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Summary 
The mass of the nucleons is calculated from first principles by defining the quark as a non-
gravitational particle, subject to Dirac’s equation with non-canonical gamma matrices. Unlike the 
canonical electron-type, this Dirac particle has two real dipole moments, which allows a structural 
modelling of hadrons. It is shown how such modelling reveals striking correspondences and 
differences between dually related particles and properties like electrons and quarks, photons and 
gluons, pions and nucleons, spin and isospin and protons and neutrons. It is a stepping stone to the 
actual calculation, which competes in precision with lattice QCD. The appendix contains a Lorentz 
covariance proof of hadrons composed by such particular Dirac-type quarks.  
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1. Introduction 

One of the issues in particle physics is the challenge to calculate the masses of hadrons 
“from first principles” or “ab initio”. It is commonly taken for granted that lattice QCD is the 
best way, if not the only one, to do so. The calculation of the proton mass is usually 
considered as a decisive proof of its capabilities. However, although the quark is considered 
as the ultimate building block of observable nuclear particles, lattice QCD is unable to use 
the attributes of quarks as the true reference for “ab initio”, for the simple reason that a 
quark escapes from observability. For that reason, the real reference values for lattice QCD 
are the masses of the pion and the kaon. Although these mesons are not observable either, 
their masses can be measured as a result from their fermionic decay products. The lattice 
QCD quark model is subsequently used as a means to establish the relevant quark attributes 
for the calculation “from first principles”. Several groups have claimed results from 
calculations on protons and other hadrons that are close to experimental results [1,2]. 
However, results from theory can still not compete in precision with results from 
experiments. Up to now, lattice QCD is unable to calculate the mass difference between a 
proton and a neutron. Moreover, the retrieved masses for the u and the d  quark can only 
be established as an average over the two and lattice QCD calculations for the mass 
difference between a charged pion and a neutral pion are still missing. The lattice QCD 
calculations require highly-intensive computations. The results have to be believed on the 
reputation of the reporting scientists without any means for verification by the reader. It is 
my aim in this article to show that a more simple approach is capable to address these 
problems more adequately than lattice QCD can do. This will require, though, giving a 
motivation for choosing a different route. Similarly as in lattice QCD, the basic elements in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 March 2022                   doi:10.20944/preprints202203.0282.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202203.0282.v1
http://creativecommons.org/licenses/by/4.0/


 

2 
 

this route are the quark and the gluon. And more particularly, their interrelationship, which 
will culminate into the statement that the quark-gluon relationship is the nuclear equivalent 
of the electromagnetic electron-photon relationship. This will require more precise 
definitions of the quark and the gluon than available in present theory. Before addressing 
the actual calculations, a review on the differences and correspondences between a quark 
and an electron will be instructive, as well as the differences and correspondences between 
a gluon and a photon (paragraphs 2 and 3). Next to those from spin-spin interactions 
(paragraph 5), their impact will be shown on other dualities, like pion and nucleon 
(paragraph 4), spin and isospin (paragraph 6), proton and neutron (paragraph 7). Prior to the 
discussion and conclusions (paragraph 8), the results of the mass calculations on nucleons 
are compared with those reported from lattice QCD. 

 

2. The electron and the quark 

Like all elementary fermions, electrons and quarks follow Fermi-Dirac statistics, obey the 
Pauli exclusion principle, have half integer spin and  have distinct antiparticles. They can be 
modelled with the Dirac equation. The canonic formulation of Dirac’s particle equation reads 
as [3,4],  

0)i( 0   
 cm ,                                                                                                                     (1) 

 
in which  is a 4 x 4 unity matrix and in which the 4 x 4 gamma matrices have different 
properties for electrons and quarks.  
 
For electrons, 
 

0    if   ;  0   ; ;1;1 22
0  i 12  .                                          (2) 

 
while for quarks [5],  
 

0    if   ;  0   ; ;1;1 22
0  i 12  .                                     (3) 

 
In both cases Dirac’s equation (1) is satisfied by the spinor, 
 
 )}(iexp{    rku ;  /pk  ; /W ,                                                                                  (4) 

 
in which p is the three-vector momentum and in which W is an energy relationship between 
the particle’s rest mass and its motional energy. For electrons, 
 

2222
0

2 )( pccmW  ,                                                                                                                       (5) 
 
while for quarks,  
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2222
0

2 pccmW                                                                                                                        (6) 
 
Note: It may seem that Dirac’s equation (1) under the constraints (3) is not Lorentz 
covariant, because of the violation of the invariance of the space-time interval if W  is 
equated with the Einsteinean energy E . This invariance is a basic theorem in Einstein’s 
Relativity theory. Let us take into consideration, though, that this theorem applies to 
gravitational objects, in which energy is conceived as the sum of massive energy embodied 
in the rest mass and the kinetic energy of an object. Prior to Dirac’s relativistic electron 
theory, the concept of negative energy has been considered as a violation of physical 
principles. After all, it was realized that the concept of negative energy did not violate the 
Einsteinean space-time invariance. Dirac himself proved the Lorentz covariance of his 
electron theory. But…if a particle with negative energy is physically viable, why would a 
particle that eats its kinetic energy from its rest mass not physically viable? It requires to 
identify such a particle as being different from a gravitational object and to redefine the 
space-time interval variance for such particles. As shown in the Appendix, such a non-
gravitational object can be compliant with the Lorentz covariance.   
 
The electron as well as the quark is a pointlike source of non-baryonic energy that erupts a 
scalar field   of non-baryonic energy to which an identical other electron or quark couples 
with a dimensionless coupling factor g . The fields are characterized by a Lagrangian density 
with the generic format 
 

 
 )(

2

1
L U ,                                                                                                      (7) 

 
in which )(U is the potential energy of an energetic background field and in which ρ  is 
the source term. If the background energy and the source are known a spatial expression for 
  can be found as the solution of a field equation obtained from the Lagrangian density 
after application of the Euler-Lagange equation. If the source ρ  is a scalar pointlike source in 
empty space, in which )(U is zero, the result is the Coulomb field,  
 

r′
= 0ΦΦ ;    rr  ,                                                                                                                           (8) 

 
If the source   is a scalar pointlike source in a background field that consists of polarizable 
dipoles, such that  
 

2
)(

2
2 

 DBDBUU  ,                                                                                                                    (9)  

 
 the field equation is inhomogeneous Helmholtz equation [6], which for a pointlike source 
shows the solution  
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DB

DB
DB 

 )exp(
0


 .                                                                                                                    (10) 

 
This is the shielded field from a charged particle in ionic plasma, known as the Debije effect 
[7]. 
 
Dirac’s Hamiltonian analysis on his spinor equation has revealed that a pointlike source is 
more that a pointlike scalar. His analysis has shown that a pointlike particle is subject to 
elementary virtual motions that show up in an angular momentum ħ and in a vibration 
momentum ħ/c. This means that the pointlike source is equipped with two dipoles. In the 
case of electrons, subject to gamma constraints (2), the former one shows up as the well 
known anomalous magnetic dipole moment 02/ me , while the latter one remains hidden as 

the imaginary anomalous electric dipole moment cme 02/i  . This is different for a quark. 
Unlike an electron, the quark, subject to the gamma constraints (3), shows two real dipole 
moments [8,9]. Hence, in qualitative terms, the potential field of a quark along the axis of 
the polarisable dipole, can be expressed as,  
 

}
1

)(

1
){exp(Φ)(Φ

20 x
w

x
xx


  ,                                                                                             (11) 

 
in which  (with dimension m-1) is a measure for the range of the nuclear potential, in which 

0 (in units of energy, i.e. joule) is a measure for the quark’s “charge”, and in which w is a 
dimensionless weigh factor that relates the strength of the monopole field to the dipole 
field. Because of the limited range of nuclear force there must be a Debije-type energetic 
background field, such that the field  decays as xx  /)exp( . As shown in [5], the similar 
result can be derived from the Lagrangian (7) in which the background field )(U has the 
format, 
 

4
2

2
2

42
)(  HHU


.                                                                                                              (12) 

 
For positive values of 2

H and 2
H , it is a broken field that is zero for 

 
 2)/(0 HH  ,                                                                                                                            (13) 
 
known as the vacuum expectation value. The field (12) is known as the Higgs field, which in 
the standard model has been adopted by axiom with a rather artificial interpretation [10]. 
Like discussed in this text it can be explained in terms of the quark’s vibration momentum 
ħ/c in conjunction with a Debije-type background field.  
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3. The photon and the gluon 
 
Similarly as the (fermionic) electron, the quark is a source of bosons. From an inspection of 
(11) it is obvious the quark field consists of a far field next to a near field. Whereas the far 
field is due to the quark’s monopole properties, the near field is due to its dipole properties. 
The far field has the same properties as an electric charge in an energetic background field 
as described by (9). Applying the action principle on the Lagrangian (7) yields a Proca-type 
wave equation, 

2 2
2

2 2 2

1
( , )H

r
r r r t

c t r
   

    
 

,                                                                                           (14) 

 
in which ( , )H r t is a Dirac-type pointlike source that can be expressed as, 
 

)()(δ
λ

π4),(ρ 30 tHrrtrH

Φ
= ,                                                                                                           (15) 

 
in which )(tH and )(r , respectively, are Heaviside’s step function and Dirac’s delta 
function. Figure 1 shows the solution of this wave function in a graphical format. The upper 
part shows the field building up to the eventual steady state shape. The lower part shows 
the transient pulse. This transient pulse is the nuclear equivalent of a gamma photon.  Unlike 
a gamma photon, this equivalent is subject to dispersion. The dispersion is due to the 2  
term in the Proca wave equation (12). This term is a consequence of the energetic ambient 
field, known as the Higgs field. Whereas a photon can be seen as a component of a gamma 
photon, a gluon can be seen as a component of a “gamma gluon”.  
 

 

 
Fig.1. The building of the quark’s potential far field as a result of a sudden energy eruption from its source. The 
field is the sum of the steady solution shown at the right and the transient pulse shown in the lower part of the 
figure. This pulse is a “gamma gluon”. It propagates at light speed and it eventually disappears as a result of 
dispersion. If  is zero, the transient is a never disappearing gamma photon and the stationary situation is 
shown by an unfinished rectangular shape of the upper most right graph. Note that the field is represented by 

)(rrΦ . 
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4. The pion and the nucleon 
 
Conceiving the pion as a structure in which a quark couples to the field of the antiquark by 
the generic quantum mechanical coupling factor g , the pion can be modeled as the one-
body equivalent of a two-body oscillator, described by the equation for its wave function  . 
In its center of mass this wave equation is the non-relativistic approximation of the Dirac 
spinor equation (1). For its time-independent part, we may write [5], 
 




ExdUxdU
mm

 )}()({
dx

d

2 2

22
;  )()( xgxU  ,                                                (16) 

 
in which )(x is the quark’s scalar field as derived before and eventually expressed by (11),  

2d  the quark spacing, mm the reduced mass that embodies the two massive contributions 
from the constituting quarks, )()()( xdUxdUxV  its potential energy, and E the 
generic energy constant, which is subject to quantization. It will be clear from (16) that the 
potential energy ( )V x can be expanded as, 
 
 ....)()()()( 22

200  xkkgxdUxdUxV  ,                                                             (17)                        
 
in which 0k and 2k are dimensionless coefficients that depend on the spacing 2d  between 
the quarks. To facilitate the analysis, (16) is normalized as, 
 




 ExV
x




 )(
d

d
2

2

0 ,                                                                                                            (18) 

 

in which ,
2 0

22

0 


gmm

  xx  , dd  , 
0


g

E
E , 

0

)(
)(




g

xU
xU

   and 

 
.......)()()( 2

20  xkkxdUxdUxV  
 
Invoking previous work [[11, eq. (24)] we get for 0 ,  
 

2

2
0

0 k

k
α  .                                                                                                                                             (19) 

 
The two quarks in the meson settle in a state of minimum energy, at a spacing ,22 mindd   
such that [11,12], 
 

 dd min 0.853; 0k -1/2 and 2k 2.36.                                                                                 (20) 
 
Figure 2 shows the structural pion configuration. 
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The archetype meson, the pion, is the two
excitation state transforms a pion into a kaon. 
as the mass ratio of the normalized energy constants 
the basic theorem of the theory. This theorem states that the energy wells of the two quarks 
are not massive. Instead, the mass attribute of two
quark junctions (baryons) is made up by the vibratio
state of the quantum mechanical oscillator that they build. The distribution of this mass over 
constituent quarks is a consequence of thi
calculation of the 0kE   ratio of kaons over pions, is only possible for the quadratic 
approximation of the series expansion of the potential energy 
calculation requires a numerical approach. A procedure to 
[11, Appendix C]. It shows that some simple lines of code in Wolfram’s 
may do the job. The numerically calculated ratio of the energy constants appears to be 3.57 
instead of 3 as it would have been in the harmonic case. The result explains the excitation of 
the 137 MeV/c2 pion mass to the 490 MeV/c
gives a substantial support for the viability of the theory as developed in
 
 
 

 
Fig. 2. A quark has two real dipole moments, hence two dipoles. One of 
polarisable in a scalar potential field. The other one (vertically visualized) is not.
one is restrained by the bond: the horizontal dipoles are only oriented in 
the centre or outward from the centre.
status.  
 
 
Table I: meson excitation 
 
Bottom level bindE  - 1/2
Ground state  bindEE0  

First excitation  bindEE1  

 
 

, the pion, is the two-quark oscillator in its ground state. The first 
transforms a pion into a kaon. The mass ratio between the two is the same 

as the mass ratio of the normalized energy constants 0kE  . This is not trivial and it reflects 
the basic theorem of the theory. This theorem states that the energy wells of the two quarks 
are not massive. Instead, the mass attribute of two-quark junctions (mesons) and three
quark junctions (baryons) is made up by the vibration energy as expressed by the energy 
state of the quantum mechanical oscillator that they build. The distribution of this mass over 
constituent quarks is a consequence of this mechanism. Unfortunately, an

ratio of kaons over pions, is only possible for the quadratic 
approximation of the series expansion of the potential energy . A more accurate 
calculation requires a numerical approach. A procedure to do so has been documented in 

shows that some simple lines of code in Wolfram’s 
The numerically calculated ratio of the energy constants appears to be 3.57 

instead of 3 as it would have been in the harmonic case. The result explains the excitation of 
pion mass to the 490 MeV/c2 mass of the pseudoscalar kaon. This result 

gives a substantial support for the viability of the theory as developed in previous work

A quark has two real dipole moments, hence two dipoles. One of these (horizon
able in a scalar potential field. The other one (vertically visualized) is not.. The polarity of the horizonta

he horizontal dipoles are only oriented in the same direction
the centre or outward from the centre. The orientation of the dipole moments is unrelated from their isospin 

1/2 mass ratio mass in MeV/c2 

 0.84 1 137  
(pion = 135-140) 

 3.00 3.57 489 
(kaon = 494-498) 

)(zV 

quark oscillator in its ground state. The first 
The mass ratio between the two is the same 

trivial and it reflects 
the basic theorem of the theory. This theorem states that the energy wells of the two quarks 

quark junctions (mesons) and three-
n energy as expressed by the energy 

state of the quantum mechanical oscillator that they build. The distribution of this mass over 
s mechanism. Unfortunately, an analytical 

ratio of kaons over pions, is only possible for the quadratic 
. A more accurate 

do so has been documented in 
shows that some simple lines of code in Wolfram’s Mathematica [13] 

The numerically calculated ratio of the energy constants appears to be 3.57 
instead of 3 as it would have been in the harmonic case. The result explains the excitation of 

mass of the pseudoscalar kaon. This result 
previous work.  

 

these (horizontally visualized) is 
he polarity of the horizontal 

the same direction: either inward to 
is unrelated from their isospin 
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What about the nucleon? Figure 3 shows its basic configuration. It illustrates that the 
monopole fields of the quarks are balancing the fields of the polarisable dipole moments. 
Whereas a meson can be conceived as the one
oscillator, a baryon can be conceived as the one
oscillator. The one-body equivalent of the three
analyzed in terms of pseudo-
system of coordinates is six-dimensional. Next to a (hyper)radius
the sum of the squared spacings between
in which and model the changes of s
and are the Euler angles. The latter ones define the orientation of the body plane in 3D
space. The planar forces between three i
dynamic deformations of the 
that result in vibra-rotations around the principal axes of inerti
[15]. 

 
 
Fig.3: Left: the basic baryon structure as a harmonic oscillator. The 
fields of the monopoles. The vibra
center-of-mass. Right: illustration of the frame spin of the baryon.
 
The application of this approach for baryon
showing that the wave equation of the quasi
as 
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 


What about the nucleon? Figure 3 shows its basic configuration. It illustrates that the 
monopole fields of the quarks are balancing the fields of the polarisable dipole moments. 
Whereas a meson can be conceived as the one-body equivalent of a two
oscillator, a baryon can be conceived as the one-body equivalent of a three

body equivalent of the three-body quantum mechanical oscillator can be 
-spherical Smith Whitten coordinates [14]. 
dimensional. Next to a (hyper)radius , the square of which is 

the sum of the squared spacings between the three bodies, there are five angles
model the changes of shape of the triangular structure and in which

are the Euler angles. The latter ones define the orientation of the body plane in 3D
space. The planar forces between three identical interacting bodies not only 

 equilateral structure, but also are the cause of a Coriolis effect 
rotations around the principal axes of inertia of the three

 

 
 
 

basic baryon structure as a harmonic oscillator. The polarisable dipole moments balance the 
fields of the monopoles. The vibra-rotations of the monopoles have an equivalent in the behavior of the 

mass. Right: illustration of the frame spin of the baryon. 

The application of this approach for baryons has been documented by 
showing that the wave equation of the quasi-equilateral baryon structure can be formulated 

 EV
k  )(}

), , 

03 g
E

; 
03 


g

V
V  ;   ,  and  

.......)                                                                                                   

)4 kv  



What about the nucleon? Figure 3 shows its basic configuration. It illustrates that the 
monopole fields of the quarks are balancing the fields of the polarisable dipole moments. 

body equivalent of a two-body harmonic 
body equivalent of a three-body harmonic 

body quantum mechanical oscillator can be 
The Smith-Whitten 

, the square of which is 
three bodies, there are five angles ,,,,,   

e triangular structure and in which 
are the Euler angles. The latter ones define the orientation of the body plane in 3D-

not only are the cause of 
the cause of a Coriolis effect 

a of the three-body structure 

 

polarisable dipole moments balance the 
rotations of the monopoles have an equivalent in the behavior of the 

s has been documented by the author in [16], 
equilateral baryon structure can be formulated 

                                                                                                  (21) 

 ,
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This wave equation is the three-body equivalent of the pion’s two-body wave equation 
shown in (46). In the ground state we have 0m . Hence, 
 

)4(),,0(  llkvRR ; kvl  .                                                                                               (22) 

 
The radial variable  is the already mentioned hyper radius. The potential field is just the 

threefold of the potential field in the wave equation of the pion. There are three quantum 
numbers involved. Two of those are left in the ground state, effectively bundled to a single 
one. The quantum number k allows a visual interpretation, while v  is difficult to visualize. 
The impact of k is shown in the right hand part of figure 3.  It illustrates the motion of the 
center of mass under influence of k . Note that this rotation is quite different from a rotation 
of the triangular frame around the center of mass. It is the center of mass itself that rotates, 
while the frame does not. Actually, the small motions of the individual quarks are 
responsible for this motion. 

 

5. Spin-spin interactions 

The simple anharmonic oscillator model described by (16-18) enables the mass spectrum 
calculation of the pseudoscalar mesons as excitations from the pion state. The excitation 
mechanism stops beyond the bottom quark due to the loss of binding energy. The mass 
spectrum calculation of the vector mesons requires the inclusion of the impact of the 
nuclear spin shown in the upper part of figure 2. A spin flip marks the difference between 
the pseudoscalar pion and the vector type sisters rho. The massive energy difference E
between the two types is a consequence of a spin-spin interaction process. It is of a similar 
nature as the analysis of the interaction process between the spin of electron and the spin of 
the proton nucleus in a hydrogen atom. Recognizing, though, that this is essentially a 
bosonic process, allows, in retrospect, a surprising simple approach. The step to be taken is 

conceiving the massive energy difference E  as a result of a bosonic interaction, mediated 

by Z  bosons in virtual state. Because of the asymmetry in the spin-spin interaction (

4/3 2  and 4/2 ), we have, 

Zu mmm  32  and Zu mmm  2 ,                                                                                        (23) 

in which ummm  ,,  and Zm   are the energies of, respectively, the rest masses of pion and 

the rho meson, the constituent massive energy of the du / quark and the energy of the Z
boson in virtual state in the rest frame of mesons. The statement that the energy of the rest 
mass of the pion is equal to the non-relativistic equivalent of the energy of the W boson 
enables to calculate the energy Zm  of the Z boson in virtual state as, 

)(
W

ZZ m

m
mm




  .                                                                                                                                 (24)     

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 March 2022                   doi:10.20944/preprints202203.0282.v1

https://doi.org/10.20944/preprints202203.0282.v1


 

10 
 

Under use of (23) and (24), the constituent rest mass energy um of the du / quark is 

calculated as 

)31(
2

1

W

Z
u m

m
mm




  .                                                                                                                     (25)                                                                                        

From (25) the energy of the constituent of the du / quark is, under consideration of the 
energetic values of the weak interaction bosons 

Wm  80.4 GeV and Zm  91.2 GeV , under 

adoption of the rest mass of the pion m  140 MeV/c2, calculated as 308 MeV. Under use 

of this value, the energy of the rho meson is calculated from (61) and (62) as m  775 MeV. 

This is a perfect fit with experimental evidence! 

We may go a step further by conceiving the spin-spin interaction energy as an add-on to the 
monopole interaction energy between the quarks. Doing so as described in Griffith’s 
textbook, but now supported by theory rather than by empirics, we may compose a mass 
table for the light sector as shown in Table I and illustrated by figure 4. The constituent mass 
value for the s  quark can now be calculated from the excitation result for the kaon as 
shown in Table I and the spin-spin interaction result as shown in Table II as, 
 

=′′=′′
′′

′
′+′=′ sZ

su

u
Su mmm

mm

m
mmm →57.33- π

2

κ  489 MeV.                                                        (26)        

 
 
 
Table II: Mass formulae for mesons in the light sector 
 
excit.  ms pseudoscalar mass ms         vector mass 
ground 
state 

uu    
 

Zu mm  32  140 
(138) 

  
 

Zu mm 2  780 
(775) 

  
 

      ??    
 (549) 

  Zu mm 2  
780 
(783) 

first 
level 
(strange) 

su  K  
 Z

su

u
su m

mm

m
mm 





2

3  
484 
(496) 

K  
 Z

su

u
su m

mm

m
mm 





2

 
896 
(892) 

ss    
 

      ??   
(958) 

  
 Z

s

u
s m

m

m
m 





2

2

2  
1032 
(1020 

 
Calculated values in MeV/c2, actual values between brackets. 
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Figure 4. Illustration of the excitation mechanism of mesons and the scaling mechanism of quarks in the light 
sector.   
  
Figure 3 is a graphical representation of Table II. It has to be emphasized that the constituent 
masses of the quarks in the mesons don’t represent the (bare) gravitational masses. The 
constituent masses represent the massive equivalent of the lab frame value of the meson 
energy distributed over the quarks. Doing the same for baryons, the constituent masses of 
the quarks in the baryon may show different values. Similarly as in the case of mesons the 
baryon mass is the result of the monopole interaction energies between the constituent 
quarks corrected by spin-spin interaction energy carried by the Z  boson in virtual state. This 
allows to compose the mass table for baryons in the light sector, like shown in Table III, as 
motivated in [16]. The application of the one-body anharmonic oscillator model for the 
three-quark structure as shown in (21) enables the assessment of quantitative values for the 
baryonic constituent masses by theory instead of doing so by an empirical numerical fit on 
measured mass values. To do so, the energy ratio between the ground state value and the 
first (orbital) excitation ( )0;0(  lm is calculated from (21) by the numerical model 
documented in [15]. This ratio happens to be  
 

475.1
254.7

697.10

)(

)(

00

10 







l

l

kE

kE
                                                                                                   (27) 

 
This ratio happens to be quite accurately the mass ratio of the nucleon in ground state 

(938.3 and 939.6 MeV/c2) over the    baryon in excited orbital state (1882.7, 1383.7 and 
1387.2 MeV/c2). It shows a similar accuracy as the mass ratio calculation from the pion state 

into kaon state. (Why the nucleon excites to   instead of   is not obvious, though). It gives 
an anchor point for the mass calculations shown in table III. The major one, however, is the 
calculation of the nucleon mass. Let us proceed by considering that in absence of spin-spin 
interaction, the excited three um  baryon would be equivalent with the ground state of a 

three sm baryon. Hence, 



,





K

K

0

0

E mass

uu us ss
mesons

binding energy
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475.1



u

s

m

m
.                                                                                                                                       (28) 

In the actual situation of spin-spin interaction, however, the baryon ground state, excites 

under the same ratio into the * state. Hence, 

475.1
3

3
)

2
1(2










Zu

Z

s

u
su

mm

m

m

m
mm

.                                                                                                (29) 

From (28) and (29), 

3)1(2

)1/23( Z
u

m

a

aa
m





 ;  475.1a .                                                                                             (30) 

Moreover, from (24),  

m
m

m
m

W

Z
Z





 )( .                                                                                                                                  (31)     

 
 
Table III: Mass formulae for baryons in the light sector 
 
sym        Spin 1/2 (octet)   m sym        Spin 3/2 ( decuplet)   m 
N  
(2) 

Zu mm 3  939 
(939) 

  
(4) 

Zu mm 3  1246 
(1232) 

0  
(1) 

 Zsu mmm 2  
1113 
(1116) 

   

  
(3) 3

)41(2 Z

s

u
su

m

m

m
mm





  
1179 
(1190) 

  
(3) 3

)21(2 Z

s

u
su

m

m

m
mm





  1386 

(1385) 
  
(2)  

3
)41(2

2

2
Z

u

s

s

u
su

m

m

m

m

m
mm









    

1324 
(1320) 

*  
(2) 3

)21(2
2

2
Z

u

s

s

u
su

m

m

m

m

m
mm









  

1532 
(1530) 

     
(1) Z

s

u
s m

m

m
m 





2

2

3  
1683 
(1672) 

 
Calculated values in MeV/c2, actual values between brackets. 
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Figure 5. Illustration of the excitation mechanism of 
represent the baryonic constituent masses values 3u, 2u +s, 2s + u, 3s. 

From (30) and (31) the nucleon mass as shown in Table II can be related with the mass of the 
pion m as, 

m
m

m

a

aa
m

W

Z
N








 )(
)1(2

3/2
;   

This expression relates the nucleon mass with the mass of the pion. It is not clear whether 
the neutral pion mass should be taken as reference 
the neutral pion mass ( m

and Zm(  91.2 GeV), the nucleon mas

that the mass value of the nucleon can be derived from the pion’s rest mass as reference. 

 

6. Spin and isospin 

While the nuclear spin-spin interaction has a significant impact on the mass attribute of  
mesons and baryons, it has no impact on the charge attribute. 
quark’s isospin. In the standard model of particle physics, this isospin is
property of the quark without a known physical interpretation. Because it has similar 
properties as nuclear spin and because nuclear spin is related with the quark’s angular dipole 
moment ħ, one may expect that isospin is related with the qua
As discussed in paragraph 2, this property has remained unknown up t
2021 [7,8].  However, whereas the nuclear spin state allows a direct interpretation as the 
spatial orientation of the angular dipole mom
moment is structurally bound. This seems to prevent the statistical freedom of isospin in the 
case of a one-to-one relationship between linear dipole moment and isospin. 
relationship is however not as s

 

Illustration of the excitation mechanism of baryons in the light sector. The dots on the vertical axis 
represent the baryonic constituent masses values 3u, 2u +s, 2s + u, 3s.  

From (30) and (31) the nucleon mass as shown in Table II can be related with the mass of the 

475.1a .                                                                                     

This expression relates the nucleon mass with the mass of the pion. It is not clear whether 
the neutral pion mass should be taken as reference or the mass of the charged pion. With 

 135 MeV) and the weak interaction bosons 

91.2 GeV), the nucleon mass is calculated from (32) as 939 

that the mass value of the nucleon can be derived from the pion’s rest mass as reference. 

spin interaction has a significant impact on the mass attribute of  
mesons and baryons, it has no impact on the charge attribute. Charge is determined by the 
quark’s isospin. In the standard model of particle physics, this isospin is
property of the quark without a known physical interpretation. Because it has similar 
properties as nuclear spin and because nuclear spin is related with the quark’s angular dipole 

, one may expect that isospin is related with the quark’s linear dipole moment 
As discussed in paragraph 2, this property has remained unknown up t

].  However, whereas the nuclear spin state allows a direct interpretation as the 
spatial orientation of the angular dipole moment, the spatial orientation of the linear dipole 
moment is structurally bound. This seems to prevent the statistical freedom of isospin in the 

one relationship between linear dipole moment and isospin. 
relationship is however not as simple as that. Because of another issue in this context, 

. The dots on the vertical axis 

From (30) and (31) the nucleon mass as shown in Table II can be related with the mass of the 

                                                                                     (32) 

This expression relates the nucleon mass with the mass of the pion. It is not clear whether 
or the mass of the charged pion. With 

135 MeV) and the weak interaction bosons 
Wm(  80.5 GeV) 

 MeV/c2.  It means 

that the mass value of the nucleon can be derived from the pion’s rest mass as reference.  

spin interaction has a significant impact on the mass attribute of  
Charge is determined by the 

quark’s isospin. In the standard model of particle physics, this isospin is an axiomatic 
property of the quark without a known physical interpretation. Because it has similar 
properties as nuclear spin and because nuclear spin is related with the quark’s angular dipole 

rk’s linear dipole moment ħ/c. 
o its description in 

].  However, whereas the nuclear spin state allows a direct interpretation as the 
the spatial orientation of the linear dipole 

moment is structurally bound. This seems to prevent the statistical freedom of isospin in the 
one relationship between linear dipole moment and isospin. The 

imple as that. Because of another issue in this context, 
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namely the not yet considered phenomenon that the nuclear spin-spin interaction as 
discussed in the previous paragraph is a Chinese copy of the Maxwellian spin-spin 
interaction between the spins of the electron and the proton in atomic Hydrogen. It is 
therefore a logic step to adhere Maxwellian properties to a quark. A straightforward way to 
do so is to conceive the quark as a Maxwellian magnetic monopole with a real electric dipole 
moment and a real magnetic dipole moment. This real magnetic dipole moment reveals the 
presence of an elementary pointlike amount of electric charge associated with the magnetic 
quark monopole. If so, the spin of this electric kernel may either belong to negative or to a 
positive electric kernel. This ambiguity is equivalent to assign the isospin status to the linear 
dipole moment.  
 
It mIght be seen as a revival of Schwingers’s suggestion from 1969 that a quark is a dyon, i.e., 
both an electric monopole and a magnetic monopole [17]. However, whereas Schwinger 
proposed his dyon to explain the (quasi) stable hadron structures from a balance between 
an attracting magnetic force and a repelling electric force (or vice versa), the balance in the 
structure shown in figure 2 is obtained by the balance between the monopole field and the 
field evoked by the polarizable dipole moment under a scalar potential. Electric charge pops 
up as a minor side effect, hence not as a gluing force. This marks a fundamental difference 
between Schwinger’s dyon (abandoned and replaced by QCD) and the structure shown in 
figure 2.  
 
 

7. The proton and the neutron 
 
An intriguing problem in particle physics theory is the one how to explain the mass 
difference between a charged pion and a neutral pion on the one hand and the mass 
difference between the charged nucleon (proton) and the neutral nucleon on the other 
hand. It is too simple pointing to a difference in bare mass between an u  quark and a d
quark, if such a difference would exist. Lattice QCD is unable to prove a mass difference 
between an u quark and a d quark, because it is only the average mass over the two that 
can be retrieved. Therefore, the differentiation between the mass values is hypothesized on 
the basis of their (supposed) charge difference. Accepting the difference, would make the 
neutron (with two d and one u ) heavier than the proton (with two u and one d ). This, 
however, cannot explain why a charged pion (with two u and one d ) is heavier than a 
neutral pion (with two d and one u ). Before discussing this difference, let us first discuss the 
mass difference between the proton and the neutron. Under the acceptance of the 
existence of a second dipole moment next to the angular related one, the structural 
representation of baryons is shown by figure 3. As discussed in the previous paragraph, the 
quarks in this picture have isospin statistics that are independent from the structural 
orientation their dipoles. Associating electric charge with isospin and considering the 
interaction between the electric charges along the peripheral axes, a net amount of electric 
charge will cause a tiny increase of the baryon’s (hyper)radius  . As a consequence, the 
energetic state of the baryon is reduced. It makes a charged baryon lighter than a neutral 
baryon. Although this phenomenon introduces some asymmetry in the symmetrical 
structure shown in figure 3, the Smith Whitten model allows to model asymmetrical effects 
as an equivalent symmetrical one. This consideration allows to distribute the charge of the 
proton uniformly along the axes of the structure, like shown in the left-hand part of figure 6.  
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The pion case is illustrated in the right-hand part. Here, the difference between the charged 
pion and the neutral pion is modeled by a distribution (+e/2, +e/2) for a charged pion. Unlike 
as in the representation for baryons, the picture shows a spin arrow associated with the 
charge. This is to symbolize the spin-spin interaction between isospins. Electric interaction at 
extreme short spacing is more than Coulombian. Electric charge kernels evoked by the 
quark’s second dipoles have their own (magnetic) spin, which can be seen as the 
manifestation of isospin. These spins interact. At extreme short spacing the interaction 
energy involved is larger than the Coulombian interaction energy. In charged pions, the 
isospins are parallel. This explains why charged pions are in a state of energy higher than 
neutral pions in spite of the opposite effect due to Coulombian interaction. A calculation of 
its quantitative effect can be found in [5]. It is beyond the scope of this article. 
 
Although this isopin interaction effect is present in the baryon as well, the net effect of it is 
the same for protons and neutrons (their isospin sum is the same). Being interested in the 
mass difference between protons and neutrons only, there is no need for further 
elaboration on the isospin interaction. Let us model the impact of the electrical interaction 
instead. Concluding that the electromagnetic interaction increases the interaction strength 

)(rFF of the far field of a quark, we may write for the latter,  
 
 

2
0

2
0

4
)exp()(

r

e
pλr

λr
grFF 


 ,                                                                                           (33)      

 
in which p  is a measure for the effectiveness of the electric interaction force along the axes 
of the baryon. Under adoption of the symmetrical charge distribution as shown in figure 6, 
we have p  1/36. Let us rewrite (33) in terms of the electromagnetic fine structure 
relationship, 
 

2
0

2 4 ecge  ,                                                                                                                                   (34) 
 
in which 2

eg is the well-known fine structure constant 137/12  emeg  . Hence, from (34) 
and (33), the the far field potential )(rF can now be written after including the influence 
of the electric interaction as, 
 

r

cgp
r

r
r e

F 





2
0

4
)exp()( 


 .                                                                                                 (35) 
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Fig.5. The left-hand part shows the proton’s structural model with equal charge distribution along the axes. The 
upper part at the right shows the model for the charged pion, the lower part shows the model for the neutral 
pion. The nuclear dipoles are shown as u
horizontal arrows. These latter dipoles evoke kernels of electric charge with their own (iso)spin. In parallel 
condition ( uu ) their spin-spin interaction increases the energetic state of the pion 
the increase of electric interaction as present in the neutral pion. 
 
 
Now, the potential )(x  of the field built up by the quarks

potential ),(xem   can be written as, 
 

)()()( xxx FN  
 

()()( 200  kkxx FN

 

2(
)(

4
)(

2





dd

c

g

g
pwx e

em




 
It is not difficult to modify the numerical procedure of the anharmonic oscillator accordingly,  
Doing so, we find 
 
 

1
2418.7

2541.7

)(

)(

0

0 



proton

neutron

kE

kE

 
This corresponds with a mass difference of (1.00169 
above the known experimentally established value of 1.29 MeV. It is c
MeV/c2 value obtained by lattice QCD [2
MeV/c2 on the retrieved masses of the 
[1,2]. Curiously, whereas in present 
expressed in terms of constituent masses, it is still the case for the other quark flavors [1]. 
Within the view on quarks as presented in this article a retrieval of quark masses from the 
reference rest masses of the pion and the kaon 
theoretical view exposed in previous work [5
u quark and the d quark is challenged.
 

hand part shows the proton’s structural model with equal charge distribution along the axes. The 
upper part at the right shows the model for the charged pion, the lower part shows the model for the neutral 
pion. The nuclear dipoles are shown as up/down arrows in the middle, the second dipoles are shown as 
horizontal arrows. These latter dipoles evoke kernels of electric charge with their own (iso)spin. In parallel 

spin interaction increases the energetic state of the pion by an amount 
the increase of electric interaction as present in the neutral pion.  

of the field built up by the quarks with inclusion of 

can be written as,   

)(xem    with xx  , 

.....)2
2 x , 

.....)
2 2

2



x

d
; dd  .                                                                

the numerical procedure of the anharmonic oscillator accordingly,  

00169.1                                                                                    

This corresponds with a mass difference of (1.00169 – 1) 936 = 1.58 MeV
above the known experimentally established value of 1.29 MeV. It is c

lattice QCD [2], which is built up as a QED correction of about 1 
on the retrieved masses of the u quark (2.3 MeV/c2) and the d quark (4.8 MeV/c

Curiously, whereas in present canonical theory the du /  masses are no longer be 
tuent masses, it is still the case for the other quark flavors [1]. 

Within the view on quarks as presented in this article a retrieval of quark masses from the 
reference rest masses of the pion and the kaon is not required. Instead, it is based 

view exposed in previous work [5], in which the charge asymmetry between 
quark is challenged. 

 

hand part shows the proton’s structural model with equal charge distribution along the axes. The 
upper part at the right shows the model for the charged pion, the lower part shows the model for the neutral 

p/down arrows in the middle, the second dipoles are shown as 
horizontal arrows. These latter dipoles evoke kernels of electric charge with their own (iso)spin. In parallel 

by an amount larger than 

with inclusion of an electrical  

                             (36) 

the numerical procedure of the anharmonic oscillator accordingly,  

                                                                                         (37) 

1) 936 = 1.58 MeV/c2.  It is slightly 
above the known experimentally established value of 1.29 MeV. It is close to the 1.51 

], which is built up as a QED correction of about 1 
quark (4.8 MeV/c2) 

masses are no longer be 
tuent masses, it is still the case for the other quark flavors [1]. 

Within the view on quarks as presented in this article a retrieval of quark masses from the 
is not required. Instead, it is based upon the 

ich the charge asymmetry between the 
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8. Discussion and conclusion 
 
It has already been concluded at the end of paragraphs 5 and 7 that the capabilities to 
calculate the masses of the nucleons and the mass difference between a proton and a 
neutron on the basis of a rather simple structural model have a similar accuracy as those 
claimed from lattice QCD. This article is a summary, application and extension of previous 
work [5,8,9,11,12,16]. It is based upon a somewhat different view on quarks as compared to 
canonical theory. In this view the quark is a non-gravitational particle without baryonic mass 
that sources a nuclear field capable to bind other quarks in mesons and baryons, which 
behave as quantum mechanical oscillators in a state of baryonic energy. The quark is a Dirac 
particle, but in an unrecognized mode. This mode allows to interpret isospin as the physical 
manifestation of a real second dipole moment. This second dipole moment (which has an 
imaginary value in electron-type Dirac particles) enables to give hadrons a clear structural 
interpretation as a substitute for the axiomatically conceived electroweak GWS model 
(Glashow, Weinberg, Salam). The article is a rebuttal to opponents who have put the Lorentz 
covariance of the novel Dirac particle mode into doubt and who doubted about the 
capability to calculate the masses of nucleons from the same reference values as lattice QCD 
may do.  
 
 
 
Appendix: Lorentz covariance of a non-gravitational object 

Whereas a gravitational object is subject to the Einsteinean energy expression,  
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2 )( pccmWG  ,                                                                                                                   (A-1) 
 
the quark, as a non-gravitational object, is subject to 
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the Einsteinean energy expression (A-1) is conveniently expressed as, 
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which is equivalent with, 
 

22222 )d(})dz()dy()d{()(d τcxct  .                                                                                   (A-5) 
 
Note: τ  is proper time. 
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Transforming this property to a different space-time frame ),( τξ,η,ζ  , related by the Lorentz 
transform 
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w  ; ηy  ; z ,                                                (A-6), 

we get, after substitution of (A-6) into (A-5), 

222222
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1
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c

v

w
  .                                                                  (A-7) 

Note that τ   is different from proper time τ .  

This result (A-7) has the same format as (A-4). It proves the Lorentz covariance of the 
Einsteinean energy expression.  

In a similar view on the non-gravitational object (A-2),  
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which is equivalent with, 
 

22222 )d(})dz()dy()d{()(d τcxct  .                                                                                 (A-9) 
 
 Transforming under the Lorentz transform gives        
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                                               (A-10) 

It is clear that the last term of the left hand part of (A-10) violates the Lorentz covariance. 
This seems being a show stopper for the existence of a non gravitational particle with the 
property shown in (A-2), as required for the existence of quarks with two real dipole 
moments. It is known however that quarks in isolation don’t exist, such as formalized in the 
confinement axiom. Taking this into consideration, it might be that the Lorentz violating 
term in (A-10) disappears for two and three quarks in conjunction. The structural meson 
(an)harmonic oscillator model, shown in figure 2, demonstrates that the two quarks vibrate 
in opposite direction under a stationary position of their center-of-mass. It is therefore quite 
probable that the Lorentz violation of one of the quarks is cancelled by the opposite Lorentz 
violation of the other quark. This would make mesons composed by quarks with two real 
dipole moments Lorentz covariant in spite of the Lorentz covariance violation of quarks in 
isolation.  
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