calprotectin 

and EDN were detectable in all samples and at all sampling times). 

3.2.2. Immune cell markers and cytokines (Table 2) 

Total IgE was detectable in over 90% of samples at all ages, in increasing amounts 

between birth (meconium) and six weeks (p<0.0001; Kruskal-Wallis).  

Conversely, tryptase detection increased with sampling age, reaching 58% in samples 

at six weeks, up from less than 15% at earlier times (p<0.0001; Chi-square). As most values 

were lower than the quantification limit, quantitative comparison was not significant (p = 

0.61, Kruskal-Wallis). 

Calprotectin and EDN were detected in all samples at comparable levels irrespective 

of age (p = 0.13 and 0.21, Kruskal-Wallis).  

All cytokines except TNF-α were detectable in meconium and fecal samples. TGF-β 

and IL-6 were the most prevalent, detected in up to 90% of samples, while IL-10 was the 

less prevalent, found in 20% or less of the fecal samples. The frequency of detection of IL-

6 and IL-1β increased with age (p<0.0001; Chi-square), although there was a sharp drop 

in IL-6 frequency of detection and measured levels between meconium (75%, median 11.6 

pg/L) and samples at two weeks (21%, median 0.2 pg/L). 

TGF-β and IL-1β median concentrations increased with age (p=0.014 and 0.001 re-

spectively; Kruskal-Wallis). The median level of IL-6 was highest in meconium samples 

and increased again at six weeks (p<0.0001; Kruskal-Wallis). IL-10 median concentrations 

did not vary with age. 
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Maternal antibiotic therapy and route of delivery did not significantly affect the me-

conium levels of cytokines, total IgE, tryptase, calprotectin, and EDN (Supplementary 

Table 1). However, analysis according to the development of atopic disease during the 

first year showed that meconium calprotectin levels were lower in neonates who subse-

quently developed asthma or CMA compared to those who did not (p=0.02; Wilcoxon 

test) (Figure 2). Levels of other mediators and cytokines were not associated with the oc-

currence of an atopic disease (Table 3). 

  

Figure 2. Comparison of meconial calprotectin concentration according to the later occurrence of 

asthma or cow's milk allergy. 

Table 3. Comparison of mediators and cytokines and the occurrence or absence of an atopic condi-

tion between 0 and 1 year. Statistical test used: Wilcoxon test. 

Variables Allergic events 
p-value 

Meconium 2 weeks 4 weeks 6 weeks 

IgE 
Yes 

0.42 0.22 0.25 0.70 
No 

Tryptase 
Yes 

0.38 0.39 0.42 0.86 
No 

Calprotectin 
Yes 

0.02 0.91 0.59 0.55 
No 

EDN 
Yes 

0.48 0.31 0.71 0.35 
No 

TGF-β 
Yes 

0.23 0.07 0.10 0.77 
No 

IL-1β 
Yes 

0.37 0.49 0.65 0.78 
No 

IL-10 
Yes 

0.46 0.19 1.00 0.55 
No 

IL-6 Yes 0.86 1.00 0.61 0.69 

3.3. Correlation between biomarkers (Table 4) 

As an expected control, significant correlations were found between weight and 

height (R=0.90; p<0.0001), between gestational age and height (R=0.75; p<0.0001), and be-

tween gestational age and weight (R=0.75; p<0.0001). 

Total IgE and tryptase levels were strongly correlated in samples taken at any age. 

IL-10 and IL-6 were correlated at all ages except at two weeks. 
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Table 4. Correlation table of fecal immune biomarkers. 

Parameter 1 Parameter 2 Correlation coefficient p-value 
Meconium    

Gestational age Height 0.76 <0.0001 
Gestational age Weight 0.75 <0.0001 

Weight Height 0.90 <0.0001 
Total IgE Tryptase 0.91 <0.0001 
Proteins TGF-β -0.36 0.01 
Tryptase IL-10 0.48 0.001 
Tryptase IL-6 0.46 0.001 

IL-10 IL-6 0.73 0.0001 
Two weeks    
Total IgE Tryptase 0.98 0.0001 
Total IgE IL-10 0.85 0.0001 
Tryptase IL-10 0.88 0.0001 

Calprotectin IL-1β 0.90 0.0001 
Proteins IL-6 -0.61 0.0002 

Four weeks    
Total IgE Tryptase 0.85 0.0001 
Total IgE Proteins 0.38 0.04 

Calprotectin IL-1β 0.74 0.0001 
IL-10 IL-6 0.73 0.0001 

Six weeks    
Total IgE Tryptase 0.67 0.0003 

IL-10 IL-6 0.51 0.01 
TGF-β IL-1β 0.41 <0.01 
TGF-β Proteins 0.43 <0.03 
IL-1β Proteins 0.47 <0.02 

Proteins IL-6 0.68 0.0003 
The table summarizes significant correlations between the biomarkers with correlation coefficients and p-values. 

Meconium samples: 

Tryptase levels were correlated to levels of IL-10 (R=0.48, p=0.001) and IL-6 (R=0.46; 

p=0.001). A negative correlation between total protein concentration and TGF-β (R=-0.36; 

p=0.01) was observed.  

Samples at two weeks: 

Strong correlations were observed between levels of calprotectin and IL-1β (R=0.90; 

p<0.0001), tryptase and IL-10 (R=0.88; p<0.0001), and total IgE and IL-10 (R=0.85; 

p<0.0001), while total protein concentration and IL-6 were negatively correlated (R=-0.61; 

p=0.0002). 

Samples at four weeks: 

Again, calprotectin and IL-1β were strongly correlated (R=0.74; p<0.0001). IgE and 

total protein were also correlated (R=0.38; p<0.04).  

Samples at six weeks: 

TGF-β was correlated with IL-1β (R=0.49; p<0.01) and with total proteins (R=0.43; 

p<0.03). Total proteins were correlated with IL-1β (R=0.47; p<0.02) and negatively with IL-

6 (R=-0.68; p=0.0003). 

3.4. Frequency of detection of methanogenic Archaea and relationship with the subsequent 

development of atopic diseases 

Using real-time PCR with 16S rRNA archaeal gene PCR primers, we detected meth-

anogenic Archaea DNA in 30/33 (90%) meconium samples, 27/33 (81%) two-week-old 
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samples, 23/29 (79%) four-week-old samples and 19/24 (73%) six-week-old samples, re-

spectively. We found no significant difference in the frequency of detection, nor in CTs 

according to age at sampling (Table 5). 

Table 5. Result of the detection of methanogenic Archaea. 

 Meconiu
m 

  Two weeks  Four weeks  Six weeks   

 n = 33  n = 33  n = 29  n = 26  
p-value 
(freque

ncy) 

p-
value 
(CT) 

 n (%) Median IQR n (%) Median IQR n (%) Median IQR n (%) Median IQR   
CT 

qPCR 
30 (90.9) 

36.74 (33.85-
38.24) 

27 (81.81) 
37.20 (36.07-

38.33) 
23 

(79.31) 
37.75 (36.13-

38.50) 
19 

(73.03) 
38.28 (37.27-

39.96) 
0.34 0.12 

CT Methanogenic Archaea are expressed as median and interquartile ranges (IQR). n (%): number of samples in which the methano-

genic Archaea was detected (relative frequency of detection). The stool concentration factor and median and RDI were not included 

in our calculations, and the median and RDI were calculated by restricting the results above the lower LOQ (limit of quantitation) 

for each analyte. Statistical test: Kruskal-Wallis. 

CTs of the Archaea of neonates who subsequently developed atopic diseases (asthma 

or CMA and AD) did not differ from those remaining allergic disease-free at age 1 (Sup-

plementary tables 2 and 3). 

3.5. Unsupervised analysis of immunological markers and methanogenic Archaea atthe neonatal 

period, and the subsequent occurrence of AD, asthma and CMA during the first year  

We performed an unsupervised analysis of the immunological data, CT of Archaea, 

and the clinical information of the occurrence of allergic events during the first year of life. 

Data were analyzed for each of the four sampling times.  

For meconium, calprotectin, EDN and IL-1β levels were negatively and significantly 

(p<0.001) correlated (r = -0.64) with subsequent development of AD. Calprotectin, EDN 

and IL-1β had the largest and most significantly (p<0.01) correlated positive correlation 

coefficients, which were 0.79, 0.53 and 0.51 respectively. No correlation was observed for 

the Archaea CT with the other parameters (Figure 3A). 
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Figure 3. Principal component analysis of neonatal immune and archaeal biomarkers as a function 

of later occurrence of atopic conditions. 

At two weeks, IL-1β (r= 0.88) and calprotectin (r=0.82) had a strong positive correla-

tion with each other, followed by IL-6 (r=0.62) and EDN (r=0.59). These biomarkers were 

significantly (p<0.001) associated. Archaea CTs had a weak (r<0.5) but positive and signif-

icant (p<0.01) association with the biomarkers IL-1β, calprotectin, IL-6 and EDN (Figure 

3B). 

At four weeks, later occurrence of AD, CMA and asthma was positively correlated 

with calprotectin (r=0.61), IL-1β (r=0.58), EDN (r=0.57) and TGF-β (r=0.57), and negatively 

correlated with IL-6 (r=-0.71) and IL-10 (r=-0.61). Calprotectin, IL-1β and EDN were sig-

nificantly associated with each other (p<0.001). Archaea CTs were positively associated 

with calprotectin, IL-1β, IL-6 and EDN with a significant correlation (p<0.001), however 

they were inversely correlated with allergic events although the correlation coefficient 

was low (Figure 3C).  

At six weeks, only IL-6 correlated negatively (r=-0.51) with the other biomarkers and 

allergic events. IL-1β (r=0.68), IL-10 (r=0.67) and AD (r=0.58) showed the strongest positive 

correlations, with AD significantly (p<0.001) associated with IL-1β and IL-10. Archaea CTs 

were weakly correlated (r<0.5) with IL-1β, calprotectin, IL-6 and EDN. However, allergic 

events were negatively associated with CT, and AD had almost no correlation (Figure 

3D). 

4. Discussion 

In this study, we describe a non-invasive screening method for profiling the neonatal 

immunity and its validation in a preterm neonate cohort as a predictive tool for subse-

quent development of atopic diseases. The method was also applied to meconium sam-

ples, which reflect the intrauterine processes and contain almost 1,000 identified proteins 

with important functions37. 
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Total IgE were detected in over 90% of samples, at increasing concentrations with 

age.  Transplacental delivery of allergens and preterm sensitization have long been rec-

ognized, possibly inducing sensitization and detectable meconial IgE38,39. Transplacental 

transport of maternal IgE able to sensitize fetal mast cells has been recently demon-

strated40, but its role in the neonatal immune defenses or subsequent immune disorders is 

only speculative.  

Addressing mast cell tryptase in meconium and later samples, we found that it was 

detectable only in a minority of meconium samples and the during the first month of life, 

however, it became a common finding at the end of the neonatal period, represented by 

samples collected at 6 weeks. Fecal tryptase and IgE levels were strongly associated at 

each of the studied time points. These results suggest that gastrointestinal mast cells, as 

opposed to skin mast cells40, are mostly recruited postnatally, and mature after birth with 

IgE levels exerting a positive effect. Conversely, maturity of gastrointestinal mast cell pop-

ulations might be attained during late pregnancy. Tryptase is a serine-protease able of 

autocrine activation of mast cells and induction of proinflammatory effects such as prote-

olytic cleavage and activation of PAR2 receptors and inactivation of VIP (Vasoactive In-

testinal Peptide), associated with smooth muscle relaxation41. Through PAR-2 activation, 

luminal tryptase can contribute to the dysfunction of the gut epithelial barrier42. The pres-

ence of tryptase in stool samples has been associated with food allergic diseases, dietary 

exposure and/or mast cell stimulation or increased intestinal mast cell count43-44. In addi-

tion, fecal tryptase has also been shown to be associated with inflammatory bowel disease 

and irritable bowel syndrome45-46.  

Focusing on two secreted biomarkers of innate immune cells, neutrophil-derived cal-

protectin and eosinophil-derived EDN, we found that fecal samples at all studied ages 

contained detectable and stable levels of both biomarkers. The levels measured in our 

preterm cohort were much lower than the reference values47, but similar to those reported 

during the first postnatal month in another preterm cohort48. These results suggest that 

preterm gut contains small numbers of granulocytes, or that such granulocytes are not 

activated. Indeed, lower neutrophils were reported in preterm infant cord blood49. An as-

sociation between low levels of fecal calprotectin and adverse health conditions, including 

obesity and sepsis, by age 2 has been suggested48. 

Pro-inflammatory and anti-inflammatory cytokines were detected in the meconium 

and later samples of preterm infants, with the notable exception of TNF-α which was not 

demonstrated in any sample. Different temporal patterns were demonstrated: IL-6 levels 

were higher in meconium than in later samples, while IL-10 was seldom detected and 

TGF-β and Il-1β displayed a progressive increase between birth and six weeks. Mostly 

undetectable IL-10 levels were also reported in a pilot study of fecal biomarkers in preterm 

infants8. Although we did not determine the cellular source of fecal cytokines, a shift in 

immune cells lining the intestine has been demonstrated for macrophages, with resident 

fetal macrophages being replaced after birth by bone marrow-derived macrophages50. 

Macrophage cytokine production, most notably of pro-inflammatory IL-6 and IL-1β, can 

be persistently altered by metabolic conditions51. The increase in TGF-β levels from birth 

to 6 weeks might provide a counter-acting mechanism in a pro-inflammatory environ-

ment. Allergic events (asthma or cow's milk allergy) and atopic dermatitis were also pos-

itively correlated with EDN, IL-1β, IL-10 and IL-6 at 4 and 6 weeks. The high production 

of fecal EDN, IL-1β and IL-10 during the first weeks of life may therefore be an indicator 

for later risk of allergic diseases. 

The neonatal period is paramount for the establishment of the intestinal microbiota. 

Intrauterine life is associated with low levels of maternal microbial translocation52. How-

ever, we have recently demonstrated the presence of the viable methanogenic Archaea 

Methanobrevibacter smithii in meconium, suggesting intrauterine colonization of the fetus 

by this microorganism26. Here, we provided evidence for the postnatal persistence of 

methanogenic Archaea in fecal samples and suggest a possible role in the orientation of 

intestinal immunity, supported by the negative association between Archaea abundance 

(inversely proportional to CT values) and the concentrations of EDN, IL-1β, and IL-6. We 
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also found that Archaea abundance at 4 and 6 weeks was positively associated with later 

occurrence of allergic events. Archaea have been shown to produce SCFA which induce 

regulatory T cell differentiation, down-regulate pro-inflammatory cytokines, and may 

protect against the occurrence of atopic conditions19,53-57 However, in a cohort study the 

protective effect of methanogenic Archaea was restricted to the species Methanobrevibacter 

stadtmanae58. A decrease in the load of beneficial methanogenic Archaea during the first 

years of life could therefore favor the occurrence of allergic events during the first years 

of life.  

The strengths of our study are methodological and medical: 

(1) miniaturization and standardization, using small quantities of stool (1g) and small 

volumes of extraction buffer (2ml). The dilution of the samples is corrected by the freeze-

drying process, as the lyophilizates are contained in 1ml of buffer. 

(2) prevention, thanks to the use of protease inhibitors, of the risk of potential con-

tamination of the handler .  

(3) suitability for a microarray platform yielding patterns of immune responses ra-

ther than individual measurements. 

(4) suitability for combined immune and microbiological assessment. 

(5) proof of concept of the immune profiling of fecal mediators in meconium and 

neonatal samples as predictors of later development of atopic disorders.  

(6) proof of concept for non-invasive investigation of the immune status of preterm 

neonates. 

The main weakness of this study is the lack of microbiological data outside Archaea. 

Further studies are warranted for the longitudinal immuno-microbiological profiling of 

meconium and neonatal samples, in preterm and at-term infants. Its validation as a non-

invasive diagnostic method will be in line with the currently unmet needs in terms of non-

invasive diagnosis of allergy.  

5. Conclusion  

This study allowed us to highlight the presence of mediators in the meconium and 

feces of preterm infants. We provide proof of concept of the feasibility and value of a 

standardized fecal mediator assay for the non-invasive profiling of neonatal immunity. 

Such assays can be used for early characterization of the immune status of a newborn. 

Technical optimization for a multiplex assay could facilitate the implementation of fecal 

immune profiling in clinical and research laboratories. We report evidence of a correlation 

between the meconial and neonatal load of methanogenic Archaea and selected fecal bi-

omarkers, and later occurrence of atopic conditions in preterm children.  
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