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Abstract

This work proposes a new theoretical approach for the next generation of
extremely efficient motors, whose impact will be substantial for future sus-
tainable technological development. Building on well-known physical con-
cepts, this approach introduces the concept of equilibrium of mutual reten-
tion, upon which a device remains in an equilibrium state between movement
and attraction-repulsion. This new theoretical approach showed promising
results in computer simulation experiments, indicating that the equilibrium
of mutual retention can allow for a new way of modeling an extremely ef-
ficient motor. Finally, a theoretical efficiency analysis showed the need to
expand the limits of some physical concepts already established.

Keywords: Equilibrium of mutual retention, Self-contained energy of
mutual retention, Motor of mutual retention

1. Introduction

One of the strategies to mitigate the impacts of the greenhouse effect,
the principal cause of climate change, is to optimize and improve the de-
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sign of electric motors, which represent 40-50% of the total global electricity
consumption, to make them much more efficient [1].

Consequently, many countries are adopting mandatory regulations to
boost the electric motor industry to the efficiency classes established by the
International Electrotechnical Commission (IEC) [2], namely: IE1 - Stan-
dard Efficiency; IE2 - High Efficiency; IE3 - Premium Efficiency; IE4 - Super
Premium Efficiency; and IE5 - Ultra Premium Efficiency.

However, a common point in all the efficiency classes is that they aim to
considerably reduce the losses inherent to the various motor components.

Although the strategy of improving efficiency without reducing losses
seems like a nonsensical hypothesis, the challenge is worth exploring and
reporting because it suggests new possibilities. Therefore, the objective of
this work is to present a disruptive proposal that introduces a new theoretical
approach for the sustainable technological development of the next generation
of motors.

In this context, starting from a foundation of well-known physical con-
cepts, the presented methodology leads to a new theoretical approach that
proposes the concept of equilibrium of mutual retention between movement
and attraction-repulsion, on which the motor remains in this equilibrium
state.

Finally, it is worth noting that the subsequent sections are structured to
achieve the proposed objective and represent the main contribution of this
work, that is, they present the basic principles on which the new theoretical
approach rests.

Therefore, the methods section gradually brings the mathematical and
physical developments that lead to the equilibrium of mutual retention.
Then, the results section presents evidence of some of the basic principles
of the new theoretical approach. In the end, the discussion section analyzes
the simulated results and discusses the evidence of the other basic principles.
Furthermore, other consequences of this new approach are highlighted, such
as motor efficiency.

2. Method

2.1. Halbach Cylinder

The Halbach cylinder [3, 4] is a hollow cylinder made of a ferromagnetic

material, such that its magnetization distribution M⃗(ρ, φ) produces an in-

tense magnetic flux density B⃗(ρ, φ), which in cylindrical coordinates, are
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given, respectively, by

M⃗(ρ, φ) = Mr [cos (kφ) ρ̂+ sin (kφ) φ̂] (1)

B⃗ (ρ, φ) = Bkρ
(k−1) [cos (kφ) ρ̂− sin (kφ) φ̂] (2)

such that
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where Mr is the ferromagnetic remanence, Br is the magnitude of the re-
manent magnetic flux density, k is a integer that defines the order of the
Halbach cylinder, rin is the inner radius of the Halbach cylinder and rou is
the outer radius of the Halbach cylinder.

2.2. Magnetic Force

Consider in the vicinity of the Halbach cylinder a magnetic dipole moment
µ⃗ given by

µ⃗ = µρρ̂+ µφφ̂ (4)

where µρ is the radial component and µφ is the tangential component.

The magnetic force F⃗ acting on the dipole is given by [5]

F⃗ = ∇(µ⃗ · B⃗) (5)

As a result of Eqs. from 2 to 5, the components of the magnetic force
(F⃗ = Fρρ̂+ Fφφ̂) can be written as [6]

Fρ = −Bkρ
(k−2) (k − 1) [µφsin (kφ)− µρcos (kφ)] (6)

Fφ = −Bkρ
(k−2)k [µφcos (kφ) + µρsin (kφ)] (7)

where Fρ is the radial component and Fφ is the tangential component.
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2.3. Proof Dipole
Now consider the magnetic dipole µ⃗ as a proof dipole. This proof dipole

will be used to analyze the direction of the magnetic force F⃗ , such that the
angle θ between the proof dipole µ⃗ and the magnetic flux density B⃗ will be
constant at all points in space inside the Halbach cylinder.

In this condition, for example, for k = 9 and for θ = ±90◦, the Figs.
1a and 1b show the magnetic force F⃗ (represented by black arrows) acting
on the proof dipole µ⃗ located at various points within the Halbach cylinder
(identified by the reference number 15 according to [6]).

(a) θ = −90◦ (b) θ = +90◦

Figure 1: Direction of magnetic force F⃗ acting on the proof dipole µ⃗ when θ = ±90◦ [6].

It can be seen in Figs. 1a and 1b that the magnetic force F⃗ is always
tangent to the circumferences described by the proof dipole µ⃗, that is, F⃗ only
has a tangential component F⃗φ and the radial component F⃗ρ is always null.

Therefore, the tangential component F⃗φ is able to move the magnetic
dipole µ⃗ along a circumference of radius ro, where ro is distance between the
center of the Halbach cylinder and the center of mass of the dipole, provided
that the angle θ is favorable for this.

2.4. Velocity Ratio
One way to keep F⃗φ ̸= 0⃗ is to impose a compound motion on the magnetic

dipole µ⃗, as illustrated in Fig. 2, where the reference number 37 identifies
the dipole µ⃗, such that the ratio of intrinsic angular velocity ω⃗i(t) to orbital
angular velocity ω⃗o(t), named the velocity ratio, is expressed by [6]

ω⃗i(t)

ω⃗o(t)
= −k (8)
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where k is the order of the Halbach cylinder.
Since the angular velocity is the derivative of the angular displacement

with respect to time t, it can be shown that [6]

θi(t) = − [kφo(t)− kφo(t0)− θi(t0)] (9)

where θi(t) = |θ⃗i(t)| is the magnitude of the intrinsic angular displacement
of the magnetic dipole µ⃗ with respect to its center of mass, θi(t0) is the
magnitude of the intrinsic angular displacement at the initial instant t0 = 0s,
named the misalignment angle and denoted by θd, such that θi(t0) = θd,
φo(t) = |φ⃗o(t)| is the magnitude of the orbital angular displacement of the
magnetic dipole µ⃗ with respect to the center of the Halbach cylinder and
φo(t0) = |φ⃗o(t0)| is the magnitude of the orbital angular displacement at the
initial instant t0 = 0s.
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Figure 2: Compound motion of the magnetic dipole µ⃗ (identified by the reference number
37) inside the Halbach cylinder (identified by the reference number 15) [6].

In this way, the radial component µρ and the tangential component µφ

are given, respectively, by [6]

µρ = +µrcos[θi(t)] = +µrcos [kφo(t)− kφo(t0)− θd] (10)

µφ = +µrsin[θi(t)] = −µrsin [kφo(t)− kφo(t0)− θd] (11)

where µr is the magnitude of the magnetic dipole µ⃗.
Therefore, when the magnetic dipole µ⃗ is located in the ordered pair

(ρo, φo), i.e. ρ ≡ ρo(t) and φ ≡ φo(t), then the components of the magnetic

force F⃗ in (ρo, φo), given by the Eqs. 6 and 7, can be rewritten as [6]

F⃗ρ = (k − 1)Fkcos[kφo(t0) + θd]ρ̂ (12)
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F⃗φ = −kFksin[kφo(t0) + θd]φ̂ (13)

where Fk = µrBkρ
(k−2)
o .

The Fig. 3 shows in the same graph the variations of the radial component
F⃗ρ and the tangential component F⃗φ as a function of the misalignment angle

θd, where Fk = µrBkρ
(k−2)
o = 1N , k = 10 and φo(t0) = 0◦.

Figure 3: The radial component F⃗ρ and the tangential component F⃗φ as a function of the
misalignment angle θd.

It can be seen in the Fig. 3 that there is only a radial component F⃗ρ

when θd = 0◦ or θd = ±180◦, such that F⃗ = F⃗ρ. On the other hand, there is

only a tangential component F⃗φ when θd = ±90◦, such that F⃗ = F⃗φ. Finally,

at other angles, like θ = ±45◦, there is both a radial component F⃗ρ and a

tangential component F⃗φ, such that F⃗ = F⃗ρ + F⃗φ.

As an example, the Figs. from 4a to 4c illustrate the magnetic force F⃗
acting on a magnetic dipole µ⃗ inside the Halbach cylinder of order k = 13
for nine instants of time corresponding to φo(t) increasing in intervals of 40◦.
The misalignment angle θd between the magnetic dipole µ⃗ and the magnetic
flux density B⃗ at each of these instants is constant and always equals −90◦.

Initially, the Fig. 4b shows that the magnetic dipole µ⃗ (red arrow) is at
rest at the instant t = 0s, forming a misalignment angle θd equals −90◦ with
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(a) All time overlay (b) φo(t) = 0◦ (c) φo(t) = 40◦

Figure 4: Magnetic force F⃗ (black arrow) acting on a magnetic dipole µ⃗ (red arrow) inside

a Halbach cylinder of order k = 13, responsible for creating the magnetic flux density B⃗
(blue arrow). Magnetic dipole µ⃗ has ω⃗i/ω⃗o = −13, θd = −90◦ e ρo = ro.

magnetic flux density B⃗ (blue arrow). In this condition, the magnetic force

F⃗ (black arrow) acting on the dipole is tangent to the circumference ro.
Assuming that the velocity ratio given by Eq. 8 is satisfied by some

mechanism, then, due to the action of the magnetic force F⃗ , the magnetic
dipole µ⃗ starts to move along a circumference of radius ro with orbital angular
velocity ω⃗o, while, simultaneously, performing a circular motion around its
own center of mass with intrinsic angular velocity ω⃗i.

This compound motion (orbital ω⃗o and intrinsic ω⃗i) is responsible for
keeping the misalignment angle θd constant and equal to −90◦. This, in
turn, keeps the tangential component F⃗φ not null, as seen in Fig. 4c.

2.5. Planetary Gear System

A planetary gear system performs the velocity ratio given by Eq. 8, where
the planetary gears have a rotary motion transmitted to the carriers, such
that the carriers have orbital angular velocity ω⃗o and planetary gears have
intrinsic angular velocities ω⃗i.

To satisfy the velocity ratio ω⃗i/ω⃗o = −k when the planetary gear is
inside the ring gear, the ratio of the number of teeth of the ring gear Zr by
the number of teeth of each planetary gear Zp is given by [6]

Zr

Zp

= |k|+ 1 (14)

Consequently, the magnetic dipoles µ⃗ are located on a circumference of
radius ro given by [6]

ro = krp (15)
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where rp is the pitch radius of the planetary gear.
Before continuing, the list below identifies the reference numbers of some

elements comprising the motor of mutual retention [6], while Figs. from 5a
to 5f show the arrangement of these elements:

• the stator (2) comprises: Halbach cylinder (15); and ring gear (13);

• the Halbach cylinder (15) comprises: segments (41);

• the rotor (28) comprises: carriers (30 and 34); and satellites (35);

• the satellite (35) comprises: satellite axis (36); magnetic dipole µ⃗ (37);
and planetary gears (38).

28

30
3637

38
34

13
13

41

15

(a)

13

30

13

34

38

35

36
3738

(b)

15
41

41

(c)

15

13

13

(d)

28

13

13

(e)

28

2

(f)

Figure 5: Arrangement of some elements that comprise the motor of mutual retention [6].

After establishing this nomenclature, note that the resultant force R⃗ act-
ing on each satellite has a radial component R⃗ρ, responsible for the centripetal

force, and a component tangential R⃗φ, responsible for the orbital torque τ⃗o
with respect to the origin of the inertial coordinate system xyz, such that

R⃗ = R⃗ρ + R⃗φ (16)

Also note that the velocity ratio given by Eq. 8 ensures that the mis-
alignment angle θd remains constant along the entire trajectory traversed by
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the magnetic dipole µ⃗, such that the work WF done by the magnetic force
F⃗ on the closed path C is zero, because F⃗ is a conservative force, but the
work WR of the resultant force R⃗ on each satellite is non-zero, that is, by the
work-energy theorem [7, 8], we have

WR =

∮
C

R⃗ · dr⃗ = TB − TA = ∆T ̸= 0 (17)

where TA and TB are the kinetic energies in an initial A and final B config-
uration, respectively.

Furthermore, the resultant force R⃗ has two main parts of an active nature,
that is, they are capable of impelling movement: the contribution of the
magnetic force F⃗ ; and the equivalent contribution due to magnetic torque τ⃗ ,
given by [7]

τ⃗ = µ⃗× B⃗ (18)

Due to the restrictions imposed on the movement of each satellite (orbital
ω⃗o and intrinsic ω⃗i), restrictions inherent to the gear system, the tangential

component F⃗φ influences the orbital torque τ⃗o and the magnetic torque τ⃗
influences the intrinsic torque τ⃗i. On the other hand, the other contributions
that make up the resultant force R⃗ are constraint forces due to the contact
between the other elements of the gear system.

As an example, consider the Figs. from 6a to 6c that illustrate the evo-
lution of the motion of three magnetic dipoles µ⃗ (37), where θd = −90◦ and
the Halbach cylinder (15) of order k = 4 is implemented with 16 segments
(41). The arrows inside the dipoles (37) and the segments (41) indicate the
vector orientation of the magnetization of the permanent magnets.

15

41

37 38
13

A

F

(a) φo = 0◦ e θi = −90◦

15

41

38

37

13
A

F

(b) φo = 20◦ e θi = −170◦

15

41

38

37 13 A

F

(c) φo = 40◦ e θi = −250◦

Figure 6: Evolution of the motion of three magnetic dipoles µ⃗ (37) mounted on a gear
system at three time instants corresponding to φo increasing in intervals of 20◦ [6].
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The Figs. from 6a to 6c illustrate the magnetic force F⃗ acting on the
magnetic dipole µ⃗ indicated with the letter A. Note that the magnetic force
F⃗ always has a component tangent to the trajectory described by the µ⃗.

2.6. Equilibrium of Mutual Retention

As previously described, the resultant force R⃗ on each satellite (35) per-

forms a non-zero work WR due to the actions of magnetic force F⃗ , magnetic
torque τ⃗ , and constraint forces, that guarantee the velocity ratio ω⃗i/ω⃗o = −k.

Thus, when θd ̸= 0◦ or θd ̸= ±180◦, the tangential component F⃗φ is
responsible for impelling tangential motion to the magnetic dipole µ⃗ (37),
which is fixed to the planetary gear (38) through the satellite axis (36).

As each magnetic dipole µ⃗ begins its orbital angular displacement φ⃗o with
orbital angular velocity ω⃗o, due to the action of the magnetic force F⃗ , the
velocity ratio ω⃗i/ω⃗o = −k, due to the constraints of movement imposed by
the gear system, guarantees that µ⃗ has intrinsic angular velocity ω⃗i.

In turn, this compound motion of each magnetic dipole µ⃗ ensures that the
misalignment angle θd remains constant and hence there is always a tangential
component F⃗φ responsible for impelling tangential motion to dipole µ⃗.

Therefore, it can be deduced that there is an equilibrium between move-
ment (orbital ω⃗o and intrinsic ω⃗i), whose velocity ratio is ω⃗i/ω⃗o = −k, and
opposing forces (force of attraction and force of repulsion), whose resultants

are the magnetic force F⃗ and the magnetic torque τ⃗ .
This equilibrium represents an interaction of mutual retention, in which

the magnetic force F⃗ and the magnetic torque τ⃗ , of an active nature, are
responsible for maintain and sustain the velocity ratio ω⃗i/ω⃗o = −k and sim-

ilarly the velocity ratio is responsible for maintain and sustain F⃗ and τ⃗ .
Before proceeding, note that the other constraint forces, together with

the magnetic force F⃗ and the magnetic torque τ⃗ , are responsible for ensure
the velocity ratio ω⃗i/ω⃗o = −k. However, these constraint forces are not, by
themselves, the propelling spring capable of impelling movement to the set
because they are not active forces.

In continuity, this equilibrium of mutual retention means that the “move-
men” (ω⃗i and ω⃗o) is always working in conjunction with “attraction - repul-

sion” (F⃗ and τ⃗), that is, they are self-contained [9].
That way, the “movement” (ω⃗i and ω⃗o) is contained and controlled by

the “attraction-repulsion” (F⃗ and τ⃗), or, in other words, the “attraction -
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repulsion” (F⃗ and τ⃗) sustains and maintains the “movement” (ω⃗i and ω⃗o)
[9].

In particular, the “attraction” provides the ‘bonding’ to retain the mo-
mentum of the “movement” and put it under control, the “repulsion” pro-
vides the ‘rejection’ to ensure continuity of “movement” and the “move-
ment” provides the ‘impetus’ to ensure that the “attraction-repulsion” re-
mains active, where there is a reciprocal exchange between “movement” and
“attraction-repulsion” permanently on an equal footing [9].

Finally, it is possible to infer from the postulates described in [9] that
the equilibrium - the mutual retention between “movement” (ω⃗i and ω⃗o) and

“attraction - repulsion” (F⃗ and τ⃗) - “to move about” and “to remain bonded”
- creates an infinite spiral of self-contained energy of mutual retention Umr.

2.7. Motor of Mutual Retention

Based on this theoretical approach, the motor of mutual retention is a
device configured to remain in an equilibrium of mutual retention and convert
self-contained energy of mutual retention Umr into mechanical energy E [6].

In summary, a physical realization of the motor of mutual retention com-
prises at least one magnetic dipole µ⃗ immersed in a magnetic flux density
B⃗, whose main contribution comes from the Halbach cylinder of order k.
Furthermore, the velocity ratio ω⃗i/ω⃗o = −k, which describes the compound
motion of the magnetic dipole µ⃗, is conveniently chosen to suit the variation
of magnetic flux density B⃗, such that the magnetic force F⃗ and the magnetic
torque τ⃗ are the active nature propulsive action to move magnetic dipole
µ⃗. Thus, with a simple adjustment of the angular position θd between the
magnetic dipole µ⃗ and the magnetic flux density B⃗, it is possible to control
the velocity, the acceleration and the torque applied to the motor load [6].

Finally, it is possible to correlate the inventive concept - the equilibrium
of mutual retention between “movement – attraction – repulsion” creates an
infinite spiral of self-contained energy of mutual retention Umr and this en-
ergy is converted into mechanical energy E - with the well-known physical
concepts [6].

Therefore, the “equilibrium” is correlated with the condition of the mo-
tor, in which the “movement” and the “attraction-repulsion” compensate
each other to maintain the state of the motor preserved. The “mutual re-
tention” emphasizes that the “movement” and the “attraction-repulsion”
happen reciprocally in a permanent state, such that the “movement” main-
tains and sustains the “attraction-repulsion” and the “attraction-repulsion”
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maintains and sustains the “movement”. The “movement” is correlated with
the physical quantity whose measurable property is associated with velocity.
The “attraction-repulsion” is correlated with physical quantities whose mea-
surable properties are associated with force and torque. The “infinite spiral”
emphasizes a progressive process tending to infinity as long as equilibrium
persists. The “self-contained energy of mutual retention Umr” is correlated
with the physical quantity whose measurable property is associated with
energy. The expression “self-contained” emphasizes that the “movement”
and the “attraction-repulsion” have everything needed to work together eter-
nally. The expression “this energy is converted into mechanical energy E”
is correlated with the First Law of Thermodynamics which deals with the
conservation of energy and its transformations [6].

3. Results

This section presents the results of the validation of the basic principles
related to the behavior of the magnetic force F⃗ in a realistic situation.

For this, the ideal magnetic dipoles were implemented by permanent mag-
nets. Likewise, the ideal Halbach cylinder was implemented by a segmented
Halbach cylinder, where each segment comprises a permanent magnet.

The dipoles were placed inside the Halbach cylinder and subjected to the
velocity ratio ω⃗i/ω⃗o = −k, where the misalignment angle θd was made equal
to −90◦.

The Finite Element Method Magnetics (FEMM) software [10] was used

to simulate the behavior of the magnetic force F⃗ . This software uses the
finite element method to solve two-dimensional electromagnetic problems,
despite accepting depth specifications in planar problems. Furthermore, Lua
Programming Language was used to automate the simulations.

3.1. Simulations

The Table 1 presents the parameters and specifications of the simulations,
in addition to indicating some constructive parameters, such as rp and rr.

The Fig. 7a shows the simulation result referring to Table 1 with the
indication of some elements that comprise the motor [6].

The Fig. 7b shows the graph of the components of the magnetic force F⃗
acting on each permanent magnet as a function of the misalignment angle
θd, where φo(to) = βi is the orbital angular displacement of each dipole at
the initial instant t = 0s, such that βi ∈ [0◦, 120◦, 240◦].
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Parameters Specifications Description
k 4 Order of Halbach cylinder
Ni 3 Number of magnetic dipoles
Ns 32 Halbach implemented by Ns magnets

ω⃗i/ω⃗o −4 Velocity ratio (Lua script)
θd −90◦ Misalignment angle
βi 120◦ Angular sector between the dipoles
rd 5mm Radius of magnets
rp 10mm Pitch radius of the planetary gear
ro 40mm Magnets over circumference ro
rr 50mm Pitch radius of the ring gear
rin 50mm Inner radius of Halbach
rou 70mm Outer radius of Halbach
rb 100mm Radius of boundary condition

Boundary Prescrited A Software parameters
Depth 30mm Software parameters
Dipoles NdFeB N55 Dipoles are permanent magnets
Halbach NdFeB N55 Segments are permanent magnets
Medium Air Space is filled with air
Problem Magnetics Software parameters
Units Millimeters Software parameters

Table 1: Parameters and specifications for simulations.

The Fig. 7c shows the components of the magnetic force F⃗ acting on each
magnetic dipole µ⃗ as a function of the orbital angular displacement φo, when
the velocity ratio is ω⃗i/ω⃗o = −4 and the misalignment angle θd = −90◦.

The Fig. 7d shows the orbital torque τ⃗o acting on the magnetic dipoles µ⃗
as a function of the orbital angular displacement φo, when the velocity ratio
is ω⃗i/ω⃗o = −4 and the misalignment angle θd = −90◦.

4. Discussion

4.1. Analysis of Results

Firstly, the analysis of the equation F⃗ = ∇(µ⃗ · B⃗) says that, unlike the
gravitational force, it is possible to create a region of space in which the
vector orientation of the magnetic force F⃗ is easily manipulated, because this
force is the gradient of the dot product between two vectors independent,
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Figure 7: Simulations: (a) FEMM result. (b) F⃗ as a function of the θd. (c) F⃗ as a function
of the φo. (d) τ⃗o as a function of the φo [6].

µ⃗ and B⃗. Therefore, as the magnetic flux density B⃗ is a function of the
coordinates, a variation of the misalignment angle θd is able to direct the
magnetic force F⃗ in any desired direction. According to this observation, by
imposing a compound motion on the magnetic dipole µ⃗, through a velocity
ratio conveniently chosen to suit the variation of the vector field B⃗, the
magnetic force F⃗ can have a component tangential to the trajectory described
by the dipole, provided that θd is favorable to this.

This manipulation of the magnetic force F⃗ in any desired direction is one
of the basic principles observed in the Fig. 7b. The reason why the radial
component F⃗ρ is shifted upwards is due to the implementation by permanent
magnets, whose cylindrical shape (radius rd = 5mm and height hd = 30mm)
is composed of several domains of elementary dipoles related mainly to the
electron spin quantum number.

Again, the Fig. 7c shows that the behavior of the magnetic force F⃗
is in accordance with another basic principle related to the velocity ratio
ω⃗i/ω⃗o = −k and to the misalignment angle θd. This means that compound

motion of the dipoles keeps the tangential component F⃗φ always present,
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provided that θd has an appropriate value for this.
Similarly, the Fig. 7d shows that the orbital torque τ⃗o, like the magnetic

force F⃗ , keeps the rotation counterclockwise and the magnitude approxi-
mately constant.

The undulations seen in the Figs. 7c and 7d result from the segmented im-
plementation of the Halbach cylinder and the interaction between the dipoles.
Note that, by the superposition principle, all magnetic elements contribute
to the magnetic flux density B⃗. However, the main contribution of B⃗ comes
from the Halbach cylinder.

Therefore, the analysis of the results is consistent with the basic principles
about the behavior of the magnetic force F⃗ presented in the methodology.

Furthermore, the Fig. 7c shows that, although the dimensions are on
the order of millimeters, the tangential component F⃗φ is on the order of
hundreds of Newtons. This means that a force of 100 N applied to a mass
of 1kg produces an acceleration of 100m/s2 or a force of 100N applied to a
mass of 100kg produces an acceleration of 1m/s2.

Consequently, the analysis from the point of view of the magnetic force
F⃗ shows that this force of an active nature is capable of altering the state
of rest or motion of the magnetic dipole µ⃗. It means that, in the motor of
mutual retention, the friction force to keep the satellite (35) stationary must

have a magnitude equal to the magnetic force F⃗ . However, since the moving
parts of the gear system have reduced friction, the tangential component F⃗φ

governs the movement of the rotor (28).
Before finishing, look at the Figs. 8a and 8b, where Br = 1.25T and

rin = (k + 1)rp. The Fig. 8a shows that the higher the value of k, the faster

|B⃗| reaches its maximum value, such that the ratio rou/rin, which represents
the wall thickness of the Halbach cylinder, is a relevant design parameter.
The Fig. 8b shows that the closer the magnetic dipole µ⃗ is to the inner wall
of the Halbach cylinder, the larger |B⃗|, such that the ratio ro/rin is another
design parameter that must also be taken into account.

Finally, despite the validation of the behavior of the magnetic force F⃗ ,
further discussions presented below should be taken into account to bring
consistency to the new theoretical approach.

4.2. Laws of Conservation

The Fig. 9a shows an idealized model of the motor, in which the satellite
(35) comprises an elementary magnetic dipole µ⃗ coupled to the center of a
cylinder of radius rp, infinitesimal height, mass mp and material with zero
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(a) (b)

Figure 8: (a) |B⃗| as a function of the ratio rou/rin, when ro = krp. (b) |B⃗| as a function
of the ratio ro/rin, when rou = 1.4rin [6].

magnetic susceptibility (motor rotor). The dipole is located on a circumfer-
ence of radius ro = krp, where rp represents the pitch radius of the planetary
gear. The ideal Halbach cylinder (15) has an inner radius rin = ro + rp,
where rin represents the pitch radius of the ring gear (motor stator). Fur-
thermore, consider that the cylinders are in contact and that the movement
(ω⃗i = −kω⃗o) occurs without slipping and without losses.

35

15

Rj

Rr

(a)

35

15

Rj

Rr -Rj

-Rr

(b)

Figure 9: Idealized model of the motor of mutual retention.

Finally, consider that the magnetic dipole µ⃗ forms a misalignment angle
θd with the magnetic flux density B⃗, such that F⃗φ ̸= 0⃗ and the magnetic
potential energy Um is given by [7]

Um = −µ⃗ · B⃗ = − |µ⃗|
∣∣∣B⃗∣∣∣ cos(θd) (19)
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According to the Hamiltonian formalism [11], the Hamiltonian H of the
idealized model is given by [6]

H (φ, pφ, t) =
p2φ

2 (Io − kIi)
− |µ⃗|

∣∣∣B⃗∣∣∣ cos (θd) + Umr (20)

where the first term is the kinetic energy T , the second term is the mag-
netic potential energy Um, and the third term is the self-contained energy of
mutual retention Umr, which represents the energy latent to the system due
to equilibrium of mutual retention, pφ is the canonical moment conjugated
to the generalized coordinate φ ≡ φo, Io is the orbital moment of inertia
of the satellite, which represents the satellite’s moment of inertia seen as a
point mass about the center of the Halbach cylinder, and Ii is the satellite’s
intrinsic moment of inertia, which represents the satellite’s moment of inertia
about its center of mass.

From Hamilton’s equations [11], we have [6]

φ̇ =
∂H
∂pφ

=
pφ

(Io − kIi)
(21)

ṗφ = −∂H
∂φ

= 0 (22)

dH
dt

=
∂H
∂t

= 0 (23)

The Eq. 23 means that if the Hamiltonian H does not explicitly depend
on the time t, then H is a constant of motion [11], that is [6],

T + Um + Umr = constant of motion (24)

such that [6]
∆T +∆Um +∆Umr = 0 (25)

where ∆Um = 0 for the case under analysis, that is, there is no variation
in magnetic potential energy, since Um = −|µ⃗||B⃗|cos(θd) remains constant

because θd, |µ⃗| and |B⃗| do not change (although the direction of vector B⃗
varies, its magnitude remains constant along the circumference of radius ro,
see Eq. 2), evidencing the fact that there is no conversion of magnetic poten-
tial energy Um in kinetic energy T , and the conservation of the total energy
is satisfied by introducing the self-contained energy of mutual retention Umr

due to the equilibrium of mutual retention, since R⃗φ ̸= 0⃗ because F⃗φ ̸= 0⃗.
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The Eq. 22 means that if the Hamiltonian H does not explicitly depend
on the generalized coordinate φ, then the canonical moment pφ conjugate to
φ is a constant of motion [11], that is [6],

pφ = (Io − kIi) φ̇ = constant of motion (26)

such that [6]

L⃗r + L⃗s = 0⃗ (27)

where pφ represents the angular momentum of the rotor L⃗r and L⃗s is the
angular momentum of the stator, and, consequently, the conservation of the
total angular momentum is satisfied. Note that even though the stator re-
mains stationary, L⃗s = −L⃗r due to Newton’s Third Law [7, 8].

At this point, note that when Hamiltonian H does not explicitly depend
on a coordinate qi, this coordinate is said to be cyclic or ignorable and,
consequently, the canonical moment pi conjugated to qi is constant of motion
[11].

Therefore, as the Hamiltonian of Eq. 20 does not depend on the other
cylindrical coordinates ρ and z, then the conservation of total linear momen-
tum is also satisfied, as illustrated by Fig. 9b, as a result of Newton’s Third
Law [7, 8], such that it is possible to demonstrate [6]

R⃗(r)
φ = −R⃗(s)

φ =
2

3
F⃗φ (28)

R⃗(r)
ρ = −R⃗(s)

ρ = −mprpφ̇
2ρ̂ (29)

R⃗(r)
z = −R⃗(s)

z (30)

where the superscript (r) denotes force applied to the rotor, the superscript

(s) denotes force applied to the stator, and R⃗
(r)
ρ is the centripetal force.

In particular, the intrinsic torque τ⃗i is given by

τ⃗i = τ⃗s − τ⃗ (31)

where τ⃗s is the torque due to constraint forces acting on the satellite and τ⃗ is

the magnetic torque, whose magnitude is |τ⃗ | = |µ⃗|
∣∣∣B⃗∣∣∣ sin (θd) [7], such that

|τ⃗i| = rp

∣∣∣F⃗θi

∣∣∣ = rp
3

∣∣∣F⃗φ

∣∣∣ = 1

3
|µ⃗|

∣∣∣B⃗∣∣∣ sin (θd) =
1

3
|τ⃗ | (32)
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thus

|τ⃗s| = |τ⃗i|+ |τ⃗ | = 4

3
|τ⃗ | (33)

where F⃗θi =
1
3
F⃗φ is the resultant tangential force that the stator applies to

the satellite.
The Eq. 31 makes it clear that the magnetic torque τ⃗ also influences the

movement, despite being in opposite direction of the intrinsic torque τ⃗i, such
that the magnetic torque τ⃗ acts as a natural “brake”. However, |τ⃗s| > |τ⃗ | and,
consequently, ω⃗i/ω⃗o = −k remains valid, i.e. the intrinsic angular velocity

direction ω⃗i is given by τ⃗i due to the action of the force F⃗θi .
Finally, note that the above deductions assumed that Umr ̸= f(t, ρ, φ, z),

this is, Umr is not a function of the variables t, ρ, φ, and z. Therefore,
the description of the dynamics of the idealized model, due to the action of
the magnetic force F⃗ , the magnetic torque τ⃗ and the constraint forces, that
guarantee the velocity ratio ω⃗i/ω⃗o = −k, where Umr ̸= f(t, ρ, φ, z), satisfies
the Laws of Conservation.

4.3. Theoretical Efficiency

The efficiency of a common motor is given by

η =
Eu

Es

(34)

where Es is the input supplied energy and Eu is the output useful energy Eu.
For the case of the motor of mutual retention, the supplied energy Es is

that necessary to misalign each magnetic dipole µ⃗ about the magnetic flux
density B⃗, for example, when the Halbach cylinder is rotated, such that [6]

Es = Ni|µ⃗||B⃗||cos(θd)| (35)

As for energy Eu, remember that the motor of mutual retention converts
self-contained energy of mutual retention Umr into mechanical energy E, such
that [6]

E = Er + El (36)

where Er is the useful energy available at the rotor shaft, i.e. Eu = Er, and
El is the energy associated with losses, such as energy dissipated in the form
of heat, raising the temperature of the system.
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While the motor of mutual retention remains in the equilibrium of mutual
retention, the efficiency is given by [6]

η =
Eu

Es

{
≤ 1 if Eu ≤ Es

> 1 if Eu > Es

(37)

Therefore, the theoretical efficiency of the motor of mutual retention is
higher than any efficiency class established by the International Electrotech-
nical Commission [2] because the efficiency of any electric motor is always
less than 1.

4.4. Laws of Thermodynamics

Again, it is possible to infer from the postulates described in [9] that

• the Source of the energy that sustains the Universe is in two states:

– in equilibrium in the invisible dimension, where the energy is
imperceptible, infinite, and eternal, corresponding to the self-
contained energy of mutual retention Umr; or

– in activity in the visible dimension, where the energy is perceptible
and finite, corresponding to the kinetic energy T and the potential
energy U , where E = T + U ;

• when there is no equilibrium of mutual retention in the visible dimen-
sion of matter, the equation ∆T +∆U = 0 represents the First Law of
Thermodynamics, where initial energy equals final energy;

• when there is equilibrium of mutual retention in the visible dimension
of matter, the equation ∆T +∆U = −∆Umr continues to be consistent
with the First Law of Thermodynamics, where initial energy equals
final energy.

Therefore, expanding the limits of the First Law of Thermodynamics
corresponds to [6]

∆T +∆U︸ ︷︷ ︸
perceptible

= −∆Umr︸ ︷︷ ︸
imperceptible

(38)

Thus, when there is an equilibrium of mutual retention in the material
dimension, there is the conversion of self-contained energy of mutual retention
Umr, of imperceptible nature, in kinetic energy T and/or in energy potential
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U , of perceptible nature. The fact that Umr is of imperceptible nature means
that Umr does not depend on material dimensions, i.e. Umr ̸= f(t, ρ, φ, z),
whatever the function f .

Note that the variation in kinetic energy ∆T comprises any energy that
has a nature associated with the motion of the elements of the system, such as
thermal energy and sound energy. Likewise, the variation in potential energy
∆U comprises any energy that has a nature associated with the relative
position of the elements of the system, such as gravitational potential energy
and elastic potential energy.

Therefore, the First Law of Thermodynamics remains valid with the in-
troduction of the self-contained energy of mutual retention Umr due to the
equilibrium of mutual retention. The Second Law of Thermodynamics also
remains valid because the entropy analysis of the system remains the same.
Finally, the Zeroth Law of Thermodynamics explains how heat exchanges
between bodies occur.

4.5. Limitations

Although the analyzes (simulated and theoretical) suggest that the mo-
tor in the equilibrium of mutual retention can work, multiphysics simula-
tions were not performed. Therefore, the author suggests the MFEM [12]
and Elmer FEM [13] softwares for multiphysics simulations that consider
constraint and dissipative forces.

Finally, the lack of understanding about how to perform these multi-
physics simulations was the main reason for not using these softwares. How-
ever, the author’s limitation may be the inspiration of other researchers.

5. Conclusion

In light of the new theoretical approach presented, the motor of mutual re-
tention is a device capable of extracting energy directly from the Source that
sustains the entire Universe [9]. For this, the motor must remain in an equi-
librium of mutual retention between “movement” and “attraction-repulsion”
[6]. This equilibrium state creates an infinite spiral of self-contained energy
of mutual retention Umr [9] which is converted into mechanical energy E [6].

Contrary to what is stated in [14], the analysis of the magnetic force F⃗
allows us to conclude that the motor remains in motion while there is the
equilibrium of mutual retention. On the other hand, energy analysis leads to
the introduction of the self-contained energy of mutual retention Umr.
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Furthermore, the analysis of conservation laws through the Hamiltonian
formalism for an idealized model of the motor shows that the conservation of
total energy, conservation of linear momentum, and conservation of angular
momentum are all satisfied.

Consequently, the new theoretical approach shows that a motor in the
equilibrium of mutual retention can have an efficiency greater than 100%
because the self-contained energy of mutual retention Umr is available in
abundance. Thus, this motor is a good candidate for the next generation of
motors with extreme efficiency.

Therefore, this new theoretical approach brings a conceptual advance to
the First Law of Thermodynamics. Thus, with the introduction of the energy
Umr because of the equilibrium of mutual retention, the energy transfer takes
place from the invisible dimension to the visible dimension [9].

In conclusion, the motor of mutual retention meets the energy demand
of the entire modern society with a relevant economic, social, and environ-
mental impact, significantly reducing the emission of greenhouse gases and
the degradation of nature.
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