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Abstract: Sustainability is the core concern of every business; The exploration of avenues to main-
tain sustainability while staying competitive with high level of productivity remains a vital en-
deavor. Production flexibility is a key area that can enhance the sustainability of manufacturing
industries; can ensure product availability, scalability, agility/fault tolerance as well as disaster re-
covery potentials. Technological advancements have provided avenues where companies can en-
hance virtually all aspects of their operations for efficiency, effectiveness, and productivity. This
paper uses both quantitative and qualitative research approach to identify the capability require-
ments for smart and effective production management and subsequent analysis is done using Multi-
Criteria Decision-Making methodology to identify and rank various industry 4.0 technologies and
concepts that can provide these smart capabilities in manufacturing industries to aid the businesses
to achieve sustainability with production flexibility. The paper identifies over 12 smart capabilities
and 9 Industry 4.0 Technologies which are applicable to production management. It also compares
results from the analytics of historical 14.0 implementation as discussed in literatures with the cur-
rent state as deduced from survey feedbacks from various manufacturing industries.

Keywords: Industry 4.0, HMLV; LMHYV; Production scheduling; Digital Manufacturing; Computer
aided production management (CAPM); Smart Manufacturing; MCDM

1. Introduction

Dynamic and uncertain production environment is a major factor in the industries
today and present market demands require that manufacturing systems develop their ac-
tivities under such conditions. The influence of economic, social, political, and environ-
mental factors can be very unpredictable, and these are paramount when considering any
production environment because these factors can contribute to the sustainability/success
or failure of industries. Owing to the above-mentioned facts, it is necessary to incorporate
the concept of flexibility in manufacturing. This ability to give quick and efficient answers
to the uncertainties in local, national, and international market is vital and production
flexibility is a strategic topic in such decision making [1, 2].

The advent of the Fourth industrial revolution has introduced many technologies
that give businesses the ability to incorporate very high levels of flexibility in their opera-
tion. Its impact can be seen in various aspects of business activities ranging from human
resources, finance, operations, marketing etc. Virtually all aspects of any industry can be
positively impacted by the technologies of industry 4.0 [1, 3-5]. In this research, we shall
identify and outline the various industry 4.0 Technologies and the capability requirements
for production planning that will contribute to production flexibility.

Another vital aspect for production flexibility and business sustainability is the effec-
tive management of resources. This is where production scheduling plays a key role for
the establishment of timing and the use of resources of the organization which include
equipment, facilities, and human activities. Every manufacturing industry must develop
schedule for workers, equipment, purchases, maintenance etc.; effective scheduling
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results to cost savings, increase in productivity among other benefits [5]. We shall discuss
various scheduling approaches and methodologies that can be implemented in manufac-
turing.

The analysis and investigation in this research will focus on the use of decision-mak-
ing systems for the identification technology implementations for production and combi-
nation of these together with quality function deployment approach for production sched-
uling to ensure flexibility in manufacturing and business sustainability.

2. Materials
2.1. Industry 4.0 - Requirements for Digitalized Manufacturing

In the past century there has been rapid advancements in technology, applications,
and industry and numerous concepts have emerged in manufacturing. Since the first in-
dustrial revolution, which introduced mechanization, subsequent industrial revolutions
have resulted in sweeping changes in manufacturing. The second industrial revolution
saw the rationalization and division of labor in manufacturing industries while the third
industrial revolution brought electricity and advanced electronics which increased
productivity as well as calculation and data/information storage capacities. The notion of
the fourth industrial revolution was introduced at the end of the 20th century and it was
centered around promoting the idea of digitization together with autonomy and self-con-
trol where products tend to control their own manufacturing process. [6-8]

The fourth industrial revolution or Industry 4.0 (I14.0) can be summarized as the use
of technology in a way that businesses and engineering processes are integrated in such a
way that makes manufacturing flexible, resource efficient and sustainable. Businesses are
striving to implement concepts of Industry 4.0 to transform business processes however,
the maturity level of various companies vary, and the impact can be seen in different as-
pects of their operations. Some of the characteristics of mature companies include having
clear digital strategy, building skills, and capabilities to implement strategy, flexibil-
ity/ability to adapt, use of KPIs for machine learning, decentralized decision making, and
digital fluent leadership. Two main approaches which serves as guidance to implement-
ing 14.0 concepts are the “holistic approach”, which tries to use all avenues to access and
utilize elements of 14.0 to drive success factors. In this approach maturity self-assessments
are conducted to provide strategic guidance and related tools for implementation. This
approach usually lacks transparency at is not scientifically grounded. The other approach
is the “Specific approach” which employs data analytics and maintenance aspect,
knowledge intensive business processes, digital information systems, big data usage, lo-
gistics and supply chain etc. to determine 14.0 maturing level and develop roadmap for
implementation. [6, 9-12]

14.0 provides businesses with increased visibility. Production managers can access
real time supply and demand related data making it easier to optimize operations, reduce
resources and lead times [10]. The literature on Industry 4.0 is widespread and many
scholars have written on various aspect of it. The purpose of this literature is not to exam-
ine the holistic aspects of 14.0. However, the main objective is to investigate the require-
ments of industry 4.0 as it relates to production planning and control, supply chain and
production strategies.

2.1.1 Industry 4.0 Concepts and Technologies

Industrial revisions require long term developments that cover four key areas: Fac-
tory, Business, Products and Customers. The future factory will be one where all manu-
facturing resources ranging from sensors, robots, conveyor machines etc. are connected
and exchange information as well as become intelligent enough to predict and maintain
machines, control production process and in general manage the factory system. The busi-
ness aspect involves a communication network between various companies, factories,
suppliers, logistics etc. aimed at optimizing configurations in real time to maximize profit.
Products will contain sensors, processors and components which carry functional
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guidance for the customers and in turn transmits usage feedback to the manufacturing
system for use in product improvement. The area of customers mean that they will have
significant influence in the manufacturing process, product functions will be determined
and customized by customers [4, 5, 7, 8, 13-16]. Industry 4.0 concepts are geared towards
the achievement of the various areas of industrial revision. We shall explore the overview
of various industry 4.0 concepts/requirements, application of these concepts, value crea-
tions and how fit into the production lifecycle.

Cyber-Physical Systems (CPS): There has been a fundamental change in the way IT
services are developed, deployed, and maintained. This is due to the emergence of cloud
computing. Cyber-physical systems and cloud computing has made industries become
more efficient, autonomous, and customized [17]. CPS is the integration of the physical
with the virtual world. It is aimed at integrating embedded systems, control, computing,
communication, and network devices. It also consists of the security procedures like hard-
ware encryption and network security for data transit. CPS closely connect systems
thereby blurring the boundaries between real and virtual factories [18]. The main aim of
cyber-physical management systems is to give exact directions which the system must
follow for fulfilling the operation to the expected level. This is also referred to as smart
manufacturing and the heterogeneity of the system is made up of entities ranging from
small sensors to large scale processing elements. When CPS is implemented in production
planning and control, it can be termed Cyber-physical Production System (CPPS). CPPS
retrofitting process is used to transform/update industrial equipment for industry 4.0 in-
tegration [17-19]. In summary, the key capabilities that CPS introduces are real-time data
processing and information feedback, computational capabilities, and decision-making
capability.

Cloud Computing: This 14.0 concept usually works alongside CPS. It is sometimes
referred to as an aspect of CPS [19]. The National Institute of Standards and Technology
outlines three service model related to cloud computing: these include Software as a Ser-
vice (SaaS); Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). IaaS is the
most basic cloud computing service. It is an instant computing infrastructure, provisioned
and managed over the internet. Common uses of IaaS are product Test and Development
environments, storage, backup and recovery, workload migration etc. PaaS provides de-
velopment environment for users to manage cloud-based applications without bothering
about the building and maintenance of the infrastructure. Common usage scenarios of
Paa$ are development framework and Analytics or business intelligence. SaaS is software
that is centrally hosted and managed for the end customer. It allows users to use apps
over the internet. Examples of SaaS usage is Skype, Microsoft 365, Microsoft Dynamic
CRM, Oracle CRM, ERP, SCM, CAD, FEA, etc. In this form of service, the end user is
barely responsible for the provision, management, and maintenance of the application
software which in turn saves costs [4, 11, 17, 19, 20]. Summary of key capabilities of Cloud
computing are Location and sourcing independence, Ubiquitous access, and Integrated
Business Environment and operations.

SaaS

PaaS
laaS

Figure 1: Cloud services [20]
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Internet of Things (IoT): There are several definitions of IoT most of which are from
authors perspective. For this study, we will review IoT in the context of production man-
ufacturing. IoT brings the convergence of connected products and sensors to introduce
new capabilities. It refers to the robust communication between digital and physical
world. Sensors, Actuators, RFID, and RTLS are used to achieve these forms of communi-
cation. IoT influence is being rampant in various industries ranging from automotive, aer-
ospace, supply chain, construction, and manufacturing sector etc. [21-23]. IoT is leading
the foundation of Industry 4.0 in several sectors ranging from smart transport solutions,
smart health, smart cities, and smart factories etc. [23]. The main role of IoT is devices is
the dual provision of accurate information in real-time and this possibility opens new an-
alytical possibilities and fast result dissemination, thereby assisting decision-making pro-
cess. Technologies like RFID and RTLS provide capabilities such as identification, loca-
tion, and sensing. While Sensor and Actuators provide Real-time tracking, Continuous
documentation and data collection, process synchronization and system availability. [4, 7,
8, 21-23]

Big Data and Analytics/ Artificial Intelligence (BDA/AI): Operations managers use
advanced analytics for the exploration of historical data, pattern identification and rela-
tionships to enable them optimize factors that have greatest effects in their processes. The
manufacturing industry is perceived to be to greatest generator of data when compared
with other sectors therefore there is very high value to be captured from big data analytics
[4, 24, 25]. IoT and AI are the major technologies that drive 14.0; they usually operate to-
gether as the data from IoT serves as input for Al [26]. Industrial application of AI focuses
on the development, validation and deployment of various machine learning algorithms
and analytics for industrial applications with sustainable performance [24]. Data-based
decision making has evolved from decision support to executive support with focus on
data exploration for top management decision making. Over the last decade, many soft-
ware tools have been developed for the analytics of multidimensional data. Business In-
telligence software like Tableau, Power BI, Oracle BI, Sisense, SAP business objects etc.
have become common place in manufacturing industries to provide data analytics, real
time reporting, embedded analytics, and natural language processing services. The sum-
mary of the capabilities of DBA/AI includes Analysis of large amount of Data within a
short period of time, Retention of data knowledge, and learning from data [4, 6, 7, 24-27].

Additive Manufacturing (AM): This is a “range of technologies that translate virtual
model data into physical models or prototypes through a process of depositing successive
layers of material of finite thickness” [4]. It provides fast and less costly means to create
prototypes for real world simulation. AM is usually is sometimes referred to as 3D print-
ing which consists of set of process technologies that can directly produce parts through
incremental addition of material layers of joining materials [28].

Additive manufacturing offers tremendous opportunities for existing production
processes. The fast pace of advancements in this area is making it easier and less expensive
to manufacture products and product parts that would otherwise be very complicated
and expensive to produce. The material science field is a very vital field which the AM
depends on. Researchers in this field are constantly developing new materials for 3D
printing applications. AM technologies can have extreme impact on production planning
and control, and it has the potential of giving industries high degree of production flexi-
bility in areas of product redesign and modification. In this I4.0 age, several materials have
been developed or are under developments that are suitable for application in AM [4, 28-
30]. There materials are grouped into 4 as shown in Figure 2 below:
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Figure 2: General Overview of current research materials for AM [29]

To standardize the constantly evolving technology of Additive Manufacturing, the
International Standards Organization (ISO) together with the American Society for Test-
ing and Materials (ASTM) classified the scope of additive manufacturing into 7 types [31]:

I Material Extrusion: In this type of AM, material in a filament form is drawn
through a nozzle, heated, and then extruded and deposited in layers onto a build plat-
form. It offers quick prototyping of simple parts and commonly used for printing house-
hold items, toys, games, and similar products.

II. VAT photopolymerization: This uses a vat of liquid photosensitive polymer
resin which hardens on exposure to UV light to build objects layer-by-layer.

III.  Powder Bed Fusion: This type of AM fuses powdered material to additively
create 3D objects. IT uses a laser electron beam to sinter, melt and fuse powder together
while it traces the cross section of the object to be created. This process is repeated layer
by layer until object is built.

IV.  Material Jetting: This works in similar way as the inkjet printer by depositing
a photosensitive polymer liquid which harden on exposure to UV light thereby building
the part layer by layer. It is typically used for building parts that require high dimensional
accuracy and smooth surface finish.

V.  Binder Jetting: It is like material jetting but uses two material instead of one.
The two materials are a powder base material and a binder material. The binder material
acts as a binding agent for individual layers of the powder material.

VI.  Sheet Lamination: this process includes two types of manufacturing tech-
niques, Ultrasonic Additive Manufacturing (UAM) where sheets or ribbons of metal are
bound together using ultrasonic welding after which the parts do not require any addi-
tional step of machining or removal of material. The other type is the Laminated Object
Manufacturing (LOM) which uses sheets of paper as base material and adhesive in place
of welding. Objects manufactured with this process are not fit for structural us and can
only be used for aesthetic purpose.

VII. Direct Energy Deposition (DED): This is typically used for 3D printing of metal
and alloys. In DED, a nozzle holds the material in a wire form which is known as a feed
and moves across multiple axis and an electron beam projector which melts the feed as it
moves across while tracing the object geometry. DED method is also called as Laser engi-
neered net shaping, 3D laser cladding, directed light fabrication or direct metal deposition

Various forms and shapes of products can be easily manufactured by the above ad-
ditive manufacturing type simply by using data from 3D computer models [28, 31, 32].
The key capabilities that AM introduces are new geometry possibilities, shorter time-to-
market, unique material.

Simulation: Simulation involves modelling of processes or systems, so that the
model mimics responses of the actual system to events that take place over time. Supports
experimentation and validation of different scenarios and configurations for existing and
new manufacturing resources and systems, contributing to an improved design and per-
formance assessment [33]. Modeling and simulation have become vital parts of industrial
engineering, operations, and supply chain management. It enables the management of
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complex systems. “Modeling and simulation denote a set of methods and technological
tools that allows the experimentation and validation of products, processes, systems de-
sign and to predict system performance. It also supports decision making, education and
training, aiding to reduce costs and development cycles” [34]. Some simulation ap-
proaches include Agent-Based Modeling and Simulation (ABMS), Discrete Event Simula-
tion (DES), System Dynamics (SD), Virtual Reality (VR), Augmented Reality (AR), Petri
Nets simulation (PN), Hybrid Simulation (HS)-which involves the combination of two or
more simulation methods, Digital Twins (DT), Virtual Commissioning (VC) etc. [7, 33, 34].

14.0 capabilities which Simulation offers include decision making support, evaluation
of autonomous planning rules and digital twin model.

Cybersecurity: The advent of 14.0 has seen very high degree of digitalization of man-
ufacturing processes, systems, and industries. In some instances, the entire value chain of
manufacturing industries has extremely high degree of digital interconnectivity and this
possess the absolute need for security of the system.

CISCO defined cybersecurity as the practice of protecting systems, networks, and
programs from digital attacks. The implementation of effective cybersecurity is a very
challenging and dynamic undertaking. The approach of implementing multiple layers of
protection across networks, computer, programs, or data constitutes a successful cyberse-
curity [35]. The goal of cybersecurity is three-fold; Confidentiality which involves preven-
tion of unauthorized disclosure of sensitive data and information. Integrity which consti-
tutes maintaining the consistency, accuracy, and trustworthiness of the data. Availability
involves keeping data and resources available for authorized use [4].

Mobile Technologies: This is one of the driving forces behind Industry 4.0, creating
“smart factories” and streamlining manufacturing operations with mobility [3]. It consists
of the wireless integration of communication technology based on wireless devices [36].
Mobile technology in manufacturing brings vast palpable improvement in industries with
enhancements across all divisions from the shop floor to warehouse to management. The
concept of 14.0 requires manufacturing operations to be closely connected, wherein com-
munication and cooperation happens among machines and with people in real time via
wireless web. We can view the benefits of mobile technology in two aspects: The benefits
in manufacturing and the benefits in operations. The main benefits of mobility in manu-
facturing include, but not limited to; portability, real-time problems/real-time solutions,
Relatability to increase worker productivity (Task-on-the-go) and precision monitoring.
The operational benefits include overall productivity increase, cost reduction, increased
efficiency, fast access to critical information, Connectivity, and interaction from anywhere
at any time of anything, collaboration between people at all levels, improved return on
investment, increased customer reach and Sales, competitive edge etc. [3, 7, 36].

Adaptive Robotics: The growing popularity of I4.0 has led to dramatic developments
in robotic technology. They are those categories of devices that can be programmed to
perform activities with little or no human intervention. There are numerous predictions
on the direction of robotics, and they all tend to make same point which is that the next
generation of robotics and its associated technologies will play more pronounced roles to
meet the need of collaborative and intelligent manufacturing. Autonomous robots and
cobots are very important technology for plant automation and commissioning. With ro-
botics in manufacturing the numerous capabilities are introduced, control and autonomy,
communication efficiency, high computation, near certainty in output, etc. [24, 36, 37].

These Industry-4.0 concepts and technologies discussed are relatively novel and they
seek to overcome contemporary challenges such as global competition, volatile markets
and demand, increased customization through communication, information, and intelli-
gence, and decreasing innovation and product life cycles [38].

2.2. Production Strategies
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The ever-growing importance of production planning is due to the dynamism, com-
plexity, and the globalization of economies. Production planning is a tool which enables
firms to react as flexibly as is required by the market. Speedy response to customer is vital
for customer satisfaction in a diverse and ever-changing market [18]. Production strate-
gies aims to determine best possible ways and justifications to determine what, how
much, when to produce, buy, and deliver so that company can match manufacturing per-
formances with customer demands. It is a value adding process of the manufacturing ac-
tivity [36].

In this section, we will discuss two manufacturing types: High-mix Low-volume
(HMLV) and Low-mix High-Volume (LMHV) Manufacturing strategies. For this study,
more emphasis will be laid on HMLV and the various factors, requirements and capabil-
ities that promote flexible and sustainable manufacturing.

Low-Mix High-Volume Manufacturing

This type of manufacturing is sometimes referred to as mass production. It involves
the fabrication of large quantity of products that have little or no variation. Manufacturers
employ a variety of techniques and technologies to achieve high levels of output ranging
from automation of certain production tasks, assembly lines, etc. Two main advantage of
this form of manufacturing is the high level of output within a short period of time, ease
of automation and digitalization, does not require highly skilled workers and reduced
overall cost of production per unit. Some of the disadvantage of this type of manufactur-
ing is that there is usually high upfront cost, inability to meet specific desires of customers
and low production flexibility [39].

High-Mix Low Volume Manufacturing

High-mix Low-Volume (HMLV) production is a type of production that allows for a
high variety of products to be produced in relatively small amount [18]. It is sometimes
referred to as “Mass Customization” as it focuses on providing individualized products
[40]. Production management is a very vital field that requires adequate attention in every
industry. It contains the tasks of design, planning, monitoring and control of the produc-
tive system and business resources such as people, processes, machine, material, and in-
formation [7]. In HMLV manufacturing, production management is a daunting task and
every aspect must be vigorously monitored and optimized for a company to remain com-
petitive [2, 7, 8, 30, 31, 40, 41].

Several methods have been deployed to support production process; an example be-
ing the Total Productive Maintenance whose goal is to increase the effectiveness of pro-
duction equipment based on the idea that six types of losses (Equipment failure, setup
and adjustment times, idling and minor stoppages, reduce equipment speed, defects and
reduced yield) can be identified and reduced. In this approach, Overall Equipment Effec-
tiveness is used as performance indicator; However, unlike in mass production, applica-
tion of this in HMLV manufacturing means such analysis is only done by considering the
individual product parameters and mathematically combine this to derive OEE perfor-
mance factor value for entire production.

There are many literatures which discussed various HMLV production planning
techniques and models aimed at the optimization of manufacturing. However, the scope
of this study is not to discuss the specific techniques but rather to outline the general ca-
pabilities required to achieve these strategies to identify the industry 4.0 technologies that
will assist, promote, or enhance the implementation of such production strategies.

One of the major capability requirements for HMLV production systems is real-time
decision-making support system for various aspects like production scheduling [18]. The
ability to manage resources, logistics flow, products, and support manufacturing deci-
sions in real time coupled with other complexities involved in HMLV manufacturing begs
the need for several aspects of production planning and control to be smart and techno-
logically optimized. An extension of this real time capability requirement is visibility and
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traceability which has to do with the ability to trace, visualize, and make decisions re-
garding resources information and products. Adaptability and dynamism as well as the
scalability and reconfiguration are also vital capability requirements in PPC activities of
HMLYV manufacturing environments. These determine the degree of dynamism on prod-
uct, process, or demand and ability of PPC to change its configurations flexibly and easily.
The ability of manufacturing industries to synchronize the planning and control activities
with the physical manufacturing environment in real time. (Routes, flows, data, opera-
tions, systems etc.) is paramount for production flexibility and sustainability. This capa-
bility requirement can be referred to as synchronization. Planning and control need inte-
gration into new and legacy systems and reach full interoperability between system layers
therefore the integration and interoperability of systems can be viewed as a key require-
ment. An extension of the integration and interoperability of systems capability is collab-
oration and cooperation involving ability to support resource and information sharing
among managers, workers, and systems. Predictability and autonomy aids in the flexi-
bility of PPC in HMLV manufacturing environment. Planning and control systems are
required to act autonomously and have the ability to predict and react to manufacturing
events and customer demands. Other capability requirements that enhance production
flexibility and business sustainability include but not limited to the following: Distributed
PPC: Ability to decentralize PPC to manage distributed manufacturing environments. Big
data-driven: Ability of PPC to extract, load, transform and embed data for use of learning,
analytics, and event-based decision making. Accuracy: Precise decision making and op-
eration. Context Awareness: Ability to properly manage machine to machine communi-
cation as well as machine to human communications and vice versa. [1-6, 8,9, 11, 14, 16,
18,19, 21, 26, 28-33, 38, 40-48]

The range of capabilities described in above are required in various aspects of Pro-
duction Planning and Control (PPC). In most cases, to achieve effectiveness and/or effi-
ciency in the any single activities/tasks of PPC, it may require two or more of the capabil-
ities discussed above. In production management, the required tasks or aspect of PPC are
not identical across board; It may vary based on several factors such as industry type,
product types, location, size etc.

2.3. Multi-criteria decision-making (MCDM)

MCDM involves the determination of the best alternative among multiple, conflict-
ing, and interactive criteria which are often correlated [49]. In this section we shall discuss
some MCDM methods which, if applied by production managers, can streamline a wide
range of decision-making activities.

2.3.1 Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) was developed in the 1970s by Thomas L. Saaty.
It is typically used in decision making for complex scenarios, where people work together
to make decisions when human perceptions, judgments, and consequences have long-
term repercussions. The multi-criteria programming made using the AHP is a technique
for decision making in complex environments in which many variables or criteria are con-
sidered in the prioritization and selection of alternatives or projects. The AHP has a focus
on departure from consistency, its measurement and on dependence within and between
the groups of elements of its structure. One of the widest applications of AHP is in plan-
ning and resource allocation [45, 49, 50].

In AHP, a hierarchy or network structure is required to represent a problem and
pairwise comparison is used to establish relations within the structure. This comparison
may use concrete data from the alternatives or human judgments to input additional in-
formation. The steps involved in AHP can be summarized as follows:

Decompose problem into hierarchy of criteria having the goal at the top level, attrib-
utes at the second level and alternatives at the third level.
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Figure 3: Hierarchy of objectives [51]
I.  Determine the relative importance of different attributes or Criteria with re-

spect to the goal using pair-wise comparison matrix. Also create a scale of
relative importance to aid this.

II.  Calculate the normalized pairwise matrix by dividing all the elements of the
column by the sum of the column.
III.  Calculate the criteria weight by averaging all the elements in the rows
IV.  Calculate the consistency by multiplying each value in the column of the un-
normalized matrix by the criteria weight
V.  Calculate the weighted sum value by taking the sum of each valued in the
rows of result in v.
VI.  Determine the ratio between the weighted sum value and the criteria weight.
VII.  Calculate Amax by taking the average of the ratios derived in vii.
VIIL. Calculate the consistency index (CI) = %
IX.  Calculate the consistency ratio by dividing the consistency ratio by random
index. (Using random consistency index table)
X.  If consistency ratio is less than the standard 0.10, then you can assume that

your matrix is reasonably consistent.

After calculating the weight of the criteria and determining that it has appropriate
consistency level (as outlined in steps i — xi) you can then proceed with the decision mak-
ing using the hierarchies for further calculation as outlined in subsequent steps

Compare the alternatives with each other with respect to criterion 1 and repeat steps
with all other criterions. After performing this comparison, priority level of all the alter-
natives can them be deduced from the results. One of the major setbacks of the AHP is
that it does not allow for the measurement of the possible dependencies among factors.
This setback is handled with the introduction of the Analytical Network Process which is
discussed in next section of this literature.

2.3.2. Analytical network process (ANP)

This is an extension of the Analytical Hierarchy process. it is more comprehensive
and can be viewed as a generalization of the AHP method. The ANP has wide applications
in various areas such as supply chain management, waste management, energy, construc-
tion, risk assessment and healthcare. It proves to be an effective decision-making method-
ology [52].

The ANP captures the dependency and feedback among the different elements in the
decision model; it takes into consideration the dependency among elements in same clus-
ter (inner dependency) and the dependency among element in different cluster (outer de-
pendency) to prioritize alternatives [53]. Therefore, ANP can model complex decision
problems where the hierarchical model, as used in the ANP is not sufficient. In this liter-
ature, we shall discuss the general implementation of AHP while acknowledging the best
practices to verify model assumptions prior to analysis, during analysis and reporting of
results.

As mentioned earlier, the AHP is incorporated in the ANP therefore, in the process
on performing the ANP analysis, you will have to perform the same AHP activities and
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more. To move from the hierarchical model to the network model, we take into consider-
ation the impact of alternatives on the importance of criteria. First, compare all the criteria
with respect to each of the alternative (This will enable the identification of the outstand-
ing qualities of each alternative). After this comparison, arrange the corresponding
weights into the super-matrix, we get the unweighted super-matrix of the network model.
The matrix is then normalized (i.e., the sum of all columns is scaled to 1) resulting in the
weighted super-matrix. The whole model is then synthesized by calculating the “Limit
Matrix”. The limit matrix is the weighted Super-Matrix taken to the power of k+1, where
k is an arbitrary number. This results to the ranking of the alternatives in the network
model. In ANP, it is possible for the importance of criteria to change based on the available
alternatives unlike in the AHP [54].

In the ANP model, we can have a control hierarchy where there are multiple layers
with sub-networks as shown in the example Figure 4 below:

Overall
Objective

l 1
T

25

Figure 4: Control Hierarchy Decision network [54]

We have a two-layer model with a control hierarchy (benefits and costs) and a sub-
network under benefits and hierarchy under costs. Ranking in of alternatives in a two-
layer model as shown in this example can be evaluated using a ratio formular between
benefit and cost or an additive formular benefit — cost. The control hierarchy could even
be extended with additional control parameters and appropriate mathematical formular
is then used to evaluate the ranking of the alternatives.

Enrique Mu, in his article on “Best practices in Analytic Network Process studies”
outlines the best practice requirements in various aspects of the ANP process and report-
ing used for validation purposes [53]. These include

Influence Matrix: which allows one to easily identify which elements are interdepend-
ent, as well as potential absorbing states.

Pairwise Comparison Matrix Consistency: It is vital to indicate consistency ratio of any
pairwise comparison that is done.

Cluster Comparison Matrix: It is necessary to provide cluster comparison matrix for
each network. This can be used together with the weighted super-matrix to see what level
of dependency was captured as the cluster weights were applied and how column nor-
malization was obtained.

Limit Matrix: It is good to always report the limit super-matrix and not just the final
priorities of interest. This helps with result verification.

Weighted Super-matrix: This contains a lot of information and detailed reporting on
this will enhance the result verification process.

Sensitivity Analysis: It is important to examine how robust the decision is. The sensi-
tivity analysis within each subnetwork may be done at the level of the criteria clusters or
even at the level of an individual criterion. While the type and extent of the sensitivity
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analysis will vary from study to study, it is necessary to discuss the sensitivity approach
that was followed and explain why those specific analyses were important.

Rating scale: it is important to report the rating scales for each criterion, particularly
if there have been different scales used for the different criteria. As much as possible, set
the rating scales using mathematical models or as objective as possible.

2.3.3. Data Envelopment Analysis

Another form of multi-criteria decision-making methodology is the use of “Data En-
velopment Analysis” model. It is a mathematical programming approach used to measure
productive efficiency, based on the idea of the production frontier in micro-economics
[55]. Although DEA has a strong link to production theory in economics, the tool is also
used for benchmarking in operations management, where a set of measures is selected to
benchmark the performance of manufacturing and service operations. In benchmarking,
the efficient DMUs, as defined by DEA, may not necessarily form a “production frontier”,
but rather lead to a “best-practice frontier” [56].

DEA has various applications such as in performance evaluations, cost benefit anal-
ysis etc. However, we shall discuss it in the context its application in multi-criteria deci-
sion-making. The DEA is used to measure the performance efficiency of set of entities or
alternatives also known as Decision Making Units (DMU). To explain the concept of DEA,
we shall use a combination of existing literatures in the topic and arbitrary data example
for clarification of the concepts. We shall be using the CCR model of DEA which is based
linear programing as developed by Charnes in 1978 [56].

The sample in table/matrix below, shows the attributes of different gaming console
alternatives. These alternatives can be regarded as decision making units (DMU) 1 to 4.

Attribute or Criteria
Price Storage Camera .
Screen thickness (mm
© | (eB) (MP) {mm)
c°"ls°'e 250 16 12 . ‘|\ DMU-1
"
g Console | .o 16 8 T DMU-2
g 2 5 |
c
£
2 | Console |, 32 16 T DMU-3
2 3 45 |
C°":°'e 275 32 8 . ‘|\ DMU-4

Table 1: Specifications for different gaming consoles laptops

The DEA model employs the concept of system efficiency which uses output or input
to determine the overall efficiency of a DMU. The non-beneficial criteria are classified as
inputs, in this case ‘Price’ while the beneficial criteria are classified as outputs i.e., ‘stor-
age’, ‘camera’ and ‘screen thickness’. A DMU is considered to be inefficient if it fails to
attain maximum output with minimum input.

The first step I the evaluation is to normalize the matrix using the formula below

Ny = 2

ij
\/lexzij

This results to
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Price ($) St(zg;)ge Camera (MP) scree'(‘r:‘:(;k"ess

@ | Consolel | 04735 0.3162 0.5222 0.4551
>
§ | Console2 | 94262 | 03162 0.3482 0.5689
c
8 | Console3 | (5632 0.6325 0.6963 0.5120
<

Console4 | 05209 0.6325 0.3482 0.4551

Table 2: Normalized matrix

Given that the basic fractional CCR model is a non- convex programming which is
very tough to compute, the linear programming method developed by Charnes in 1978
makes computations easier and it is articulated either by maximizing the output or mini-
mizing the input criteria. The formular is

m
Jr = min (Z Vi Xige)
=1

Subject to the following constraints
N m

—Z WY+ ) vixik =20forj=1,..,n

r=1 i=1

N

Z UpYrp = 1

r=1

w>1,r=1,...,sand v: 20, i=1,....,m
n = number of alternatives (DMUSs)
m = number of input criteria
s =number of output criteria
xik and y:x denotes the values of the it input criterion and r*» output criterion for kth alter-
native (inputs and outputs)
ur and vr are the non-negative variable weights to be determined by the solution of the
minimization problem.
If evaluate the first DMU (console 1), we have the objective function as
gl =min(0.4735V1)
subject to constraints
- 0.3162u1 - 0.5222u2 - 0.4551us + 0.4735V1 >0
- 0.3162u1- 0.3482u2 - 0.5689us + 0.4262V1 >0
- 0.6325ul - 0.6963u2 - 0.5120us + 0.5682V1 >0
- 0.6325ul - 0.3482u2 - 0.4551us+ 0.5209V: >0

Common constraints

With equality constraint of 0.3162u1 + 0.5222u2 + 0.4551us =1

u1, uz, usz, vi=0
same is repeated for the other DMU where the common constraints remain the same and
the equality constraint and objective function changes as shown below:

g2 =min(0.4262V1) with equality constraint: 0.3162u1 + 0.3482u2 + 0.5689us = 1

g3 =min(0.5682V1) with equality constraint: 0.6325u1 + 0.6963u2 + 0.512uz =1

g+ =min(0.5209V1) with equality constraint: 0.6325u1 + 0.3482u2 + 0.4551us = 1

After outlining all the required equations for the objective functions and constraints,
you may now optimize each of the DMU parameters to calculate outputs and outputs (gx
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and Hx) Applications such as math lab or excel can be utilized for such optimization. The
solution for our sample shows that consoles 2 3 and 4 are all efficient and anyone of them
can be chosen since they have same values in the input criteria and the output criteria.
The choices are based on the need to get the maximum output with minimal input.

DEA makes it possible to identify efficient and inefficient units in a framework where
results are considered in their context. In addition, DEA also provides information that
enables the comparison of each inefficient unit with its “peer group”, that is, a group of
efficient units that are identical with the units under analysis [57]. To achieve sustainable
manufacturing, the DEA approach can be utilized to evaluate productivity from input to
output as derived from economic factors. The DEA bad-output model can be used to eval-
uate the sustainability performance of a manufacturing company [55] .

2.4. Product Development (Quality Function Deployment)

Quality function deployment (QFD) is a method used to help transform customer's
expectations, preferences, and aversions (Voice of customer) into engineering characteris-
tics for a product. It was originally developed in Japan in 1966 by Yoji Akao and he de-
scribed it as a “method to transform qualitative user demands into quantitative parame-
ters, to deploy the functions forming quality, and to deploy methods for achieving the
design quality into subsystems and component parts, and ultimately to specific elements
of the manufacturing process” [58, 59]. QFD was introduced in the Unites States in the
early 1980s by the major auto manufacturers like Ford and General Motors, also some
electronics manufacturers used the concept [60].

QFD is used in several sectors ranging from manufacturing, health care and service
organizations. In the world of business, every organization has customers who they work
towards satisfying their demands and a great approach or tool of choice is the QFD. It is
a focused methodology to carefully listen to the voice of customer and effectively respond
to their need and expectations. QFD translates customer requirements into measurable
design targets and drive them from the assembly level down to the sub assembly, compo-
nent, and production process controls. The methodology provides a defined set of ma-
trixes utilized to translate these progressions [58, 61, 62].

One of the most important aspects of every organization success is effective commu-
nication. It is vital that the Voice of Customer (VOC) is communicated to multiple opera-
tions throughout the organizations ranging from design, quality, manufacturing, produc-
tion, marketing, and sales etc. This allows the entire organization to work together to make
a product with very high level of customer perceived value. This is the key benefit of the
use of QFD as it is customer focused and provides avenue for direct competitor analysis
i.e., it allows for direct comparison of how an organization’s design or product compares
with competitors in meeting the VOC. Another key benefit of the QFD is short product
development time and lower costs because it reduces the likelihood of late design changes
by focusing on product features and improvements based on customer requirements [58,
60, 61]. QFD provides a structured method and tools for documenting/recording the de-
cisions made and lessons learned during the product development process which can
serve as a historical record for utilization in future projects/products [62].

The QFD methodology can be described as a 4-phase process that encompasses the
activities throughout the product development cycle. A series of matrixes are utilized at
each phase. The voice of customer is utilized to translate the VOC to design requirements
for each system, sub-system, and components. The four phases of QFD are described in
Figure 5 below:
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Design
Requirement System or Part
Requirements Manufacturing
2 RS Process Controls
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Specific Targets . EE
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Figure 5: QFD implementation phases

Product Definition: This involves the collection of VOC and translating it into prod-
uct specifications. Sometimes, it may also involve some form of competitive analysis to
evaluate how effectively the existing competitors are fulfilling customer wants and needs.
There is also an initial product design concept with specifications and performance. [60,
62, 63].

Product Development: In this phase, the critical parts and assemblies are identified.
These product characteristics are cascaded down and translated into critical parts and as-
sembly specifications. Also, the functional requirements for the specification are defined
for each functional level [60-62].

Process Development: Here, the manufacturing and assembly processes are de-
signed based on product and component specifications. The process flow is developed,
and the critical process characteristics are identified [60, 62].

Process Quality Control: Prior to production launch, process parameters are deter-
mined, and the appropriate process controls are developed and implemented. Production
only begins after capability studies are done.

The House of Quality (HoQ) is an effective QFD tool that is used to translate the VOC
into product or service design characteristics. It utilizes relationship matrixes and is usu-
ally the first matrix used in the QFD process [59]. Figure 6 shows the HoQ with its key
sections.

ROOF
Interaction of HOWs.

Roof Ranking System

++ Strong Positive

+ Positive

None

Competitor "
Comparison - Negative

Importance

WHATs

® o -- Strong Negative

Body Ranking System

@ Strong 9

O Moderate 3

A Weak 1

Relative Importance None 0
Lower Level

Figure 6: QF D House of Quality [63]

The HoQ demonstrated the relationships between the customer wants i.e., the
“WHATSs” section in Figure 6 and the design parameters i.e., the “THOWSs”. The matrix is
data intensive and allows the capture of large amount of information in one place. HoQ's
name is derived from its structure resembling that of a house [63].

Level 1 QFD:

The “WHATSs"” section of the level 1 HoQ is usually the first section to be determined.
This is where the VOC are listed. There are various tools and techniques used to determine
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the VOC ranging from observation, interview, questionnaire, database, checklists etc. The
outlined functions from the VOC are ranked based on their level of importance to the
customer using appropriate scales of importance [62, 63]. The “HOWSs” section (also
known as Ceiling) contains the design features and/or technical requirements of the prod-
uct to align with the VOC. The body of the HOW-WHAT matrix is where the “Hows” are
ranked according to their correlation in fulfilling each of the “Whats”. Ranking systems
are used is a set of symbols which indicates either strong, moderate, weak or no correla-
tion. The table in Figure 6 titled “Body Ranking System” show the ranking symbols and
their corresponding values. The “Roof” matrix is used to indicates the level of interrela-
tionship between the design requirements. The rating for the roof matrix ranges from
strong positive to strong negative as shown in “Roof Ranking System” table in Figure 6.
There is also a competitor comparison which visualized a comparison between our prod-
ucts and other competitor products in the context of how they fulfil the customer require-
ment. This section should be filled out using mainly direct feedback from customers. The
relative importance section is derived by sum-product of the value of each column and
the importance factor. These can be represented as discreet number or a percentage of
total; it is useful for ranking each of the “Hows” to identify where to allocate most of the
resources. The lower level or foundation lists more specific target values for technical
specifications relating to the “Hows” that are used to satisfy he VOC. The data from the
foundation is deployed to appropriate teams within the organization and it populated
into the HoQ for the level 2 QFD [58-64].

3. Methods
3.1. Problem statement

The advent of the Fourth industrial revolution has led to the emanation of new fronts
for competitiveness, strategy and productivity in industrial processes and manufacturing.
The flexibility of production planning and control plays a vital role in a business’s ability
to meet demands, stay viable and differentiate itself from competitors.

Environmental, Social, Political and Economic factors are having increasing impacts
on industry operations. However, with globalization and the exponential pace of techno-
logical advancements have introduced various areas of opportunities for industries. Busi-
nesses are seeking to take advantage of these opportunities to implement various com-
puter-aided systems and industry 4.0 concepts that will tackle various aspects of their
operations to achieve production flexibility which in turn provides key sustainability
qualities.

Computer-aided Production flexibility, if achieved and optimized, can promote key
aspects of business including:

High availability: Production is up and running for long periods of time, with little or no
unplanned downtime.

Elasticity and Scalability: Ability to automatically or dynamically increase or decrease
resources as needed for any given workload

Agility and Fault tolerance: Ability to react quickly with minimal human intervention
and remain up and running in the event of a component/process failure or malfunction.
Disaster recovery: Capability to quickly recover from catastrophic events that occur that
may seriously affect the business.

The focus point of this study is the identification of key industry 4.0 attributes (computer-
aided systems) that are implemented in production planning/control, subsequent deduc-
tion of the requirements to achieve production flexibility in manufacturing industries and
the level of impact it has on sustainability.

3.2. Objectives
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The aim of the research is to discuss the various segments of typical manufacturing
life cycle and their corresponding digital manufacturing tools, outline the outline the in-
dustry 4.0 technological requirements the respective tools and finally identify the level of
impact it has in achieving production flexibility that promotes business sustainability.

3.3. Research Questions

v" What are the smart requirements in production planning and control that
promote flexibility?

v" What kind of computer-aided systems (Industry 4.0 technological concepts)
can be integrated for production management?

v What are the most effective technological concepts for providing the smart
capability requirements identified in 1 above?

v" How does production flexibility promote business sustainability in areas of
availability, elasticity/scalability, agility/fault tolerance and disaster recov-
ery?

3.4. Conceptualization

Industry 4.0: This refers to the fourth industrial revolution; centering on the integration
of business, information technology and engineering processes. It provides digital solu-
tions for the automation of manufacturing. [4, 6, 9, 10]

Digitalized manufacturing: This implies the integration of computational intelligence,
automation, robotics, additive manufacturing, and human-machine interaction in the pro-
cess of manufacturing. [4]

Production flexibility: Ability to easily adapt to and implement changes in the type,
quantity and frequency of product being manufactured. [4, 5, 7, 44]

Computer-aided systems: This refers to the concepts and technologies of industry 4.0
such as digital simulation, autonomous robots, cloud computing, Internet of Things, Big
Data & Analytics, Augmented Reality, Cyber security etc. [4, 9]

Sustainability: This refers to business sustainability involving the ability of industries to
possess capabilities such as high availability, elasticity, scalability, agility, fault tolerance
and disaster recovery. [5, 45]

4. Results

In the previous sections, we identified key capabilities which are required that pro-
mote smart and flexible production planning and control in HMLV manufacturing envi-
ronment. We also identified the industry 4.0 concepts that are applicable in a wide range
of manufacturing industries. In this section, we shall use content-analysis based approach
to outline and rank the smart requirements for production planning and control that pro-
mote flexibility and the level of impact the industry 4.0 concepts have in providing these
smart capability requirements.

The capabilities and industry-4.0 concepts as identified are outlined below:
Capabilities:

C-1. Real-Time

C-2. Adaptability and Dynamic

C-3. Visibility and traceability

C-4. Synchronization

C-5. Autonomy

C-6. Predictability

C-7. Integration and Interoperability of systems

C-8. Scalability and Reconfiguration

C-9. Distributed PPC

C-10. Collaboration and Cooperation

C-11. Mass Customization


https://doi.org/10.20944/preprints202203.0254.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2022 d0i:10.20944/preprints202203.0254.v1

17 of 57

C-12. Big data-driven
C-13. Accuracy
C-14. Context Awareness

Industry 4.0 Concepts:

A-1. Cyber-Physical Systems (CPS)

A-2. Cloud Computing

A-3. Internet of Things (IoT)

A-4. Big Data and Analytics/ Artificial Intelligence (BDA/AI)
A-5. Additive Manufacturing (AM)

A-6. Simulation

A-7. Cybersecurity

A-8. Mobile Technologies

A-9. Adaptive Robotics

Using the Analytical Hierarchy Process multi-criteria decision-making approach, we can
group the aspects of the evaluation using the below:

Goal = Production Flexibility
Criteria = PPC Capabilities
Alternatives = Industry 4.0 technologies

The criteria can be broken down into further levelsi.e., sub-criteria based on specific
industry and/or specific PPC to conduct the analysis in a more granular level. However,
for the purpose of this study, we shall limit the hierarchy of the AHP to just 3 levels as
shown in figurel3 below. (For readability, not all criteria and alternatives are designed in
the hierarchy, rather they are outlined by the right side.)
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Figure 7: Hierarchy of criteria/objectives [Author’s Work] 3
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Adaptability
and Dynamic

Visibility and
traceability

CAPABILITY REQUIREMENTS REFERENCED PER ARTICLE

Synchronization | Autonomy | Predictability

Integration and
Interoperability of
systems

Scalability and | Distributed
Reconfiguration

Collaboration
and
Cooperation

Accuracy

Context
Aw areness

C-2

C-3

(Qin, Liu, and Grosvenor 173-178)
(Manavalan and Jayakrishna 925-
953)

(Craveiro et al. 251-267)
(Rojo Gallego Burin, Perez-
Arostegui, and Llorens-Montes
100610)

(Hansen and Bagh )

(Singh )

(Messner et al. 689-694)
(Gaub 401-404)

(Gallego Garcia and Garcia Garcia )

(Van Dierdonck and Miller 37-46)
(Jasko et al. 103300)
(Heéctor, Luis, and Sanchez )
(Jauregui Becker, Borst, and van
der Veen 419-422)
(Garcia and Garcia 415)
(Machado et al. 1113)
(Innovapptive )

(18O and ASTM-international )
(Silva, Bias Ribeiro da et al. 174)
(William J Stevenson )
(Miller, Veile, and Voigt 106733)
(Kocsietal.)

(Silva, Hiias Hans Dener Ribeiro da
et al. 240)
(Schumacher, Nemeth, and Sihn
409)

(Litster and Bogle 1003)
(Bueno, Filho, and Frank 106774)
(KIEL et al. 1740015)

(Delic and Eyers 107689)
(Ojstersek and Buchmeister )
(Dilberoglu et al. 545-554)
(Ming-w ei and Shi-lian 151)

(Wall et al. 1)

(Shang and You 1010-1016)
(Rossit, Tohmé, and Frutos 2164)
(Wu, Huang, and Yang 143)

TOTAL |23

C-7

C-8

C-10

C-13

C-14

Table 3: Articles discussing various kinds of requirements for production flexibility (Authors own compilation)
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To minimize the level of subjectivity in conducting the pairwise comparison of the
criteria, we use Table 3 which shows the list of articles from various scientific databases
that identified the capabilities discussed in the literature review as requirements for pro-
duction flexibility. It can be seen that “Integration and Interoperability of Systems” is
identified in 31 of the articles out of the 34 articles reviewed while capabilities like “Con-
text awareness” and “Distributed PPC” had the least number of articles that identified
them. This table will form the basis of the objectivity in assigning importance index for
the purpose of the AHP decision-making analysis.

First, we determine the percentage reference which is

G
Reference Ratio = T

Equation 1

Where Cn = total number of articles that cited the capability and T is total number of
articles reviewed.

This gives:

Capability | Ref_Ratio
C1 0.676471
C-2 0.705882
C3 0.794118
C-4 0.852941
C-5 0.647059
C-6 0.617647
C-7 0.911765
C8 0.794118
9 0.529412

C-10 0.647059
C-11 0.588235
C-12 0.794118
C-13 0.705882
C-14 0.529412

Table 4: Reference ratio of capabilities (Author's Work)

Then we calculate the reference ratio for each capability with other capabilities as
shown in Table 17 in the appendix A. The rows are subtracted from the column therefore
the positive values indicate that the row item is referenced in more articles than the col-
umn items by that percentage of articles while the negative values indicate less.

To apply this ‘reference ratio” into the Saaty’s scale of relative importance, we apply
conditions for each assignment as representation as shown in the table below:
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Table 5: Scale of importance

Condition for

Scale of relative importance R
reference ratio

Equal Importance 0to 10%
Weak/light >10% and <=20%
Moderate Importance >20% and <=30%
Moderate Plus >30% and <=40%

Strong Importance
Strong Plus
Very Strong Importance
Very, very Importance
Extreme Importance

>40% and <= 50%

>50% and <=60%

>60% and <= 70%

>70% and <=80%
>80%

Olo(Q|an|wn ||| ]|—

Using the scale in Table 5 above, we conduct the pairwise comparison of the criteria
resulting to Table below. The B-Box software application is used for conduction the AHP
analysis.

On Standardizing the importance (see Table 7) we see the ranking of the various cri-
teria as it relates to the requirements for the goal of flexibility in manufacturing. ‘Integra-
tion and interoperability of systems’ rank the highest followed by, ‘synchronization’, ‘vis-
ibility/traceability” and ‘scalability/reconfiguration’. Although, also required for produc-
tion flexibility (as discussed in the literature review); ‘context awareness’, ‘distribute PPC’
and predictability ranked lowest, and this may be attributed to the fact that they highly
depend on the existence of the other capabilities.
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Integration and Collaboration
Adaptability | Visibilityand Interoperability | Scalabilityand |Distributed and Mass Big data- Context
Criteria Real-Time [ and Dynamic il Synchronization | Autonomy|F i ili of sy; R i PPC C i Ci izati driven |Accuracy|Awareness

Real-Time 1 1 112 12 1 1 1/3 112 2 1 1 12 1 2

Adaptability and Dynamic 1 1 1 1/2 1 1 1/3 1 2 1 2 1 1 2

Visibility and traceability| 2 1 1 1 2 2 12 1 3 2 3 1 1 3

Synchronization 2 2 1 1 3 3 1 1 3 3 1/3 1 2 4

Autonomyl 1 1 12 1/3 1 1 113 12 2 1 1 12 1 2

Predictability} 1 1 172 113 1 1 113 12 1 1 1 112 1 1

Integration and Interoperability of systems 3 3 2 1 3 3 1 2 4 3 4 2 2 4

Scalability and Reconfiguration 2 1 1 1 2 2 1/2 1 3 2 3 1 1 3

Distributed PPC 12 112 1/3 1/3 112 1 1/4 1/3 1 112 1 1/3 12 1

Collaboration and Cooperation 1 1 1/2 1/3 1 1 1/3 1/2 2 1 1 1/2 1 2

Mass Customization 1 12 113 3 1 1 1/4 1/3 1 1 1 1/3 12 2

Big data-driven 2 1 1 1 2 2 12 1 3 2 3 1 1 3

Accuracy| 1 1 1 12 1 1 12 1 2 1 2 1 1 2

Context Awvareness 12 12 113 1/4 12 1 1/4 13 1 12 12 113 12 1

Table 6: Pairwise Matrix Comparison of the criteria [Author’s Work]
. . Integration and A . .
Crieria Real-Time Adaptabilityand | Visibility and o g s Di Ce Mass Big data- Accuracy Context
Dynamic traceability ’ e Reconfiguration PPC and Cooperation | Customization | driven Awareness

Real-Time 0.053 0.065 0.045 0.045 0.050 0.048 0.052 0.045 0.067 0.050 0.042 0.045 0.069 0.063 0.053 9
Adaptabilityand Dynamic 0.053 0.065 0.091 0.045 0.050 0.048 0.052 0.091 0.067 0.050 0.084 0.091 0.069 0.063 0.065 7
Visibility and traceability 0.105 0.065 0.091 0.090 0.100 0.095 0.078 0.091 0.100 0.100 0.126 0.091 0.069 0.094 0.092 3
Synchronization 0.105 0.129 0.091 0.090 0.150 0.143 0.156 0.091 0.100 0.150 0.014 0.091 0.138 0.125 0.112 2
Autonomy 0.053 0.065 0.045 0.030 0.050 0.048 0.052 0.045 0.067 0.050 0.042 0.045 0.069 0.063 0.052 10
Predictability 0.053 0.065 0.045 0.030 0.050 0.048 0.052 0.045 0.033 0.050 0.042 0.045 0.069 0.031 0.047 12
Integration and Interoperability of systems 0.158 0.194 0.182 0.090 0.150 0.143 0.156 0.182 0.133 0.150 0.168 0.182 0.138 0.125 0.154 1
Scalabilityand | 0.105 0.065 0.091 0.090 0.100 0.095 0.078 0.091 0.100 0.100 0.126 0.091 0.069 0.094 0.092 3
Distributed PPC 0.026 0.032 0.030 0.030 0.025 0.048 0.039 0.030 0.033 0.025 0.042 0.030 0.034 0.031 0.033 13
Collaboration and Cooperation 0.053 0.065 0.045 0.030 0.050 0.048 0.052 0.045 0.067 0.050 0.042 0.045 0.069 0.063 0.052 10
Mass Cu izatiy 0.053 0.032 0.030 0.271 0.050 0.048 0.039 0.030 0.033 0.050 0.042 0.030 0.034 0.063 0.058 8

Big data-driven 0.105 0.065 0.091 0.090 0.100 0.095 0.078 0.091 0.100 0.100 0.126 0.091 0.069 0.094 0.092 3
Accuracy 0.053 0.065 0.091 0.045 0.050 0.048 0.078 0.091 0.067 0.050 0.084 0.091 0.069 0.063 0.067 6
Context Awareness 0.026 0.032 0.030 0.023 0.025 0.048 0.039 0.030 0.033 0.025 0.021 0.030 0.034 0.031 0.031 14

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: Standardization of Criteria Importance [Author’s Work]
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The consistency ratio of the criteria shows that the methodology used for the com-
parison of the input data is consistent. See results for the consistency test below.

Criteria Average Weight (A) | product of Matrices (B)| Consistency Measure (B/A) | Consi y index
Real-Time 0.053 0.766 14.526 0.040
Adaptabilityand Dynamic 0.065 0.962 14.697 0.054
Visibility and traceability 0.092 1.368 14.794 0.061
Synchronization 0.112 1.605 14.287 0.022
Autonomy 0.052 0.747 14.466 0.036
Predictability 0.047 0.684 14.539 0.041
Integration and Interoperability of systems| 0.154 2.244 14.614 0.047
Scalabilityand Reconfiguration 0.092 1.368 14.794 0.061
Distributed PPC 0.033 0.481 14.717 0.055
Collaboration and Cooperation 0.052 0.747 14.466 0.036
Mass Customization 0.058 0.889 15.451 0.112
Big data-driven 0.092 1.368 14.794 0.061
Accuracy 0.067 0.988 14.672 0.052
Context Awvareness 0.031 0.442 14.450 0.035
Consistencyindex average (Cl) 0.051
Consistencyratio (CR) 0.032

Table 8: Consistency test on the criteria

Having ranked the smart capability requirements, the AHP analysis proceeds to eval-
uate the respective industry 4.0 concepts on how well they can help industries exhibit
these capabilities. The pairwise comparison conducted for the alternatives shows con-
sistency in the data for all criteria hence this was used for subsequent assignment of rela-
tive importance to the alternatives (See Table 18 to Table 23). The ranking resulting from
the AHP analysis is as shown in Table 9 below. Internet of Things has a weighting of 1.81
followed closely by Cyber-Physical system with 1.76 weight to rank number 1 and 2 re-
spectively. On the other hand, Cybersecurity ranked lowest amongst all the technologies.
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| databliy) VSIBIY o - oni  |negratonand | i and|Distibuted TR0 pgss | Big cate- Contet
ltems Real-Time| and and ) Autonomy | Predictability | Interoperability ) and o . Accuracy Total RANK
) .| ation Reconfiguration |  PPC .| Customization | driven Awareness
Dynamic |traceability of systems Cooperation
Cyber-Physical Systems 0219 0.160]  0.228|  0.246]  0.205 0.073 0214 0.166 0.206 0.109) 0050  0.131 0.121 0252 0.176) 2
Cloud Computing 0.113 0.108]  0.099]  0052]  0.081 0.194 0.066 0.039 0.116 0.077, 0.051 019 012 0057) 00%] 5
Intemet of Things 0219 0.179]  0214]  0.209]  0.205 0.099 0.266 0.166 0111 0.143) 0.470) 0093  0.112 0197)  0481) 1
Big Data and Analytics/ Artificial Intelligence 0.107 0076]  0.130]  0.166]  0.055 0314 0.112 0.038 0.156 0.181 0.051 0350 0204 0.132]  0147) 3
Additive Manufacturing 0.024 0.061 0.021 0043 0100 0.024 0018 0.343 0.029 0.021 0312  0017] 0074 0.034| 0080 6
Simulation 0.067 0.103]  0.070]  0.067]  0.055 0.075 0.056 0.063 0.027 0.037] 0.090[ 0045 0.112 0064/ 0067 8
Cybersecurity 0.040 0.021 0.051 0023 0030 0.037 0.029 0.021 0.082 0.094 0020 0.032]  0.058 0023] 0037 9
Mobile Technologies 0.147 0202|  0.145 0413 034 0.117 0.164 0.078 0228 0.302 0.162] 0093  0.09% 0.153] 0144 4
Adaptive Robotics 0.064 0089  0.044] 0080  0.37 0.067 0.076 0.088 0.045 0.035) 0092] 0045  0.104 0.089] 0075 7

Table 9: Rank of the alternatives (Industry 4.0 concepts)

4.1. SURVEY CASE STUDY

The analysis done so far have been based off a literature review approach and the objectivity employed in the AHP analysis
discussed above have been based on studies extracted from the work of various authors. However, the respective literatures where
information is sourced have their publication date ranging between 1992 and 2020. However, due to the rapid advancement of tech-
nology, we shall examine the current application of these I4.0 concepts in today’s industries. We shall continue the case study using a
survey approach and comparing the results with the ones derived so far.
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The survey was conducted between February and March 2021 to gather firsthand
information from successful industries across various sectors. The survey was both ex-
ploratory and descriptive in nature, aiming to gather current data on industrial status as
it relates to their smart capabilities and application of industry 4.0 concepts in their general
manufacturing/business operations.

The responses received were from various regions across the world and below is a
distribution of the responses by volume with a total of 117 responses.

—
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Figure 8: Responses by region
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Figure 9: Responses by country.

Although the responses were received from various forms of industries however, the
primary target was manufacturing industries therefore 78% of the responses were re-
ceived from such industries which run some form of HMLV manufacturing environment.
Also, the AHP analysis we shall conduct will include only responses from the manufac-
turing industries while further comparisons and discussions will be done using infor-
mation derived from the analysis involving the rest of the data.

Assigning ranks to the 14.0 concepts:

The percentage of the industries which utilize the respective 4.0 concepts is as show

below:

Cybfer- Cloud IS Bﬁgdaté - Additive X ) cyber- Mobile Adaptive
Physical ¢ i of Analytics/Artificial v facturi Simulation itv| Technol Roboti
T omputing Things intelligence anufacturing security[ Technology| Robotics

Al A2 A3 A4 A5 A6 A7 A8 A9

50.43%| 48.72% | 93.16% 82.05% 12.82% 37.61% |43.59%| 52.14% | 33.33%

When we take the average for the comparison of the respective technologies, and factor it
into the Saaty’s scale of relative importance, we have the pairwise comparison below:
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Al A2 A3 A4 A5 A6 A7 A8 A9
Al 1 3 1/4 1/3 4 6 2 1/2 4
A2 1/3 1 1/6 1/5 2 3 1/2 1/4 3
A3 4 6 1 2 7 9 4 3 8
A4 3 5 1/2 1 5 8 4 2 7
A5 1/4 1/2 1/7 1/5 1 3 1/3 1/5 2
A6 1/6 1/3 1/9 1/8 1/3 1 1/5 1/7 1/2
A7 1/2 2 1/4 1/4 3 5 1 1/3 3
A8 2 4 1/3 1/2 5 7 3 1
A9 1/4 1/3 1/8 1/7 1/2 2 1/3 1/6 1

Table 10: Pairwise comparison derived from survey data

Going forward, for readability, we shall be using A1 to A9 to denote the respective indus-
try 4.0 concepts in tables.

Normalizing the pairwise comparison and calculating for the weight we derive a pre-
liminary ranking as shown in Table 11 below.

Al A2 A3 A4 A5 A& A7 A3 A9 | Weight [ Rank
Al| 0.087 | 0.135| 0.087 | 0.070 | 0.144 | 0.136| 0.130 | 0.066 | 0.116| 0.108
A2 | 0.029 | 0.045| 0.058 | 0.042 | 0.072 | 0.068 | 0.033 | 0.033 | 0.087 | 0.052
A3 | 0.348 | 0.271| 0.347 | 0.421 | 0.251| 0.205| 0.260 | 0.395 | 0.232| 0.303
A4 | 0.261 | 0.226| 0.174 | 0.210 | 0.180 | 0.182 | 0.260 | 0.263 | 0.203 | 0.218
AS | 0.022 | 0.023 | 0.050 | 0.042 | 0.036 | 0.068 | 0.022 | 0.026 | 0.058 | 0.038
A6 | 0.014 | 0.015] 0.039| 0.026 | 0.012 ) 0.023 | 0.013 [ 0.019 | 0.014 | 0.019
A7 | 0.043 | 0.090 | 0.087 | 0.053 | 0.108 | 0.114 | 0.065 | 0.044 | 0.087 | 0.077
A8 | 0.174 | 0.180| 0.116 | 0.105 | 0.180 | 0.159 | 0.195 | 0.132 | 0.174 | 0.157
A9 | 0.022 | 0.015] 0.043 | 0.030 | 0.018 | 0.045] 0.022 | 0.022 | 0.029 | 0.027

B

@ w| ! e|~[n]e o

Table 11: Preliminary ranking of the alternatives

Note: The above rankings only serve as an aid when calculating for relative importance
during the AHP analysis.

A part of the survey was to determine the level of importance attributed to the re-
spective capabilities by the industries and this resulted in the summary score in table be-

low:
Average
Capability Score from

survey
C1 Accuracy 6.155
c2 Adaptability and Dynamic 3.000
3 Autonomy 10.018
ca Big data-driven 4.062
C5 Context Awareness 9.563
Cb Distributed PPC 8.765
7 Integration and interoperability of systems 2.809
&3] Mass Customization 9.158
c9 Predictability 6.957
C10 Real-Time 6.835
C11 Synchronization 5.583
c12 Visibility and traceability 4.115

Table 12: Attributed importance to the capabilities

Applying the same concept as in the literature review approach case study (See Equation
1). However, Cn now denotes number of industries that ranked the concept as vital, and
T is the total number of industries that conducted the ranking; we conduct the pairwise
comparison of the capabilities resulting in Table 13 (We shall use C1 to C12 to denote the
capabilities going forward)
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Criteria | €1 | €2 [ ¢c3 | c4 | c5 | c6 | ¢7 | ¢8| ¢ | cio | c11 | c12
c1 1 12 | 2 1 2 1 13 | 1 1 2 1 1
c2 2 1 4 1 3 3 1 3 2 1/3 2 1
c3 2 | 4 |1 3| | e | ye |1 |y | 12| 12 | 13
c4 1 1 3 1 3 2 12 | 2 2 3 1 1
cs 2 |3 | 1 3| |y | e |1 | e 1 12 | 13
c6 1 13 | 2 | 12 | 2 1 13 | 1 1 1 1 1/2
c7 3 1 4 2 4 3 1 3 3 4 2 2
c8 1 13 | 1 |12 1 1 13 | 1 1 1 1 1/2
9 1 12 | 2 | 12| 2 1 13 | 1 i 1 1 1/2
c10 172 3 2 | 13| 1 1 1/4 | 1 1 1 12 | 13
c11 1 12 | 2 1 2 1 12 | 1 i 2 1 1
c12 1 1 3 1 3 2 12 | 2 2 3 1 1

Table 13: Pairwise comparison of the Criteria

Table 14 below and Table 24 in appendix A shows the standardization of the im-
portance and the consistency test respectively. This showed that the decision data as de-
rived from the analysis of the survey is consistent therefore, we can proceed with further
AHP analysis using the results. The ranking shows “Integration and interoperability of
systems” as the most important capability required for production flexibility.

crieria| ¢1 | c2 | c3 [ c4 | c5 | ce | c7 | c8 | co | c10 | c11 | ciz | Relative ooy
importance
G1 [0.074]0.051]0.074]0.105]0.083|0.059] 0.060|0.056 |0.061]0.1010.080]0.105] _ 0.076 6
C2 [0.148]0.103]0.148]0.105]0.125]0.176]0.179]0.167]0.121]0.017]0.160]0.105] __0.130 2
C3 [0.037]0.026]0.037]0.035]0.042]0.029] 0.045]0.0560.030]0.0250.040]0.035] 0036 | 12
C4 [0.074]0.103]0.111]0.105]0.125]0.118]0.090]0.111]0.121]0.151 [0.080]0.105] __0.108 3
C5 [0.037]0.034]0.037]0.035]0.042]0.029]0.045]0.0560.061]0.050]0.040]0.035] _0.042 | 11
C6 [0.074]0.034]0.074]0.053]0.083]0.059]0.060]0.056]0.061]0.050]0.080]0.053] __ 0.061 B
G7 [0.222]0.103[0.148]0.211]0.167]0.176]0.179]0.167]0.182]0.202[0.160[0.211] 0477 1
C8 [0.074]0.034]0.037]0.053]0.042]0.059]0.060]0.0560.061]0.0500.080]0.053] _ 0.055 | 10
G9 [0.074]0.051]0.074]0.053]0.042]0.059]0.060]0.0560.061]0.050[0.080]0.053] __ 0.059 9
C10 [0.037]0.308]0.074]0.035[0.042]0.059]0.045[0.056]0.061]0.050[0.040]0.035] _ 0.070 7
C11 [0.074]0.051]0.074]0.105]0.083]0.059]0.090]0.056]0.061]0.101]0.080]0.105] _ 0.078 5
C12 [0.074]0.103]0.111]0.105[0.125[0.118]0.090]0.111]0.121]0.151]0.080]0.105] _0.108 3

Table 14: Standardization of importance

Proceeding further, we evaluate the relative importance of the alternatives to have a deci-
sion matrix where we rank the alternative based on how important they are at providing
the criteria required for production flexibility. Table 25 to 28 in appendix A shows the
calculations involved and the consistency for all the alternatives derived from the survey
are within the acceptable range.

The decision matrix in Table 15 below shows the weights and ranking of the respec-
tive technologies.

D;f:tsrii‘;" c1 cz c3 ca cs c6 c7 c8 9 c10 c11 c12 J;‘:}llt Rank
AL 0204 | 0076 | 0055 | 0350 | 0432 | 0156 | 0412 | 0051 | 0314 | 0107 | 0166 | 0430 | 0156 :
Az 0058 | 0021 | 0030 | 0032 | 0023 | 0082 | 0029 | 0020 | 0037 | 0040 | 0.023 | 0051 | 0.036 9
A3 0112 | 0179 | 0205 | 0093 | 0197 | 0111 | 0266 | 0170 | 0099 | 0219 | 0209 | 0214 | 0181 i
A 0095 | 0202 | 0134 | 0093 | 0153 | 0228 | 0ded | 0462 | 0117 | 0147 | 0113 | 0145 | 0148 4
A5 0104 | 0089 | 0437 | 0045 | 0089 | 0.045 | 0076 | 0092 | 0067 | 0.064 | 0.080 | 0044 | 0.074 5
A6 0074 | 0061 | 0100 | 0017 | 0034 | 0029 | 0018 | 0312 | 0024 | 0024 | 0043 | 0021 | 0051 s
a7 0112 | 0103 | 0055 | 0045 | 0084 | 0027 | 0055 | 0090 | 0075 | 0.067 | 0.067 | 0070 | 0.070 .
A8 0121 | 0180 | 0205 | 031 | 0252 | 0208 | 0214 | 0050 | 0073 | 0219 | 0246 | 0228 | 0179 B
A9 0121 | 0108 | 0081 | 0196 | 0057 | 0116 | 0066 | 0051 | 0194 | 01413 | 0052 | 0099 | 0105 .

weight(e) | 0076 | 0130 | 0036 | 0108 | 0042 | 0061 | 0177 | 0055 | 0059 | 0070 | 0078 | 0408 | 0.000

Table 15: Decision matrix
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5. Discussion

In HMLYV production environment, there is high level of complexity involved in pro-
duction planning and control activities. The intricacy of many of the activities including
but not limited to production system design, location planning and analysis, facilities and
layout, demand forecasting, capacity planning, lot sizing, inventory and supply chain
management etc. become more complex; The AHP analysis conducted using both ap-
proaches (Literature review and Questionnaire survey) in the case study section identifies
Integration and interoperability of systems as the most important capability requirement
for production flexibility. However, the ranking of the importance level of other capabili-
ties varies as outlined in Table 7 and Table 14.

Comparing the results of the AHP from both case studies (See Table 9 and Table 15)
we can see that there is a significant difference in the ranking of the industry 4.0 im-
portance. Although the Literature review study and the survey study both identifies In-
ternet of things as the most important concept for provision of the capability requirement,
we can see the level of importance for most of the other concepts changed. The below table
shows the ranking from the two case studies:

Industry 4.0 Concept S;;ﬁ(y Lli{tal]‘l';:'
Cyber-Physical Systems 3 2
Cloud Computing 9 5
Internet of Things 1 1
Big Data and Analytics/ Artificial Intelligence 4 3
Additive Manufacturing 6 6
Simulation 8 8
Cybersecurity 7 9
Mobile Technologies 2 4
Adaptive Robotics 5 7

Table 16: Case study ranking of the alternatives

The survey rank has mobile technologies and cyber-physical system 27 and 3t in
importance while cloud computing ranked lowest. This is different for the literature re-
view ranking which has cybersecurity as the least important. This discrepancy may be
attributed to the fact that the literature review is based on old data and information de-
rived from previous works of authors. However, giving the fast pace of technological ad-
vancement and adoption of industry 4.0 concepts in manufacturing industries, the survey
analysis presents a more current information on the state of the application of the industry
4.0 technologies and concepts in the manufacturing industry.

Further findings from the survey analysis are outlined below:

o The average number of industry 4.0 concepts used simultaneously by manu-
facturing companies is 5 but the distribution varies on the type of technology
being deployed.

o 93% of manufacturing companies that deploy more than 5 industry 4.0 tech-
nological concepts have intercontinental customer base and office locations
with more than 250 employees and they have highly decentralized mode of
operation.

o Additive manufacturing is the least utilized technology with only 12.8% of the
industries having such as part of their manufacturing processes/technologies.
The literature shows that this is because the field is relatively new compared
to other technologies and therefore the advancements required for widespread
adoption with reduced cost implication is still in the early stages. However,
for the industries that utilize the technology, the analysis shows that the im-
portance is very high relative to other technological concepts which they de-
ploy. This is evident in one of the comments received in the survey responses
from a woodworking manufacturing company in Africa:
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“Although a very expensive addition to the factory, Since the installation of
my CNC router, there has been high improvement in the efficiency and output
of the company”

o Internet of Things ranked very high in both number of industries that utilize
the concept and the level of importance attributed to it. Big data analytics and
artificial intelligence followed closely in terms of number industries that use
the concept. However, mobile technologies ranked higher at providing the ca-
pabilities required for production flexibility and this is evident in the results
of the AHP analysis.

o The simple analysis of the responses from the service industries shows that the
average number of 14.0 technology concepts simultaneously deployed is 3 and
the prevalent concepts are Big data Analytics, Cloud Computing and Cyber-
security. Although this study is focused on manufacturing industries, the same
analytical approaches can also be used to determine the ranking of the capa-
bility requirement and technological concepts.

6. Conclusions

Production flexibility is paramount for the sustainability of any industry with a high-

mix low-volume manufacturing environment. This article conducts a literature review
and case study that answers the research questions on smart requirements in production
planning and control that promote flexibility Industry 4.0 technological concepts that can
be integrated for production management. See page 16
This study also addressed the most effective technological concepts for providing the
smart capability requirements. (See discussion above and ranking in Table 15: Decision
matrix)
Production flexibility promotes business sustainability in areas of availability, elastic-
ity/scalability, agility/fault tolerance and disaster recovery. The complex calculations and
activities involved in the production management lifecycle and operations can easily be
handle efficiently and effectively with the use of these industry 4.0 concepts with little
trade-offs. With these 14.0 concepts, industries combine multiple scheduling approaches
high levels of accuracy and dependability thereby enhancing flexibility. Also, the product
development activities discussed in section 1.1 and others can seamlessly run with close
to limitless amount of input data from various sources and the manufacturing system will
be able to handle and adapt to various scenarios that may come up.

We can also see that Multi-Criteria Decision Making (MCDM) methodologies can
provide effective way for industries to determine the best technology implementation re-
quired for various aspects of production management. Further research in this field in-
cludes Digitalized MCDM systems for Production planning and control with very high
levels of objectivity. This study took a broad approach to determine the impact of these
technologies. However, it can be developed to target a particular industry type, sector, or
operation. For example, forecasting or capacity planning in a specific automotive industry
can be handled using one or more MCDM approaches to determine the best combination
of technological concepts that will best provide desired results that will serve as inputs to
the manufacturing process.

As a further step, a promising approach that may be able to handle complex systems
and information flow to dynamically determine best productions approaches is the “Ge-
netic Algorithm”. Further studies can be done on the application of genetic algorithm as
key aspect in the development of dynamic production scheduling models that enhances
sustainability.
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Appendix A

Literature review approach AHP Analysis Tables
RATIO:| 0.676471 | 0.705882 | 0.794118 0.617647 | 0.911765 | 0.794118 | 0529412 | 0.647059 | 0.588235 | 0.794118 | 0.705882 | 0.529412

Table 17: Comparison of the ratios of the capabilities (Author’s work)

X Big Data and L X "

Cyber-Physical CIouc! Inteltnet of Analytics/ Arificial Addmve. Simulston| (C)berseeurty Moblle' Adapt!ve

Systems Computing| Things el Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.241 0.252 0.241 0.255 0.189 0.189 0.152 0.237 0.214 0.219
Cloud Computing 0.080 0.084 0.080 0.028 0.108 0.126 0.114 0.237 0.161 0.113
Internet of Things 0.241 0.252 0.241 0.255 0.189 0.189 0.152 0.237 0.214 0.219
Big Data and Analytics/ Artificial Intelligence 0.080 0.252 0.080 0.085 0.135 0.063 0.152 0.059 0.054 0.107
Additive Manufacturing 0.034 0.021 0.034 0.017 0.027 0.032 0.013 0.024 0.018 0.024
Simulation 0.080 0.042 0.080 0.085 0.054 0.063 0.114 0.030 0.054 0.067
Cybersecurity 0.060 0.028 0.060 0.021 0.081 0.021 0.038 0.030 0.018 0.040
Mobile Technologies 0.121 0.042 0.121 0.170 0.135 0.253 0.152 0.118 0.214 0.147
Adaptive Robotics 0.060 0.028 0.060 0.085 0.081 0.063 0.114 0.030 0.054 0.064

Table 18: Standardized comparison of the technologies (Author’s work)
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. Big Data and " . .
Cyber-Physical Clouq Intentnet of Analytics/ Artificial Mdmve' Sl Cerseey Moblle. Adapt!ve
Systems Computing| Things Intelligence Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.181 0.217 0.192 0.171 0.096 0.150 0.116 0.189 0.129 0.160
Cloud Computing 0.090 0.109 0.096 0.057 0.096 0.150 0.116 0.189 0.065 0.108
Internet of Things 0.181 0.217 0.192 0.171 0.241 0.150 0.140 0.189 0.129 0.179
Big Data and Analytics/ Artificial Intelligence 0.060 0.109 0.064 0.057 0.145 0.025 0.116 0.094 0.016 0.076
Additive Manufacturing 0.090 0.054 0.038 0.019 0.048 0.037 0.093 0.038 0.129 0.061
Simulation 0.090 0.054 0.096 0.171 0.096 0.075 0.116 0.038 0.194 0.103
Cybersecurity 0.036 0.022 0.032 0.011 0.012 0.015 0.023 0.027 0.013 0.021
Mobile Technologies 0.181 0.109 0.192 0.114 0.241 0.374 0.163 0.189 0.259 0.202
Adaptive Robotics 0.090 0.109 0.096 0.228 0.024 0.025 0.116 0.047 0.065 0.089
. Big Data and L . .
Gy A CIOUd. Inter.net & Analytics/ Artificial Mdltwe. Simulation | Cybersecurity Nbb"e. Adapt!ve
Systems Computing| Things e igEmes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.248 0.264 0.221 0.229 0.136 0.263 0.162 0.354 0.172 0.228
Cloud Computing 0.083 0.088 0.074 0.114 0.114 0.105 0.121 0.059 0.129 0.099
Internet of Things 0.248 0.264 0.221 0.343 0.136 0.263 0.162 0.118 0.172 0.214
Big Data and Analytics/ Artificial Intelligence 0.124 0.088 0.074 0.114 0.136 0.105 0.162 0.236 0.129 0.130
Additive Manufacturing 0.041 0.018 0.037 0.019 0.023 0.013 0.008 0.017 0.011 0.021
Simulation 0.050 0.044 0.044 0.057 0.091 0.053 0.162 0.039 0.086 0.070
Cybersecurity 0.062 0.029 0.055 0.029 0.114 0.013 0.040 0.029 0.086 0.051
Mobile Technologies 0.083 0.176 0.221 0.057 0.159 0.158 0.162 0.118 0.172 0.145
Adaptive Robotics 0.062 0.029 0.055 0.038 0.091 0.026 0.020 0.029 0.043 0.044
. Big Data and - . .
Cyber-Physical Clouq Intentnet of Analytics/ Artificial Mdmve' Sl Cerseeiy Moblle. Adapt!ve
Systems Computing| Things e Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.283 0.148 0.404 0.301 0.216 0.181 0.158 0.324 0.201 0.246
Cloud Computing 0.094 0.049 0.051 0.050 0.018 0.060 0.105 0.022 0.022 0.052
Internet of Things 0.142 0.198 0.202 0.301 0.180 0.241 0.158 0.259 0.201 0.209
Big Data and Analytics/ Artificial Intelligence 0.142 0.148 0.101 0.150 0.180 0.181 0.132 0.259 0.201 0.166
Additive Manufacturing 0.047 0.099 0.040 0.030 0.036 0.020 0.079 0.016 0.022 0.043
Simulation 0.094 0.049 0.051 0.050 0.108 0.060 0.105 0.022 0.067 0.067
Cybersecurity 0.047 0.012 0.034 0.030 0.012 0.015 0.026 0.013 0.017 0.023
Mobile Technologies 0.057 0.148 0.051 0.038 0.144 0.181 0.132 0.065 0.201 0.113
Adaptive Robotics 0.094 0.148 0.067 0.050 0.108 0.060 0.105 0.022 0.067 0.080

Table 19: Standardized comparison of the technologies cont.
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. Big Data and L . .
Cyber-Physical [ Cloud |[Internet of " L Additive . . . Mobile Adaptive
Systems Computing| Things Ane;:]);i:%g:tlcﬁemal Manufacturing Sl S ereEniy Technologies | Robotics
Cyber-Physical Systems 0.225 0.254 0.225 0.148 0.189 0.148 0.161 0.228 0.267 0.205
Cloud Computing 0.056 0.063 0.056 0.098 0.126 0.098 0.129 0.038 0.067 0.081
Internet of Things 0.225 0.254 0.225 0.148 0.189 0.148 0.161 0.228 0.267 0.205
Big Data and Analytics/ Artificial Intelligence 0.075 0.032 0.075 0.049 0.013 0.049 0.097 0.057 0.044 0.055
Additive Manufacturing 0.075 0.032 0.075 0.246 0.063 0.246 0.065 0.028 0.067 0.100
Simulation 0.075 0.032 0.075 0.049 0.013 0.049 0.097 0.057 0.044 0.055
Cybersecurity 0.045 0.016 0.045 0.016 0.031 0.016 0.032 0.023 0.044 0.030
Mobile Technologies 0.112 0.190 0.112 0.098 0.252 0.098 0.161 0.114 0.067 0.134
Adaptive Robotics 0.112 0.127 0.112 0.148 0.126 0.148 0.097 0.228 0.133 0.137
. Big Data and ” . .
Cyber-Physical [ Cloud |Internet of " L Additive . . . Mobile Adaptive
Systems Computing| Things Ane;m’;ﬁ;::imal Manufacturing Sl (S ereEniy Technologies | Robotics
Cyber-Physical Systems 0.055 0.033 0.140 0.061 0.086 0.020 0.110 0.099 0.055 0.073
Cloud Computing 0.275 0.166 0.350 0.122 0.143 0.177 0.146 0.198 0.165 0.194
Internet of Things 0.028 0.033 0.070 0.091 0.143 0.118 0.146 0.099 0.165 0.099
Big Data and Analytics/ Artificial Intelligence 0.330 0.499 0.280 0.365 0.200 0.296 0.183 0.397 0.275 0.314
Additive Manufacturing 0.018 0.033 0.014 0.052 0.029 0.015 0.012 0.025 0.018 0.024
Simulation 0.165 0.055 0.035 0.073 0.114 0.059 0.110 0.033 0.028 0.075
Cybersecurity 0.018 0.042 0.018 0.073 0.086 0.020 0.037 0.025 0.018 0.037
Mobile Technologies 0.055 0.083 0.070 0.091 0.114 0.177 0.146 0.099 0.220 0.117
Adaptive Robotics 0.055 0.055 0.023 0.073 0.086 0.118 0.110 0.025 0.055 0.067
. Big Data and L " "
Cyber-Physical Clouq Inter.net of Analytics/ Artificial Addltlve' Sl | Eyemsasy Moblle. Adapt!ve
Systems Computing| Things Intelligence Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.245 0.201 0.290 0.241 0.188 0.195 0.178 0.267 0.119 0.214
Cloud Computing 0.061 0.050 0.058 0.040 0.104 0.098 0.127 0.033 0.020 0.066
Internet of Things 0.245 0.251 0.290 0.321 0.167 0.244 0.178 0.400 0.297 0.266
Big Data and Analytics/ Artificial Intelligence 0.082 0.101 0.072 0.080 0.104 0.195 0.153 0.044 0.178 0.112
Additive Manufacturing 0.027 0.010 0.036 0.016 0.021 0.012 0.006 0.017 0.015 0.018
Simulation 0.061 0.025 0.058 0.020 0.083 0.049 0.102 0.044 0.059 0.056
Cybersecurity 0.035 0.010 0.041 0.013 0.083 0.012 0.025 0.027 0.015 0.029
Mobile Technologies 0.122 0.201 0.097 0.241 0.167 0.146 0.127 0.133 0.238 0.164
Adaptive Robotics 0.122 0.151 0.058 0.027 0.083 0.049 0.102 0.033 0.059 0.076

Table 20:Standardized comparison of the technologies cont.
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. Big Data and L " "
Cyber-Physical Clouc! Inter-netof Analytics/ Artficial Addltlve‘ S| Eereasmy Moblle_ /-\daptfve
Systems Computing| Things iHgEnes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.119 0.183 0.119 0177 0.080 0.201 0.150 0.232 0.232 0.166
Cloud Computing 0.024 0.037 0.024 0.035 0.067 0.017 0.100 0.019 0.026 0.039
Internet of Things 0.119 0.183 0.119 0.177 0.080 0.201 0.150 0.232 0.232 0.166
Big Data and Analytics/ Artificial Intelligence 0.024 0.037 0.024 0.035 0.057 0.017 0.100 0.019 0.026 0.038
Additive Manufacturing 0.595 0.220 0.595 0.248 0.400 0.251 0.175 0.290 0.310 0.343
Simulation 0.030 0.110 0.030 0.106 0.080 0.050 0.100 0.019 0.039 0.063
Cybersecurity 0.020 0.009 0.020 0.009 0.057 0.013 0.025 0.014 0.019 0.021
Mobile Technologies 0.030 0.110 0.030 0.106 0.080 0.151 0.100 0.058 0.039 0.078
Adaptive Robotics 0.040 0.110 0.040 0.106 0.100 0.100 0.100 0.116 0.077 0.088
. Big Data and L " "
Cyber-Physical Clouc! Inter-netof Analytics/ Artficial Addltlve‘ S| Eersasy Moblle_ /-\daptfve
Systems Computing| Things itHgEnes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.209 0.293 0.096 0.141 0.188 0.171 0.166 0.404 0.188 0.206
Cloud Computing 0.052 0.073 0.191 0.070 0.156 0.143 0.166 0.040 0.150 0.116
Internet of Things 0.209 0.037 0.096 0.070 0.063 0.143 0.166 0.067 0.150 0.111
Big Data and Analytics/ Artificial Intelligence 0.209 0.147 0.191 0.141 0.125 0.171 0.166 0.067 0.188 0.156
Additive Manufacturing 0.035 0.015 0.048 0.035 0.031 0.029 0.021 0.034 0.013 0.029
Simulation 0.035 0.015 0.019 0.023 0.031 0.029 0.041 0.034 0.013 0.027
Cybersecurity 0.105 0.037 0.048 0.070 0.125 0.057 0.083 0.101 0.113 0.082
Mobile Technologies 0.105 0.366 0.287 0.422 0.188 0171 0.166 0.202 0.150 0.228
Adaptive Robotics 0.042 0.018 0.024 0.028 0.094 0.086 0.028 0.051 0.038 0.045
. Big Data and L . .
Gy Clouq Intel:net @i Analytics/ Artificial Addmve‘ Simulation | Cybersecurity Mob||e- Adapt!ve
Systems Computing| Things iHgEnes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.074 0.113 0.037 0.055 0.136 0.142 0.173 0.071 0.180 0.109
Cloud Computing 0.037 0.056 0.027 0.055 0.114 0.106 0.086 0.059 0.150 0.077
Internet of Things 0.221 0.226 0.110 0.083 0.159 0177 0.043 0.118 0.150 0.143
Big Data and Analytics/ Artificial Intelligence 0.221 0.169 0.219 0.165 0.159 0.142 0.259 0.118 0.180 0.181
Additive Manufacturing 0.012 0.011 0.016 0.024 0.023 0.009 0.043 0.044 0.008 0.021
Simulation 0.018 0.019 0.022 0.041 0.091 0.035 0.022 0.059 0.030 0.037
Cybersecurity 0.037 0.056 0.219 0.055 0.045 0.142 0.086 0.118 0.090 0.094
Mobile Technologies 0.368 0.338 0.329 0.495 0.182 0.212 0.259 0.354 0.180 0.302
Adaptive Robotics 0.012 0.011 0.022 0.028 0.091 0.035 0.029 0.059 0.030 0.035

Table 21: Standardized comparison of the technologies cont.
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. Big Data and ” . .

G Al CIOUd. Inter‘net i Analytics/ Artificial Add|t|ve‘ Simulation | Cybersecurity Mob||e‘ Adapt!ve

Systems Computing| Things i lemes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.047 0.045 0.046 0.050 0.074 0.023 0.119 0.026 0.021 0.050
Cloud Computing 0.047 0.045 0.069 0.050 0.074 0.017 0.119 0.026 0.015 0.051
Internet of Things 0.142 0.090 0.138 0.149 0.093 0.209 0.143 0.317 0.247 0.170
Big Data and Analytics/ Artificial Intelligence 0.047 0.045 0.046 0.050 0.074 0.035 0.119 0.026 0.021 0.051
Additive Manufacturing 0.236 0.225 0.552 0.248 0.371 0.279 0.167 0.423 0.309 0.312
Simulation 0.142 0.180 0.046 0.099 0.093 0.070 0.095 0.026 0.062 0.090
Cybersecurity 0.009 0.009 0.023 0.010 0.053 0.017 0.024 0.021 0.015 0.020
Mobile Technologies 0.189 0.180 0.046 0.198 0.093 0.279 0.119 0.106 0.247 0.162
Adaptive Robotics 0.142 0.180 0.034 0.149 0.074 0.070 0.095 0.026 0.062 0.092

Cyber-Physical | Cloud | Internet of Ang:gﬁ'zsa;aﬁggial Additie | oypersecuriy| . Mobile | Adaptive

Systems Computing| Things i lemes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.094 0.065 0.214 0.069 0.130 0.145 0.102 0.214 0.145 0.131
Cloud Computing 0.188 0.131 0.286 0.083 0.152 0.218 0.205 0.286 0.218 0.196
Internet of Things 0.031 0.033 0.071 0.104 0.130 0.145 0.102 0.071 0.145 0.093
Big Data and Analytics/ Artificial Intelligence 0.563 0.654 0.286 0416 0.196 0.254 0.239 0.286 0.254 0.350
Additive Manufacturing 0.016 0.019 0.012 0.046 0.022 0.009 0.011 0.012 0.009 0.017
Simulation 0.023 0.022 0.018 0.059 0.087 0.036 0.102 0.018 0.036 0.045
Cybersecurity 0.031 0.022 0.024 0.059 0.065 0.012 0.034 0.024 0.012 0.032
Mobile Technologies 0.031 0.033 0.071 0.104 0.130 0.145 0.102 0.071 0.145 0.093
Adaptive Robotics 0.023 0.022 0.018 0.059 0.087 0.036 0.102 0.018 0.036 0.045

Cyber-Physical | Cloud | Internet of Ang:gtis:;i;;gial Additie | v oypersecuriy| . Mobile | Adaptive

Systems Computing| Things i lemes Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.167 0.105 0.121
Cloud Computing 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.167 0.105 0.121
Internet of Things 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.083 0.105 0.112
Big Data and Analytics/ Artificial Intelligence 0.235 0.235 0.222 0.207 0.138 0.222 0.118 0.250 0.211 0.204
Additive Manufacturing 0.059 0.059 0.056 0.103 0.069 0.056 0.118 0.042 0.105 0.074
Simulation 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.083 0.105 0.112
Cybersecurity 0.059 0.059 0.056 0.103 0.034 0.056 0.059 0.042 0.053 0.058
Mobile Technologies 0.059 0.059 0.111 0.069 0.138 0.111 0.118 0.083 0.105 0.095
Adaptive Robotics 0.118 0.118 0.111 0.103 0.069 0.111 0.118 0.083 0.105 0.104

. Big Data and - . .

Cyber-Physical Cloud. Inter.net of Analytics/ Artficial Addltlve. Sl Eermeaiy Moblle. Adapt!ve

Systems Computing| Things Intalligence Manufacturing Technologies | Robotics
Cyber-Physical Systems 0.290 0.204 0.385 0.316 0.191 0.210 0.154 0.275 0.242 0.252
Cloud Computing 0.058 0.041 0.048 0.035 0.128 0.017 0.128 0.028 0.027 0.057
Internet of Things 0.145 0.164 0.192 0.316 0.160 0.210 0.154 0.275 0.161 0.197
Big Data and Analytics/ Artificial Intelligence 0.097 0.123 0.064 0.105 0.160 0.210 0.128 0.138 0.161 0.132
Additive Manufacturing 0.048 0.010 0.038 0.021 0.032 0.026 0.077 0.028 0.027 0.034
Simulation 0.072 0.123 0.048 0.026 0.064 0.052 0.103 0.046 0.040 0.064
Cybersecurity 0.048 0.008 0.032 0.021 0.011 0.013 0.026 0.028 0.020 0.023
Mobile Technologies 0.145 0.204 0.096 0.105 0.160 0.157 0.128 0.138 0.242 0.153
Adaptive Robotics 0.097 0.123 0.096 0.053 0.096 0.105 0.103 0.046 0.081 0.089

Table 22Standardized comparison of the technologies cont.
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Consistency index of the alternatives

product
Average Consistency
of Consistency
Real-Time Weight Measure
Matrices index
A) (B/A)
(B)
Cyber-Physical Systems 0.219 2.178 9.948 0.118
Cloud Computing 0.113 1.131 9.995 0.124
Internet of Things 0.219 2.178 9.948 0.118
Big Data and Analytics/ Artificial
0.107 1.078 10.098 0.137
Intelligence
Additive Manufacturing 0.024 0.234 9.587 0.073
Simulation 0.067 0.645 9.640 0.080
Cybersecurity 0.040 0.367 9.247 0.031
Mobile Technologies 0.147 1.440 9.780 0.098
Adaptive Robotics 0.064 0.614 9.611 0.076
Consistency index average (CI) 0.095
Consistency ratio (CR) 0.066
Input data are consistent.
product
Average Consistency
of Consistency
Adaptability and Dynamic Weight Measure
Matrices index
&) (B/A)
(B)
Cyber-Physical Systems 0.160 1.599 9.976 0.122
Cloud Computing 0.108 1.080 10.039 0.130
Internet of Things 0.179 1.803 10.076 0.135
Big Data and Analytics/ Artificial
0.076 0.744 9.753 0.094
Intelligence
Additive Manufacturing 0.061 0.611 10.038 0.130
Simulation 0.103 1.091 10.544 0.193
Cybersecurity 0.021 0.203 9.517 0.065
Mobile Technologies 0.202 2.128 10.517 0.190
Adaptive Robotics 0.089 0.893 10.040 0.130
Consistency index average (CI) 0.132
Consistency ratio (CR) 0.091
Input data are consistent.
product
Average Consistency
of Consistency
Visibility and traceability Weight Measure
Matrices index
@A) (B/A)
(B)
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Cyber-Physical Systems 0.228 2.283 10.029 0.129
Cloud Computing 0.099 0.975 9.893 0.112
Internet of Things 0.214 2.122 9.914 0.114
Big Data and Analytics/ Artificial
0.130 1.302 10.028 0.129
Intelligence
Additive Manufacturing 0.021 0.195 9.414 0.052
Simulation 0.070 0.694 9.988 0.123
Cybersecurity 0.051 0.471 9.267 0.033
Mobile Technologies 0.145 1.429 9.855 0.107
Adaptive Robotics 0.044 0.410 9.345 0.043
Consistency index average (CI) 0.093
Consistency ratio (CR) 0.064
Input data are consistent.
product
Average Consistency
of Consistency
Synchronization Weight Measure
Matrices index
@A) (B/A)
(B)
Cyber-Physical Systems 0.246 2.557 10.390 0.174
Cloud Computing 0.052 0.487 9.291 0.036
Internet of Things 0.209 2.189 10.475 0.184
Big Data and Analytics/ Artificial
0.166 1.776 10.703 0.213
Intelligence
Additive Manufacturing 0.043 0.410 9.471 0.059
Simulation 0.067 0.649 9.631 0.079
Cybersecurity 0.023 0.219 9.550 0.069
Mobile Technologies 0.113 1.144 10.142 0.143
Adaptive Robotics 0.080 0.771 9.613 0.077
Consistency index average (CI) 0.115
Consistency ratio (CR) 0.079
Input data are consistent.
product
Average Consistency
of Consistency
Autonomy Weight Measure
Matrices index
&) (B/A)
B)
Cyber-Physical Systems 0.205 2.052 10.019 0.127
Cloud Computing 0.081 0.834 10.249 0.156
Internet of Things 0.205 2.052 10.019 0.127
Big Data and Analytics/ Artificial
0.055 0.508 9.327 0.041
Intelligence
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Additive Manufacturing 0.100 0.984 9.881 0.110
Simulation 0.055 0.508 9.327 0.041
Cybersecurity 0.030 0.291 9.707 0.088
Mobile Technologies 0.134 1.417 10.581 0.198
Adaptive Robotics 0.137 1.388 10.153 0.144
Consistency index average (CI) 0.115
Consistency ratio (CR) 0.079
Input data are consistent.
product
Average Consistency
of Consistency
Predictability Weight Measure
Matrices index
@A) (B/A)
(B)

Cyber-Physical Systems 0.073 0.756 10.329 0.166
Cloud Computing 0.194 2.089 10.785 0.223
Internet of Things 0.099 0.989 9.962 0.120

Big Data and Analytics/ Artificial
0.314 3.262 10.397 0.175

Intelligence

Additive Manufacturing 0.024 0.235 9.755 0.094
Simulation 0.075 0.752 10.063 0.133
Cybersecurity 0.037 0.346 9.289 0.036
Mobile Technologies 0.117 1.201 10.232 0.154
Adaptive Robotics 0.067 0.663 9.940 0.118
Consistency index average (CI) 0.135
Consistency ratio (CR) 0.093

Input data are consistent.

product
Average Consistency
Integration and Interoperability of of Consistency
Weight Measure
systems Matrices index
(&) (B/A)
(B)
Cyber-Physical Systems 0.214 2.146 10.044 0.131
Cloud Computing 0.066 0.641 9.751 0.094
Internet of Things 0.266 2.754 10.356 0.170
Big Data and Analytics/ Artificial
0.112 1.151 10.263 0.158
Intelligence
Additive Manufacturing 0.018 0.171 9.598 0.075
Simulation 0.056 0.542 9.710 0.089
Cybersecurity 0.029 0.267 9.143 0.018
Mobile Technologies 0.164 1.719 10.506 0.188
Adaptive Robotics 0.076 0.755 9.930 0.116
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Consistency index average (CI) 0.115
Consistency ratio (CR) 0.080

Input data are consistent.

product
Average Consistency
of Consistency
Scalability and Reconfiguration Weight Measure
Matrices index
@A) (B/A)
(B)
Cyber-Physical Systems 0.166 1.732 10.440 0.180
Cloud Computing 0.039 0.359 9.272 0.034
Internet of Things 0.166 1.732 10.440 0.180
Big Data and Analytics/ Artificial
0.038 0.351 9.316 0.039
Intelligence
Additive Manufacturing 0.343 3.697 10.790 0.224
Simulation 0.063 0.596 9.507 0.063
Cybersecurity 0.021 0.201 9.723 0.090
Mobile Technologies 0.078 0.773 9.898 0.112
Adaptive Robotics 0.088 0.877 10.002 0.125
Consistency index average (CI) 0.116
Consistency ratio (CR) 0.080
Input data are consistent.
product
Average Consistency
of Consistency
Distributed PPC Weight Measure
Matrices index
&) (B/A)
B)
Cyber-Physical Systems 0.206 2.116 10.269 0.159
Cloud Computing 0.116 1.135 9.802 0.100
Internet of Things 0.111 1.065 9.584 0.073
Big Data and Analytics/ Artificial
0.156 1.557 9.979 0.122
Intelligence
Additive Manufacturing 0.029 0.281 9.762 0.095
Simulation 0.027 0.255 9.595 0.074
Cybersecurity 0.082 0.795 9.697 0.087
Mobile Technologies 0.228 2.389 10.459 0.182
Adaptive Robotics 0.045 0.425 9.393 0.049
Consistency index average (CI) 0.105
Consistency ratio (CR) 0.072

Input data are consistent.
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product
Average Consistency
of Consistency
Collaboration and Cooperation Weight Measure
Matrices index
A) (B/A)
(B)
Cyber-Physical Systems 0.109 1.107 10.170 0.146
Cloud Computing 0.077 0.766 9.973 0.122
Internet of Things 0.143 1.526 10.679 0.210
Big Data and Analytics/ Artificial
0.181 1916 10.566 0.196
Intelligence
Additive Manufacturing 0.021 0.204 9.697 0.087
Simulation 0.037 0.357 9.538 0.067
Cybersecurity 0.094 0.970 10.285 0.161
Mobile Technologies 0.302 3.167 10.489 0.186
Adaptive Robotics 0.035 0.331 9.392 0.049
Consistency index average (CI) 0.136
Consistency ratio (CR) 0.094
Input data are consistent.
product
Average Consistency
of Consistency
Mass Customization Weight Measure
Matrices index
&) (B/A)
(B)
Cyber-Physical Systems 0.050 0.475 9.467 0.058
Cloud Computing 0.051 0.488 9.475 0.059
Internet of Things 0.170 1.904 11.213 0.277
Big Data and Analytics/ Artificial
0.051 0.490 9.522 0.065
Intelligence
Additive Manufacturing 0.312 3.370 10.793 0.224
Simulation 0.090 0.898 9.945 0.118
Cybersecurity 0.020 0.202 9.967 0.121
Mobile Technologies 0.162 1.741 10.755 0.219
Adaptive Robotics 0.092 0.920 9.947 0.118
Consistency index average (CI) 0.140
Consistency ratio (CR) 0.097
Input data are consistent.
product
Average Consistency
of Consistency
Big data-driven Weight Measure
Matrices index
@A) (B/A)
(B)
Cyber-Physical Systems 0.131 1.399 10.669 0.209
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Cloud Computing 0.196 2.115 10.787 0.223
Internet of Things 0.093 0.921 9.944 0.118
Big Data and Analytics/ Artificial
0.350 3.859 11.040 0.255
Intelligence
Additive Manufacturing 0.017 0.170 9.819 0.102
Simulation 0.045 0.415 9.282 0.035
Cybersecurity 0.032 0.301 9.560 0.070
Mobile Technologies 0.093 0.921 9.944 0.118
Adaptive Robotics 0.045 0.415 9.282 0.035
Consistency index average (CI) 0.130
Consistency ratio (CR) 0.089
Input data are consistent.
product
Average Consistency
of Consistency
Accuracy Weight Measure
Matrices index
@A) (B/A)
(B)
Cyber-Physical Systems 0.121 1.124 9.297 0.037
Cloud Computing 0.121 1.124 9.297 0.037
Internet of Things 0.112 1.030 9.219 0.027
Big Data and Analytics/ Artificial
0.204 1.891 9.257 0.032
Intelligence
Additive Manufacturing 0.074 0.676 9.134 0.017
Simulation 0.112 1.030 9.219 0.027
Cybersecurity 0.058 0.529 9.157 0.020
Mobile Technologies 0.095 0.875 9.228 0.029
Adaptive Robotics 0.104 0.956 9.187 0.023
Consistency index average (CI) 0.028
Consistency ratio (CR) 0.019
Input data are consistent.
product
Average Consistency
of Consistency
Context Awareness Weight Measure
Matrices index
A) (B/A)
(B)
Cyber-Physical Systems 0.252 2.495 9.903 0.113
Cloud Computing 0.057 0.533 9.412 0.051
Internet of Things 0.197 1.992 10.090 0.136
Big Data and Analytics/ Artificial
0.132 1.322 10.044 0.131
Intelligence
Additive Manufacturing 0.034 0.317 9.279 0.035
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Simulation 0.064 0.634 9.938 0.117
Cybersecurity 0.023 0.216 9.388 0.048
Mobile Technologies 0.153 1.535 10.048 0.131
Adaptive Robotics 0.089 0.880 9.929 0.116
Consistency index average (CI) 0.098

Consistency ratio (CR) 0.067

Input data are consistent.

Table 23: Consistency index of the alternatives

AHP analysis using survey data

- . Product of [ Consistency [Consistency
Crteria Average Weight (A) Matrices (B) [ Measure (B/A) index
Accuracy 0.076 0.965 12.746 0.068
Adaptability and Dynamic 0.130 1.591 12.284 0.026
Autonomy 0.036 0.454 12.467 0.042
Big data-driven 0.108 1.383 12.827 0.075
Context Awareness 0.042 0.529 12.681 0.062
Distributed PPC 0.061 0.766 12485 0.044
Integration and Interoperability of systems 0.177 2.241 12.646 0.059
Mass Customization 0.055 0.688 12.554 0.050
Predictability 0.059 0.746 12.577 0.052
Real-Time 0.070 0.942 13.442 0.131
Synchronization 0.078 0.995 12.718 0.065
Visibility and traceability 0.108 1.383 12.827 0.075
Consistency index average (Cl) 0.063
Consistency ratio (CR) 0.041

Table 24: Consistency test of the Criteria


https://doi.org/10.20944/preprints202203.0254.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2022 d0i:10.20944/preprints202203.0254.v1

Accuracy Al | A2 | A3 | A4 | A5 | A6 | A7 | AB | A9 Béiiizt;' Al | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9
Al 1 | 2 | 2 2 2 2 2 2 Al 1 7 4 4 7 9 7 6 5
A2 12| 1 ey [y [z | 2 |y | e AZ 7 | 1 |3 |y | ys | 3 | ys | uys| s
A3 12 | 2 1 1 1 2 1 1 1 A3 1/4 | 3 1 1 4 6 4 | 173 | 174
A4 13 | 2 1 1 1 2 1 | 12 | 12 A4 174 | 3 1 1 4 6 4 | 173 | 14
AS 12 | 2 1 1 1 1 1 A5 17 | 3 | 14 | 14 4 1 | 1a | 16
A6 12 | 2 | 12 | 12 | 1 1| 172 | 12 | 172 A6 19 | 13 | 1/6 | 176 | 14 | 1 | 174 | 1/6 | 1/7
A7 12 | 2 1 1 1 2 1 1 1 A7 17 | 3 | 14| 14| 1 4 1 | s | 16
A8 12 | 2 1 2 1 2 1 1 1 A8 1/6 | 3 3 3 6 1 | 172
A9 12 | 2 1 2 1 2 1 1 1 A9 15 | 6 4 4 6 7 6 2 1

:nd;g;af;&ti Al | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 mi(;:;?ss Al | A2 | A3 | A4 | A5 | A6 | A7 | a8 | A9
Al 1 | 5 |13 12 [wa] 3 |13 ] 13 1 Al 1 s [ 13 ] 1 2 5 4 | 13| 3
AZ 15 | t |16 | y7 |15 | 14| s | 1ys | 15 AZ 15 | 1 | ye |15 | ya | 13| e | 1ye | 15
A3 3 | 6 1 1 2 5 2 1 2 A3 3 6 1 2 2 5 4 |12 ] &
Ad 2 | 7 1 1 4 5 5 1 1 A4 1 s 12| 1 3 5 3 | 12| s
A5 s |2 [ ye | 1 |23 [ y2 | 1 A5 12| 4 |12 13] 1 3 2 | 13
A6 13| & | 15| 15| 2 1 | 12 | 12 | 12 A6 15 | 3 |15 |15 | y3s | 1t | 12| s | 14
A7 3 | 5 12| ys| 3 2 1 | 12 | 12 A7 14 | 4 | 1ya | 13| 2| 2 1 | 1ya| 3
A8 3 | s 1 1 2 2 2 1 2 AB 3 6 2 2 3 6 1 5
A9 1 | 5 | 12| 1 1 2 2 | 12| 1 A9 13| 5 |14 |15 | y3 | & |13 | 15| 1

Autonomy | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 D'“;;f’gt‘““d A1 | A2 | A3 | A4 | A5 | A6 | A7 | a8 | A9
Al 1 | 3 w3z s ys| 1 || e Al 1 2 2 | 13| s 4 6 1 2
AZ 13 | t |15 | s | 13 | 12| 13 | 15 | 14 AZ 12 | 1 | 2| 12| 3 4 2 | 12 | 1,2
A3 3 | s 1 2 2 3 3 1 4 A3 12 | 2 1 | 13| ¢ 2 5 1 | 172
A4 2 | 5 |12 1 12| & 2 | 12| 3 A4 3 2 3 1 4 6 6 | 1/2| s
AS 3 | 3 12| 2 1 2 3 | 12| 2 A5 s | 13 | 14 | 18| 1 3 3 | 1/5 | 1%
A6 s | 2 [13 s [12] 1 s |13 ] 12 A6 14 | 1a | 172 |16 | 13 | 1 1 | 16 | 18
A7 1 | 3 w3z ys|ys| 1 | 1ys| e A7 16 | 172 | 15 | 176 | 13 | 1 1 | e | 15
A8 3 | s 1 2 2 3 3 1 4 A8 1 2 1 2 5 6 6 1 4
A9 2 | a4 | 1ya | ys 12| 2 2 | 1a | 1 A9 12 | 2 2 | 15| & 5 s | 1| 1

Table 25: Relative importance of the criteria
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Integration and
Interoperability Al A2 A3 A4 A5 A6 A7 AB A9 Real-Time Al A2 A3 A4 AS A6 A7 AB A9
of systems

Al 1 6 1/4 | 1/3 5 1/3 2 Al 4 1/3 | 172 5 1/3 3
AZ 1/6 i 1/7 | 1/5 | 1/4 4 1/4 | 1/7 | 1/5 A2 1/4 1 1/4 | 1/4 | 1/3 3 1/3 ] 1/4 | 1/3
A3 4 7 1 3 5 3 5 1 5 A3 3 4 1 2 4 7 3 1 3
A4 3 5 1/3 1 4 8 3 1/2 4 A4 2 4 1/2 1 4 5 4 1/2 | 1)2
A5 1/3 4 1/5 | 1/4 4 1/2 3 A5 3 1/4 | 1/4 3 1/4 | 1/3
A6 1/5 | 174 | 1/8 | 1/8 | 1/4 1 1/4 | 1/9 | 1/5 A6 1/5 | 1/3 | 17| 1/5 | 1/3 1 1/2 ] /7| 1/4
A7 1/4 4 1/5 | 1/3 1 4 1 1/4 | 172 A7 1 3 1/3 | 1/4 1 2 1 173 | 12
A8 3 7 1 2 2 9 4 1 4 A8 3 4 1 2 4 7 3 1 3
A9 172 5 1/5 | 1/4 | 1/3 5 2 1/4 1 A9 1/3 3 1/3 2 3 4 2 1/3 1
Malss : Al A2 A3 A4 A5 A6 A7 A8 A9 Synchronization Al A2 A3 A4 A5 A6 A7 AB A9

Customization
Al 1 5 1/3 | 174 | 1/3 | 1/5 | 1/2 1 1 Al 1 5 1/2 4 3 5 3 1/2 3
A2 1/5 1 1/6 | 1/5 | 174 | 1/7 | 1/4 | 1/5 | 1/5 A2 1/5 1 1/6 | 1/5 | 174 | 1/3 | 1/4 | 1/6 | 1/4
A3 3 6 1 3 4 1/4 3 3 2 A3 2 6 1 4 3 5 4 1/2 4
A4 4 5 1/3 il 4 1/4 4 4 4 A4 1/4 5 1/4 1 3 4 3 1/5 3
A5 3 4 1/4 | 1/4 1 1/5 1 3 4 A5 1/3 4 1/3 | 1/3 1 3 1/3 3
A6 5 7 4 4 5 1 4 5 5 A6 1/5 3 1/5 | 174 | 1/3 1 1/3 ] 1/6 2
A7 2 4 1/3 | 1/4 1 1/4 1 3 4 A7 1/3 4 1/4 | 1/3 1 3 1 1/3 1
A8 1 5 1/3 | 174 | 1/3 | 1/5 | 1/3 1 1 A8 2 6 2 5 3 6 3 1 3
A9 1 5 1/2 | 174 | 174 | 1/5 | 1/4 1 1 A9 1/3 4 1/4 | 1/3 | 13 | 142 1 1/3 1

Predictability Al AZ A3 A4 A5 Ab A7 AB A9 Vi?ibiliw almd Al AZ A3 A4 A5 A6 A7 AB A9

traceability

Al 1 5 4 4 7 6 3 Al 1 4 1/3 2 3 6 2 1/2 1
AZ 1/5 1 1/4 | 1/4 | 1/3 3 1/3 ] 1/3 | 1/4 A2 1/4 1 1/4 | 1/4 2 5 1/4 ] 1/4 | 1/3
A3 1/4 4 1 1 3 5 2 1/2 | 1/5 A3 3 4 1 1 4 6 5 1 3
A4 1/4 4 1 1 4 4 3 1 1/2 A4 1/2 4 1 1 4 7 3 1/3 2
A5 1/5 3 1/3 | 1/4 3 1 1/3 A5 1/3 | 1/2 | 1/4 | 1/4 1 4 1/2 ] 1/4 ] 1/3
A6 17 | 173 | 1/5 | 174 | 1/3 1 1/4 | 173 | 1/5 A6 16 | 1/5 | 16 | 1/7 | 1/4 1 1/4 | 176 | 1/5
A7 1/5 3 1/2 | 1/3 | 1/2 4 3 1/3 A7 1/2 4 1/5 | 1/3 2 4 1 1/5 | 1/2
A8 1/6 3 2 1. 1 3 1/3 1 1/5 A8 2 4 il 3 4 6 5 1 3
A9 1/3 4 5 2 3 5 3 5 1 A9 1 3 1/3 | 1/2 3 5 2 1/3 1

Table 26: Relative importance of the criteria contd;
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Big data-driven

Context

Awareness

Distributed PPC

Integration and

Interoperability

of systems
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0.080 | 0.153 | 0.072 | 0.044 | 0.178 | 0.104 | 0.195 | 0.082 | 0.101 0.112

0.013 | 0.025 | 0.041 | 0.027 | 0.015 | 0.083 | 0.012 | 0.035 | 0.010 0.029

0.321 | 0.178 | 0.290 | 0.400 | 0.297 | 0.167 | 0.244 | 0.245 | 0.251 0.266

0.241 | 0.127 | 0.097 | 0.133 | 0.238 | 0.167 | 0.146 | 0.122 | 0.201 0.164

0.027 | 0.102 | 0.058 | 0.033 | 0.059 | 0.083 | 0.049 | 0.122 | 0.151 0.076

0.016 | 0.006 | 0.036 | 0.017 | 0.015 | 0.021 | 0.012 | 0.027 | 0.010 0.018

0.020 | 0.102 | 0.058 | 0.044 | 0.059 | 0.083 | 0.049 | 0.061 | 0.025 0.056

0.241 | 0.178 | 0.290 | 0.267 | 0.119 | 0.188 | 0.195 | 0.245 | 0.201 0.214

0.040 | 0.127 | 0.058 | 0.033 | 0.020 | 0.104 | 0.098 | 0.061 | 0.050 0.066

1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

Mass

Customization

Predictability

Real-Time
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0.170 | 0.152 | 0.121 | 0.118 | 0.214 | 0.135 | 0.253 | 0.121 | 0.042 0.147

0.085 | 0.114 | 0.060 | 0.030 | 0.054 | 0.081 | 0.063 | 0.060 | 0.028 0.064

0.017 | 0.013 | 0.034 | 0.024 | 0.018 | 0.027 | 0.032 | 0.034 | 0.021 0.024

0.085 | 0.114 | 0.080 | 0.030 | 0.054 | 0.054 | 0.063 | 0.080 | 0.042 0.067

0.255 | 0.152 | 0.241 | 0.237 | 0.214 | 0.189 | 0.189 | 0.241 | 0.252 0.219

0.028 | 0.114 | 0.080 | 0.237 | 0.161 | 0.108 | 0.126 | 0.080 | 0.084 0.113

1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

Synchronization

Visibility and
traceability

0.074 | 0.236 | 0.129 | 0.136 | 0.105 | 0.124 | 0.088 0.130

0.055 | 0.029 | 0.086 | 0.114 | 0.013 | 0.062 | 0.029 0.051

0.221 | 0.118 | 0.172 | 0.136 | 0.263 | 0.248 | 0.264 0.214

0.221 | 0.118 | 0.172 | 0.159 | 0.158 | 0.083 | 0.176 0.145

0.055 | 0.029 | 0.043 | 0.091 | 0.026 | 0.062 | 0.029 0.044

0.037 | 0.017 | 0.011 | 0.023 | 0.013 | 0.041 | 0.018 0.021

0.044 | 0.039 | 0.086 | 0.091 | 0.053 | 0.050 | 0.044 0.070

0.221 | 0.354 | 0.172 | 0.136 | 0.263 | 0.248 | 0.264 0.228

0.074 | 0.059 | 0.129 | 0.114 | 0.105 | 0.083 | 0.088 0.099

1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000

Table 27: Standardization of importance

Alternatives Consistency index (Survey data)
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0.112 1.030 9.219 0.027
0.095 0.875 9.228 0.029
0.104 0.956 9.187 0.023
0.074 0.676 9.134 0.017
0.112 1.030 9.219 0.027
0.121 1.124 9.297 0.037
0.121 1.124 9.297 0.037
Consistency index average (CI) 0.028

Consistency ratio (CR) 0.019

data are consistent.

0.744 9.753
0.021 0.203 9.517 0.065
0.179 1.803 10.076 0.135
0.202 2.128 10.517 0.190
0.089 0.893 10.040 0.130
0.061 0.611 10.038 0.130
0.103 1.091 10.544 0.193
0.160 1.599 9.976 0.122
0.108 1.080 10.039 0.130
Consistency index average (CI) 0.132
Consistency ratio (CR) 0.091
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Consistency index average (CI) 0.115
Consistency ratio (CR) 0.079
data are consistent.

3.859 11.040
0.032 0.301 9.560 0.070
0.093 0921 9.944 0.118
0.093 0921 9.944 0.118
0.045 0.415 9.282 0.035
0.017 0.170 9.819 0.102
0.045 0.415 9.282 0.035
0.131 1.399 10.669 0.209
0.196 2.115 10.787 0.223
Consistency index average (CI) 0.130
Consistency ratio (CR) 0.089

data are consistent.

1.322 10.044
0.023 0.216 9.388 0.048
0.197 1.992 10.090 0.136
0.153 1.535 10.048 0.131
0.089 0.880 9.929 0.116
0.034 0.317 9.279 0.035
0.064 0.634 9.938 0.117
0.252 2.495 9.903 0.113
0.057 0.533 9.412 0.051
Consistency index average (CI) 0.098
Consistency ratio (CR) 0.067

data are consistent.
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0.082 0.795 9.697 0.087
0.111 1.065 9.584 0.073
0.228 2.389 10.459 0.182
0.045 0.425 9.393 0.049
0.029 0.281 9.762 0.095
0.027 0.255 9.595 0.074
0.206 2.116 10.269 0.159
0.116 1.135 9.802 0.100
Consistency index average (CI) 0.105

Consistency ratio (CR) 0.072

data are consistent.

1.151 10.263
0.029 0.267 9.143 0.018
0.266 2.754 10.356 0.170
0.164 1.719 10.506 0.188
0.076 0.755 9.930 0.116
0.018 0.171 9.598 0.075
0.056 0.542 9.710 0.089
0.214 2.146 10.044 0.131
0.066 0.641 9.751 0.094
Consistency index average (CI) 0.115
Consistency ratio (CR) 0.080

data are consistent.
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Consistency index average (CI) 0.140

Consistency ratio (CR) 0.097

data are consistent.

3.262 10.397
0.037 0.346 9.289 0.036
0.099 0.989 9.962 0.120
0.117 1.201 10.232 0.154
0.067 0.663 9.940 0.118
0.024 0.235 9.755 0.094
0.075 0.752 10.063 0.133
0.073 0.756 10.329 0.166
0.194 2.089 10.785 0.223
Consistency index average (CI) 0.135
Consistency ratio (CR) 0.093

data are consistent.

1.078 10.098
0.040 0.367 9.247 0.031
0.219 2.178 9.948 0.118
0.147 1.440 9.780 0.098
0.064 0.614 9.611 0.076
0.024 0.234 9.587 0.073
0.067 0.645 9.640 0.080
0.219 2.178 9.948 0.118
0.113 1.131 9.995 0.124
Consistency index average (CI) 0.095
Consistency ratio (CR) 0.066

data are consistent.



https://doi.org/10.20944/preprints202203.0254.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2022 do0i:10.20944/preprints202203.0254.v1

9 of 57

0.166 1.776 10.703 0.213
0.023 0.219 9.550 0.069
0.209 2.189 10.475 0.184
0.113 1.144 10.142 0.143
0.080 0.771 9.613 0.077
0.043 0.410 9.471 0.059
0.067 0.649 9.631 0.079
0.246 2.557 10.390 0.174
0.052 0.487 9.291 0.036
Consistency index average (CI) 0.115

Consistency ratio (CR) 0.079

data are consistent.

1.302 10.028
0.051 0.471 9.267 0.033
0.214 2.122 9.914 0.114
0.145 1.429 9.855 0.107
0.044 0.410 9.345 0.043
0.021 0.195 9.414 0.052
0.070 0.694 9.988 0.123
0.228 2.283 10.029 0.129
0.099 0.975 9.893 0.112
Consistency index average (CI) 0.093
Consistency ratio (CR) 0.064

data are consistent.

Table 28: Alternatives consistency index (Survey data)
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