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Abstract: Parkinson’s disease (PD) is an aging-related and the second most common neurodegenerative disease 
after Alzheimer’s disease. The main symptoms of PD are movement disorders accompanied with deficiency of 
neurotransmitter dopamine (DA) in the striatum due to cell death of the nigro-striatal DA neurons. Two main 
histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-
synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA 
cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly de-
crease in PD. Synthesis of human NM is regarded to be similar to that of melanin in melanocytes; Melanin syn-
thesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone 
(DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is 
highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then 
synthesized to NM. Intracellular NM accumulation above a specific threshold was reported to be associated to 
DA neuron death and PD phenotypes. This review reports recent progress in biosynthesis and pathophysiology 
of NM in PD. 

Keywords: dopamine; locus coeruleus; melanin; neuromelanin; norepinephrine; Parkinson’s dis-
ease; substantia nigra; tyrosinase; tyrosine hydroxylase 
 

1. Neuromelanin (NM) in Parkinson’ disease 

Parkinson’s disease (PD) is a human-specific, progressive, aging-related, and the 
second most common neurodegenerative disease after Alzheimer’s disease [1]. In 1817 
James Parkinson in London published “An Essay on the Shaking Palsy”, the first compre-
hensive clinical description of a disorder later named Parkinson’s disease. The main 
symptoms of PD are motor ones, such as tremor, bradykinesia, rigidity, and postural in-
stability, as well as non-motor ones including anosmia, constipation, insomnia, REM-
sleep behavioral disorders (RBD), anxiety, depression, fatigue, and cognitive impairment 
[1]. Most PD is sporadic without a familial history (sPD). Only a few percent of cases are 
familial PD (fPD), the gene locus of which is termed as PARK 1, 2 etc. in the order of 
discovery [2]. The pathophysiology of PD was investigated by biochemical analysis of 
post-mortem PD brains during the middle of 20th century [3-6]. Although the pathophys-
iology of PD still remains unknown, sPD is thought to be caused by combined effects of 
environmental and genetic factors. The main symptoms of PD, movement disorders, are 
known to be caused by a decrease in neurotransmitter dopamine (DA) in the striatum in 
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the basal ganglia due to neurodegeneration of nigro-striatal DA neurons, and the supple-
mentation of DA by the direct precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is still 
the gold standard of pharmacotherapy of PD after 5 decades since 1970s [1,5,6]. L-DOPA 
treatment is highly effective for alleviating many core symptoms of PD, but it does not 
prevent the progression of neurodegeneration and later results in decrease in efficacy and 
various side effects such as dyskinesia [6,7]. 

 The discovery of the causative or susceptibility genes of various fPD since the end 
of 20th century has greatly promoted the elucidation of molecular mechanism of sPD [2]. 
fPD is termed in the order of discovery of the gene locus such as PARK1 (α-synuclein; 

SNCA [8,9]), PARK2 (parkin; PRKN [2,10,11]), etc. More than 20 PARKs have been re-
ported. The abbreviation PARK is derived from the name PARKinson. Mutations in some 

Figure 1. Two histopathological hallmarks in PD in the nigro-striatal DA. Fibrillar ol-
igomers of α-Syn produced by misfolding are presumed to be neurotoxic and to cause 
DA cell death. Neuromelanin (NM) is also related to neurodegeneration and DA cell 
death, because NM attenuates the oxidative stress for neuroprotection. It remains un-
known whether NM is related to DA neuron death, directly or together with α-synu-
clein. α-Syn: α-synuclein; NM: neuromelanin. 
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genes in fPD are considered to be not only causative but also related to susceptibility loci 
in sPD; e.g., α-synuclein gene (SNCA、PARK1) [8,9]; parkin (PARK2) [2,10], PTEN-induced 

putative kinase 1 (PINK1; PARK6) [12,13], and leucine-rich repeat kinase 2 (LRRK2, 
PARK8) [14-17]. 

There are two main histopathological hallmarks in PD in the degenerating nigro-
striatal DA neurons, i.e., Lewy bodies and reduction of neuromelanin (NM) in substantia 
nigra (SN) (Figure 1). (1) Cytosolic inclusion bodies termed Lewy bodies had been de-
scribed by Friedrich Heinrich Lewy in 1912. Lewy bodies contain α-synuclein protein as 
the main protein component. As described later, the fibrillar oligomers of α-synuclein 
protein produced by misfolding are presumed to be neurotoxic and to cause DA cell 
death [18]. Mutation of α-synuclein gene (SNCA) was found, in 1997, to cause a dominant 
fPD (PARK1) in which degenerating dopamine neurons contain both Lewy bodies con-
taining α-synuclein and black pigment NM [8,9]. For these reasons, the α-synuclein pro-
tein has been extensively examined in relation to DA neuron death in sPD. However, a 
remaining question is that Lewy bodies are observed in dominant fPD such as PARK1 
(SNCA), but not in recessive fPD such as PARK2 (PARKIN). (2) A black pigment NM, 
which is observed in the human SN, gradually increases during normal aging in healthy 
subjects [19]. NM had been reported to be markedly decreased in the SN of PD brains by 
Konstantin Tretiakoff [20] in 1919. Decrease in NM in some nigro-striatal DA neurons in 
the SN pars compacta (SNpc), visible with the naked eye, are the main histopathological 
sign of PD. Different from Lewy bodies, NM is observed in sPD, dominant fPD, and re-
cessive fPD. NM is also contained in norepinephrine (NE) neurons in the human locus 
coeruleus (LC), where NE neurons also degenerate in PD. In contrast to α-synuclein pro-
tein in Lewy bodies that has received great attention, biosynthesis and pathophysiology 
of NM in PD remain less known. One reason is that elucidation of chemical structures of 
NM was difficult owing to the small contents only in the postmortem human brains. 
However, the chemical properties and biosynthesis pathway of NM has been elucidated 
in the last two decades based on the development of chemical micro-analysis of NM iso-
lated from the SN of post-mortem human brains [21-23], and the pathophysiology of NM 
has also been gradually elucidated. 
 
2. Biosynthesis of neuromelanin (NM): tyrosine hydroxylase and tyrosinase 
 

As described above, the biosynthetic pathway of NM was estimated from the 
chemical structure of NM obtained from the human postmortem brain [21-23]. The pig-
mented part of NM in the human SN is estimated to be derived from DA and cysteine in 
molar ratio of 2:1 [23]. It was found that various catechol metabolites are incorporated 
into NM in the SN dopamine neurons and NE neurons in the LC, formed by oxidative 
deamination of catecholamines by monoamine oxidase (MAO) and following by reduc-
tion and oxidation by aldehyde dehydrogenase (ALDH) and aldehyde reductase (AR): 
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DOPA, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol 
(DOPET) as dopamine metabolites; and 3,4-dihydroxymandelic acid (DOMA), and 3,4-
dihydroxyphenylethylene glycol (DOPEG) as NE metabolites [23-26] (Figure 2). Based 
on these results, the pathway of NM biosynthesis via DA oxidation to DAquinone (DAQ) 
or via NE oxidation to NE quinone has been proposed to be similar to that of melanin 
biosynthesis involving the intrinsic pathway of DOPAquinone (DQ) in human skin and 

Figure 2. Metabolism of catecholamines. DOPA: 3,4-dihydroxyphenylalanine; DA: dopamine; NE: norepinephrine; EN: 
epinephrine; 3MT: 3-methoxytyramine; DOPAL: 3,4-dihydroxyphenylacetaldehyde; NMN: normetanephrine; 
DOPEGAL: 3,4-dihydroxyphenylglycolaldehyde; MN: metanephrine; MOPAL: 3-methoxy-4-hydroxyphenylacetalde-
hyde; DOPAC: 3,4-dihydroxyphenylacetic acid; DOPET: 3,4-dihydroxyphenylethanol; MOPEGAL: 3-methoxy-4-hy-
droxyphenyl(ethylene)glycolaldehyde; DOMA: 3,4-dihydroxymandelic acid; DOPEG/DHPG: 3,4-dihydrox-
ylphenylethyleneglycol/3,4-dihydroxyphenylglycol; HVA: homovanillic acid; MOPET: 3-methoxy-4-hydroxy-
phenylethanol; VMA: vanillylmandelic acid; MOPEG/MHPG: 3-methoxy-4-hydroxyphenylethyleneglycol/3-methoxy-
4-hydroxyphenylgycol. TH: tyrosine hydroxylase; AADC: aromatic amino acid decarboxylase; DBH: dopamine-β-hy-
droxylase; PNMT: phenylethanolamine N-methyltransferase; COMT: catechol-O-methyltransferase; MAO: monoamine 
oxidase; ALDH: aldehyde dehydrogenase; AR: aldehyde reductase. Enzyme names are shown in italic for the sake of 
clarity. 
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hair [27]. In addition, it was suggested that various catecholic metabolites are incorpo-
rated into NM, including DOPA, and DOPAC, DOMA, DOPET and DOPEG, which are 
metabolites of DA and NE formed by the oxidative deamination by monoamine oxidase 
followed by oxidation/reduction [25] (Figure 3)  

Peripheral melanin in human skin and hair is classified into two major pigments, i.e., 
black to brown pigments termed eumelanin (EM) and yellow to reddish brown pigments 
termed pheomelanin (PM); EM is synthesized in the absence of cysteine, and PM in the 
presence of cysteine. NM synthesis in DA neurons is via dopaminequinone (DAQ), 
whereas peripheral melanin synthesis in skin and hair via DQ [25-27] (Figure 4). One 
more difference between synthesis of NM and peripheral melanin is the presence in mel-
anin synthesis of tyrosinase that is the rate-limiting enzyme in melanin synthesis in pe-
ripheral skin and hair [28-31], and the presence in NM synthesis of tyrosine hydroxylase 
(TH; tyrosine-3-monooxygenase) that is the rate-limiting enzyme of catecholamine (DA, 
NE, and epinephrine (EN)) synthesis in DA and NE neurons. TH is an iron containing 
tetrahydrobiopterin (BH4)-dependent monooxygenase [32-35] (Figure 2).  

Melanin in human skin and hair is synthesized by oxidation of L-tyrosine to DQ by 
copper-containing enzyme tyrosinase, in which DOPA is an auto-activator [28-31]. Since 
a shared genetic susceptibility between cutaneous malignant melanoma and PD has been 
suggested [36,37], rare variants analysis was carried out on cutaneous malignant mela-

Figure 3. Synthesis of neuromelanin in SN or LC. Possible participation of various 
catecholic metabolites known to be present in various regions of the brain that may 
be incorporated into NM in the substantia nigra (SN) or the locus coeruleus (LC). 
In addition to DA and NE and the corresponding Cys-derivatives, these other me-
tabolites are also thought to be incorporated into NM. (O) represents the oxidants. 
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noma genes in PD. The very rare tyrosinase gene variant, TYR p.V275F variant, is a path-
ogenic allele for recessive albinism, and was more common in PD cases than controls in 
3 independent cohorts. Further studies in larger PD cohorts are needed to accurately de-
termine the role of these genes/variants in disease pathogenesis [36,38]. The presence of 
NM was reported in the brains of 25 subjects with albinism, which are usually assumed 
to lack tyrosinase activity [39]. 

In biosynthesis of human skin melanin under the absence of cysteine, DQ formed 
from tyrosine catalyzed by tyrosinase is further converted to dopachrome (DC); then via 
5,6-dihydroxyindole (DHI) or via 5,6-dihydroxyindole-2-carboxylic acid (DHICA), the 
latter being catalyzed by tyrosinase-related protein 2 (Tyrp2; dopachrome tautomerase) 
[40-42]. Tyrosinase has an optimum pH of 7.4 and its activity is suppressed greatly at 
lower pH values [43]. The effects of pH (5.3-7.3) on the conversion of DC to DHI and 
DHICA and the subsequent oxidation of DHI and DHICA to form EM was examined. 

Figure 4. Biosynthesis pathway leading eumelanin, pheomelanin and neuromelanin production. DAQ: DAquinone; 
NEQ: NEquinone; DAC: DAchrome; DHI: 5,6-dihydroxyindole; 5SCDA: 5-S-cysteinyldopamine; 5SCNE: 5-S-cys-
teinylnorepinephrine; DQ: DOPAquinone; DC: DOPAchrome; DHICA: 5,6-dihydroxyindole-2-carboxylic acid; 
5SCD: 5-S-cysteiyldopa; Tyr: tyrosinase; Tyrp2: tyrosinase-related protein 2; Tyrp1: tyrosinase-related protein 1. En-
zyme names are shown in italic for the sake of clarity. (O) represents the oxidants. 
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Cu2+ can also catalyze this process [44]. Oxidative polymerization of DHI and DHICA in 
various ratios produces black to dark brown EM. Oxidative polymerization of DHI is 
catalyzed directly by tyrosinase or indirectly by DQ, while oxidation of DHICA appears 
to be catalyzed by tyrosinase-related protein 1 (Tyrp1; DHICA oxidase) at least in mice 
[45,46]. However, the human homolog TYRP1 may not act in the same way as in mice 
[47], and its precise enzymatic function in humans is not yet clear. In the presence of 
cysteine, DQ is converted to 5-S-cysteinyldopa (5SCD) and 2-S-cysteinyldopa (2SCD) as 
long as cysteine is present [48,49]. Oxidation of CD proceeds by redox exchange with DQ 
to form the quinone form. Cyclization and its rearrangement afford benzothiazine inter-
mediates that are oxidized to form PM [50,51] (Figure 4).  

In contrast to melanocytes in skin and hair, in the nigro-striatal DA neurons, pres-
ence of tyrosinase for the oxidation of DA has been still controversial [52-57]. In some 
studies, tyrosinase immunoreactivity was not detected in human SN neurons [54,57], 
while in other studies it was demonstrated that tyrosinase is expressed at low levels in 
human brain [53,55,56]. One study found that mRNA, protein, and enzyme activity of 
tyrosinase are all present but at barely detectable levels [56]. 

As described above, DA, which is the precursor of NM in the DA neurons, is syn-
thesized from tyrosine by two enzymes: tyrosine is oxidized to L-DOPA by TH [32,34,35], 
and then L-DOPA is rapidly decarboxylated to DA by aromatic L-amino acid decarbox-
ylase [AADC; also called DOPA decarboxylase (DDC)]. Since both TH and AADC are 
cytosolic enzyme, DA formed in the cytoplasm, which is highly reactive and easily auto-
oxidized, is rapidly transported into and stably stored in synaptic vesicles by vesicular 
monoamine transporter-2 (VMAT-2).  

There are two hypotheses of synthesis of NM from DA in DA neurons. A common 
hypothesis is that DA synthesized from tyrosine by TH and AADC via DOPA is non-
enzymatically converted by autoxidation probably with catalysis by iron or copper to 
euNM and pheoNM in similar pathways as EM and PM synthesis catalyzed by tyrosinase 
[58-60]. It was reported that in the presence of cysteine, DA is oxidized by Fe2+/Fe3+ or 
Mn2+ to form cysteinyldopamine (CDA) isomers and related metabolites [61]. Cu2+ can 
also oxidize DA [59]. In addition to these transition metals-catalyzed oxidations, reactive 
oxygen species such as superoxide anion [62], hydroxyl radical [63], and hydrogen per-
oxide in the presence of peroxidase [64] are known to promote the oxidation of DOPA to 
produce CD. The other hypothesis assumes the presence of tyrosinase for pheoNM. 
5SCDA, the major isomer of CDA, was first detected in human brain in 1985 [65]. Then it 
was detected in the homogenates of rat lung prepared in the presence of DA [66]. Elevated 
levels of 5SCDA were detected in guinea pig striatum and the levels increases with age 
[67]. This is an indication of DA oxidation taking place in SN, eventually leading to the 
formation of NM (pheoNM). L-DOPA was reported to be a substrate of TH in the pres-
ence of SH compounds in the vitro activity assay. Theoretically, the oxidation of L-DOPA 
by TH may contribute to the formation of NM (pheoNM) [68]. 

In the absence of cysteine, DAQ is thought to be converted to dopaminechrome 
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(DAC), and then via 5,6-dihydroxyindole (DHI; Figure 4) to euNM. Interestingly, in Dro-
sophila an enzyme catalyzing the conversion of DAC to DHI was recently purified and 
identified [69]. Thus, it would be interesting whether this tautomerization activity is pre-
sent in SN because DAC appears neurotoxic through binding to proteins [59]. In the pres-
ence of cysteine, DAQ is thought to be converted to 5SCDA and 2SCDA and then con-
verted to pheoNM [21,23,70]. In NE neurons in the LC, NE and cysteinyl-NE are thought 
to be incorporated into euNM and pheoNM, respectively [27].  

The surface oxidation potential of human NM reveals a spherical architecture with 
a PM core and a EM surface [71]. This special arrangement of NM may protect neurotoxic 
pheoNM by surrounding protective euNM as long as euNM is present enough. 

NM is composed together with complex aggregates of oxidized DA products, pro-
teins and lipids, which is most abundant in the SNpc [23,72,73]. NM pigments are con-
tained within double membrane organelles along with lipid droplets and protein matrix 
[74]. These NM-containing organelles are a specific type of lysosomes derived from fu-
sion with autophagic vacuoles [75]. The neuromelanin-containing organelle has a very 
slow turnover during the life of a neuron and represents an intracellular compartment of 
final destination for numerous molecules not degraded by other systems [76]. 

 
3. Neuromelanin (NM): the cause of Parkinson’s disease? 
 

The pathophysiology of PD remains unknown. There are two hypotheses of cell 
death of DA neurons based on two histopathological hallmarks in PD: i.e., α-synuclein 
hypothesis (an α-synucleopathy) and NM hypothesis (Figure1). α-Synuclein hypothesis 
on the possible molecular mechanism of neuronal death of DA neurons in sPD may be 
summarized as follows: mitochondrial oxidant stress by various exogeneous or endoge-
nous factors may produce mitochondrial dysfunction, especially complex I deficiencies 
[77-81], oxidation of DA in cytoplasm [60,82,83], and formation of oxidized DA accumu-
lation, especially toxic 3,4-dihydroxyphenylacetaldehyde (DOPAL), formation of toxic 
reactive oxygen species (ROS), accumulation of cytotoxic fibrillar aggregates of α-synu-
clein oligomers, mitophagy/autophagy dysfunction, and neuroinflammation [84-91]. 
DOPAL is thought to accumulate in PD due to the low aldehyde dehydrogenase activity 
that oxidizes DOPAL to DOPAC in the SN in PD [92] and DOPAL generates potential 
reactive intermediates as causative agents for its neurotoxicity [93,94]. 

It was found since 1990s that Lewy bodies mainly consist of α-synuclein protein, 
and that the fibrillar oligomers produced by misfolding of the protein are neurotoxic and 
may be related to the cause of DA cell death [89,95,96]. Mutation of α-synuclein gene 
(SNCA) was found to cause a familial PD (PARK1) in 1997 [8,9]. Α prion-like properties 
of α-synuclein was proposed by Braak (Braak hypothesis); α-Synuclein produced in the 
intestine or olfactory bulb might spread via vagus nerve or olfactory pathway to mid-
brain and basal ganglia by cell-to-cell transfer [97-99]. α-Synuclein aggregates may 
spread from neuron to neuron, apparently transmitting the disease process through brain. 
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But precisely how α-synuclein aggregates build-up and spread in this way has been un-
known. Another question is that α-synuclein is not specific to PD, and also found in Lewy 
body disease (LBD) and multiple system atrophy (MSA) [100]. Aggregates of α-synuclein 
in distinct synucleopathies, PD and MSA, have been proposed to represent different con-
formational strains of α-synuclein [101]. Even with these questions on α-synuclein hy-
pothesis, α-synuclein has been extensively examined in relation to DA neuron death in 
PD. The p62 protein normally assists in autophagy, a waste-management system that 
helps cells get rid of potentially harmful protein aggregates. In cell and animal models of 
PD, p62 is S-nitrosylated at abnormally high levels in affected neurons. This alteration of 
p62 inhibits autophagy, causing a build-up of α-synuclein aggregates, which in turn, 
leads to the secretion of segregates by affected neurons, and some of these aggregates are 
taken up by nearby neurons [102]. There are many references to support the cytotoxic 
effects of α-synuclein in vitro, especially in cell culture systems [9,18,89]. A downsized 
and optimized intracellular library-derived peptide prevents α-synuclein primary nucle-
ation and toxicity without impacting upon lipid binding [103]. An animal model of PD 
with prodromal symptoms as in human PD has been reported [104]. α-Synuclein gene, 
SNCA, is a risk gene for sPD. A bacterial artificial chromosome transgenic mouse harbor-
ing SNCA and its gene expression regulating region in order to maintain the native ex-
pression pattern of α-synuclein showed prodromal symptoms in human PD such as RBD 
and anosmia without motor symptoms [104,105]. This mouse model is similar to human 
sPD and shows that α-synuclein alone can cause PD [104].  

The question in NM hypothesis is whether NM is related to DA neuron death, alone 
or together with α-synuclein. The pathophysiology of NM decrease in the SN of DA neu-
rons as a hallmark of PD remains unknown, especially in its relation to DA neuron death. 
In parallel with the elucidation of chemistry and biosynthesis of NM in the DA neurons 
in the SN in PD, the physiological and pathological roles on NM have been studied since 
2000s. NM in the SN increases gradually during aging in healthy subjects [106]. In con-
trast, NM decreases in PD. In PD, DA neurons containing NM in the human SN prefer-
entially degenerate, in parallel with the marked reduction in NM in the SN [107]. This 
fact suggests that NM is related to neurodegeneration and DA neuron death.  

On the other side, NM in DA neurons is generally regarded as acting for neuropro-
tection, since NM inactivates toxic free radical species via its ability to chelate transition 
metals, especially iron. Iron also accumulates in DA neurons [108-110]. Iron is bound to 
NM in the ferrous (II) iron form, a redox-active form that is involved in a Fenton-like 
reaction to produce toxic free radical species. NM also eliminates various toxic substances 
including α-synuclein in cytoplasm. Thus, NM may act for neuroprotection also in vivo. 
However, during the progress of PD, the release of toxic substances bound to NM owing 
to intracellular NM degradation may result in activation of microglia to release cytotoxic 
cytokines that produce neuroinflammation and neurodegeneration [111,112]. PD occurs 
spontaneously only in humans. In producing PD phenotype in various animal models of 
PD such as in mice and rats that lack NM in the brain, it is necessary to trigger the DA 
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neurodegeneration by some toxic chemicals like 1-phenyl-4-methyl-1,2,3,6-tetrahydro-
pyridine (MPTP) that inhibit mitochondrial complex I [91]. Vila’s group reported that NM 
accumulation in DA neurons during aging over a threshold causes DA neuron death and 
PD phenotype [113-115]. They created a rat model of human PD by overexpression of 
human NM in the right SNpc by stereotaxic injection of an adeno-associated viral (AAV) 
vector expressing human tyrosinase [113]. The rats showed age-dependent production of 
human-like NM within nigral DA neurons, up to levels in elderly humans. Intracellular 
NM aggregation above a specific threshold is associated to an age-dependent PD-pheno-
type, including hypokinesia. Enhancing lysosomal proteostasis reduces intracellular NM 
and prevents neurodegeneration in tyrosinase-overexpressing rats. Intracellular NM lev-
els may set the threshold for the initiation of PD. Furthermore, extracellular NM leaked 
from dead NM-containing DA neurons may activate microglia to produce neuroinflam-
mation and to further promote DA cell death [116]. 

The neuromelanin (NM) theory fit to the phenotypes of human sPD. On the other 
hand, there are many evidence on the cytotoxicity of α-synuclein [9,18,117]. Several evi-
dence support that NM and α-synuclein acts together for neurodegeneration. Recently, 
the role of NM in inducing α-synuclein expression and aggregation has been suggested 
as a mechanism for this pigment to modulate neuronal vulnerability in PD [118]. Both α-
synuclein and NM are related to intracellular clearance of aggregates via autophagy and 
ubiquitin-proteasome systems. α-Synuclein reacts with tyrosinase, and the chemical 
modifications on the tyrosinase-treated α-synuclein strongly influence its aggregation 
properties and increase the toxicity, and α-synuclein may influence synthesis of NM 
[119,120]. Iron redox chemistry promotes the aggregation of α-synuclein, and protein-
metal complex aggregates are directly involved in ROS production, exacerbating the ox-
idative damage [121]. Furthermore, DA neurons easily express MHC-I, and induction of 
MHC-I is promoted by activation of microglia either by α-synuclein or by NM, as well as 
by gamma-interferon or high cytosolic DA and oxidative stress [122]. The activated mi-
croglia in PD brains express major histocompatibility complex class II (MHC-II) mole-
cules. The number of MHC-II positive microglia in the SN and putamen increase as the 
neuronal degeneration of the SN proceeds [123]. 

Although the precise roles of α-synuclein is beyond the object of this review, the 
interaction of NM with α-synuclein is considered to be important for elucidating the 
mechanism of neuron death in PD. There has been proposed an evolution theory to ex-
plain human-specific PD based on the greater development of human cerebral cortex 
than that of basal ganglia [124-126]. Clinically, PD is a systemic disease, and it is difficult 
to explain the degenerative processes, especially in the autonomic nervous system, ex-
clusively by NM theory, although there is accumulating evidence that the pathogenesis 
of PD is complex and involves energy metabolism disorders, oxidative stress, proteoso-
mal abnormalities, α-synuclein accumulation, alterations of gut microbiota metabolites, 
and neuroinflammation [127,128]. In this context, the evolutional point of view on NM 
system and α-synuclein system is also of interest. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 March 2022                   doi:10.20944/preprints202203.0274.v1

https://doi.org/10.20944/preprints202203.0274.v1


 11 of 19 
 

 

4. Conclusion 
 
Neuromelanin (NM) is thought to be synthesized by the following pathway: tyro-

sine (TH) DOPA  (AADC) DA  (non-enzymatic oxidation or tyrosinase)  
DAQ ---- euNM/pheoNM. Finding neuromelanin-specific tyrosinase (activity) and 
DAC tautomerase (activity) remains for future study as an important problem in patho-
physiology of PD. NM is considered to act both for neuroprotection and for cell death of 
DA neurons depending on the intracellular levels of accumulation. Pathophysiology of 
NM in relation to α-synuclein is another important project for elucidating the cause of 
PD. 
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Abbreviations   

AADC aromatic L-amino acid decarboxylase 

AAV adeno-associated viral 

BH4 tetrahydrobiopterin 

CD cysteinyldopa 

CDA cysteinyldopamine 

DA dopamine 

DAC dopaminechrome 

DAQ dopaminequinone 

DC dopachrome 

DDC dopa decarboxylase 

DQ dopaquinone 

DOMA 3,4-dihydroxymandelic acid 

DOPA 3,4-dihydroxyphenylalanine 

DOPAC 
DOPAL 

3,4-dihydroxyphenylacetic acid 
3,4-dihydroxyphenylacetaldehyde 

DOPEG 3,4-dihydroxyphenylethylene glycol 

DOPET 3,4-dihydroxyphenylethanol 

EN epinephrine 

LBD Lewy body disease 

LC locus coeruleus 

MPTP 1-phenyl-4-methyl-1,2,3,6-tetrahydropyridine 

MSA Multiple system atrophy 

NE norepinephrine 

NM neuromelanin 
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PD Parkinson’s disease 

fPD familial Parkinson’s disease 

sPD sporadic Parkinson’s disease 

RBD REM-sleep behavioral disorders 

SN Substantia nigra 

SNCA alpha-Synuclein gene 

SNpc Substantia nigra pars compacta 

TH tyrosine hydroxylase 

VMAT-2 Vesicular monoamine transporter-2 
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