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Abstract: Sustainability is the core concern of every business; The exploration of avenues to main-
tain sustainability while staying competitive with high level of productivity remains a vital en-
deavor. Production flexibility is a key area that can enhance the sustainability of manufacturing 
industries; can ensure product availability, scalability, agility/fault tolerance as well as disaster re-
covery potentials. Technological advancements have provided avenues where companies can en-
hance virtually all aspects of their operations for efficiency, effectiveness, and productivity. This 
paper uses both quantitative and qualitative research approach to identify the capability require-
ments for smart and effective production management and subsequent analysis is done using Multi-
Criteria Decision-Making methodology to identify and rank various industry 4.0 technologies and 
concepts that can provide these smart capabilities in manufacturing industries to aid the businesses 
to achieve sustainability with production flexibility. The paper identifies over 12 smart capabilities 
and 9 Industry 4.0 Technologies which are applicable to production management. It also compares 
results from the analytics of historical I4.0 implementation as discussed in literatures with the cur-
rent state as deduced from survey feedbacks from various manufacturing industries. 

Keywords: Industry 4.0; HMLV; LMHV; Production scheduling; Digital Manufacturing; Computer 
aided production management (CAPM); Smart Manufacturing; MCDM 
 

1. Introduction 
Dynamic and uncertain production environment is a major factor in the industries 

today and present market demands require that manufacturing systems develop their ac-
tivities under such conditions. The influence of economic, social, political, and environ-
mental factors can be very unpredictable, and these are paramount when considering any 
production environment because these factors can contribute to the sustainability/success 
or failure of industries. Owing to the above-mentioned facts, it is necessary to incorporate 
the concept of flexibility in manufacturing. This ability to give quick and efficient answers 
to the uncertainties in local, national, and international market is vital and production 
flexibility is a strategic topic in such decision making [1, 2]. 

The advent of the Fourth industrial revolution has introduced many technologies 
that give businesses the ability to incorporate very high levels of flexibility in their opera-
tion. Its impact can be seen in various aspects of business activities ranging from human 
resources, finance, operations, marketing etc. Virtually all aspects of any industry can be 
positively impacted by the technologies of industry 4.0 [1, 3-5]. In this research, we shall 
identify and outline the various industry 4.0 Technologies and the capability requirements 
for production planning that will contribute to production flexibility.  

Another vital aspect for production flexibility and business sustainability is the effec-
tive management of resources. This is where production scheduling plays a key role for 
the establishment of timing and the use of resources of the organization which include 
equipment, facilities, and human activities. Every manufacturing industry must develop 
schedule for workers, equipment, purchases, maintenance etc.; effective scheduling 
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results to cost savings, increase in productivity among other benefits [5]. We shall discuss 
various scheduling approaches and methodologies that can be implemented in manufac-
turing. 

The analysis and investigation in this research will focus on the use of decision-mak-
ing systems for the identification technology implementations for production and combi-
nation of these together with quality function deployment approach for production sched-
uling to ensure flexibility in manufacturing and business sustainability. 

2. Materials  
2.1. Industry 4.0 - Requirements for Digitalized Manufacturing 

In the past century there has been rapid advancements in technology, applications, 
and industry and numerous concepts have emerged in manufacturing. Since the first in-
dustrial revolution, which introduced mechanization, subsequent industrial revolutions 
have resulted in sweeping changes in manufacturing. The second industrial revolution 
saw the rationalization and division of labor in manufacturing industries while the third 
industrial revolution brought electricity and advanced electronics which increased 
productivity as well as calculation and data/information storage capacities. The notion of 
the fourth industrial revolution was introduced at the end of the 20th century and it was 
centered around promoting the idea of digitization together with autonomy and self-con-
trol where products tend to control their own manufacturing process. [6-8] 

The fourth industrial revolution or Industry 4.0 (I4.0) can be summarized as the use 
of technology in a way that businesses and engineering processes are integrated in such a 
way that makes manufacturing flexible, resource efficient and sustainable. Businesses are 
striving to implement concepts of Industry 4.0 to transform business processes however, 
the maturity level of various companies vary, and the impact can be seen in different as-
pects of their operations. Some of the characteristics of mature companies include having 
clear digital strategy, building skills, and capabilities to implement strategy, flexibil-
ity/ability to adapt, use of KPIs for machine learning, decentralized decision making, and 
digital fluent leadership. Two main approaches which serves as guidance to implement-
ing I4.0 concepts are the “holistic approach”, which tries to use all avenues to access and 
utilize elements of I4.0 to drive success factors. In this approach maturity self-assessments 
are conducted to provide strategic guidance and related tools for implementation. This 
approach usually lacks transparency at is not scientifically grounded. The other approach 
is the “Specific approach” which employs data analytics and maintenance aspect, 
knowledge intensive business processes, digital information systems, big data usage, lo-
gistics and supply chain etc. to determine I4.0 maturing level and develop roadmap for 
implementation. [6, 9-12] 

I4.0 provides businesses with increased visibility. Production managers can access 
real time supply and demand related data making it easier to optimize operations, reduce 
resources and lead times [10]. The literature on Industry 4.0 is widespread and many 
scholars have written on various aspect of it. The purpose of this literature is not to exam-
ine the holistic aspects of I4.0. However, the main objective is to investigate the require-
ments of industry 4.0 as it relates to production planning and control, supply chain and 
production strategies. 
2.1.1 Industry 4.0 Concepts and Technologies 

Industrial revisions require long term developments that cover four key areas: Fac-
tory, Business, Products and Customers. The future factory will be one where all manu-
facturing resources ranging from sensors, robots, conveyor machines etc. are connected 
and exchange information as well as become intelligent enough to predict and maintain 
machines, control production process and in general manage the factory system. The busi-
ness aspect involves a communication network between various companies, factories, 
suppliers, logistics etc. aimed at optimizing configurations in real time to maximize profit. 
Products will contain sensors, processors and components which carry functional 
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guidance for the customers and in turn transmits usage feedback to the manufacturing 
system for use in product improvement. The area of customers mean that they will have 
significant influence in the manufacturing process, product functions will be determined 
and customized by customers [4, 5, 7, 8, 13-16]. Industry 4.0 concepts are geared towards 
the achievement of the various areas of industrial revision. We shall explore the overview 
of various industry 4.0 concepts/requirements, application of these concepts, value crea-
tions and how fit into the production lifecycle. 

 
Cyber-Physical Systems (CPS): There has been a fundamental change in the way IT 

services are developed, deployed, and maintained. This is due to the emergence of cloud 
computing. Cyber-physical systems and cloud computing has made industries become 
more efficient, autonomous, and customized [17]. CPS is the integration of the physical 
with the virtual world. It is aimed at integrating embedded systems, control, computing, 
communication, and network devices. It also consists of the security procedures like hard-
ware encryption and network security for data transit. CPS closely connect systems 
thereby blurring the boundaries between real and virtual factories [18]. The main aim of 
cyber-physical management systems is to give exact directions which the system must 
follow for fulfilling the operation to the expected level. This is also referred to as smart 
manufacturing and the heterogeneity of the system is made up of entities ranging from 
small sensors to large scale processing elements. When CPS is implemented in production 
planning and control, it can be termed Cyber-physical Production System (CPPS). CPPS 
retrofitting process is used to transform/update industrial equipment for industry 4.0 in-
tegration [17-19]. In summary, the key capabilities that CPS introduces are real-time data 
processing and information feedback, computational capabilities, and decision-making 
capability. 

 
Cloud Computing: This I4.0 concept usually works alongside CPS. It is sometimes 

referred to as an aspect of CPS [19]. The National Institute of Standards and Technology 
outlines three service model related to cloud computing: these include Software as a Ser-
vice (SaaS); Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). IaaS is the 
most basic cloud computing service. It is an instant computing infrastructure, provisioned 
and managed over the internet. Common uses of IaaS are product Test and Development 
environments, storage, backup and recovery, workload migration etc. PaaS provides de-
velopment environment for users to manage cloud-based applications without bothering 
about the building and maintenance of the infrastructure. Common usage scenarios of 
PaaS are development framework and Analytics or business intelligence. SaaS is software 
that is centrally hosted and managed for the end customer. It allows users to use apps 
over the internet. Examples of SaaS usage is Skype, Microsoft 365, Microsoft Dynamic 
CRM, Oracle CRM, ERP, SCM, CAD, FEA, etc. In this form of service, the end user is 
barely responsible for the provision, management, and maintenance of the application 
software which in turn saves costs [4, 11, 17, 19, 20]. Summary of key capabilities of Cloud 
computing are Location and sourcing independence, Ubiquitous access, and Integrated 
Business Environment and operations. 

  
Figure 1: Cloud services [20] 
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Internet of Things (IoT): There are several definitions of IoT most of which are from 
authors perspective. For this study, we will review IoT in the context of production man-
ufacturing. IoT brings the convergence of connected products and sensors to introduce 
new capabilities. It refers to the robust communication between digital and physical 
world. Sensors, Actuators, RFID, and RTLS are used to achieve these forms of communi-
cation. IoT influence is being rampant in various industries ranging from automotive, aer-
ospace, supply chain, construction, and manufacturing sector etc. [21-23]. IoT is leading 
the foundation of Industry 4.0 in several sectors ranging from smart transport solutions, 
smart health, smart cities, and smart factories etc. [23]. The main role of IoT is devices is 
the dual provision of accurate information in real-time and this possibility opens new an-
alytical possibilities and fast result dissemination, thereby assisting decision-making pro-
cess. Technologies like RFID and RTLS provide capabilities such as identification, loca-
tion, and sensing. While Sensor and Actuators provide Real-time tracking, Continuous 
documentation and data collection, process synchronization and system availability. [4, 7, 
8, 21-23] 

 
Big Data and Analytics/ Artificial Intelligence (BDA/AI): Operations managers use 

advanced analytics for the exploration of historical data, pattern identification and rela-
tionships to enable them optimize factors that have greatest effects in their processes. The 
manufacturing industry is perceived to be to greatest generator of data when compared 
with other sectors therefore there is very high value to be captured from big data analytics 
[4, 24, 25]. IoT and AI are the major technologies that drive I4.0; they usually operate to-
gether as the data from IoT serves as input for AI [26]. Industrial application of AI focuses 
on the development, validation and deployment of various machine learning algorithms 
and analytics for industrial applications with sustainable performance [24]. Data-based 
decision making has evolved from decision support to executive support with focus on 
data exploration for top management decision making. Over the last decade, many soft-
ware tools have been developed for the analytics of multidimensional data. Business In-
telligence software like Tableau, Power BI, Oracle BI, Sisense, SAP business objects etc. 
have become common place in manufacturing industries to provide data analytics, real 
time reporting, embedded analytics, and natural language processing services. The sum-
mary of the capabilities of DBA/AI includes Analysis of large amount of Data within a 
short period of time, Retention of data knowledge, and learning from data [4, 6, 7, 24-27]. 

 
Additive Manufacturing (AM): This is a “range of technologies that translate virtual 

model data into physical models or prototypes through a process of depositing successive 
layers of material of finite thickness” [4]. It provides fast and less costly means to create 
prototypes for real world simulation. AM is usually is sometimes referred to as 3D print-
ing which consists of set of process technologies that can directly produce parts through 
incremental addition of material layers of joining materials [28].  

Additive manufacturing offers tremendous opportunities for existing production 
processes. The fast pace of advancements in this area is making it easier and less expensive 
to manufacture products and product parts that would otherwise be very complicated 
and expensive to produce. The material science field is a very vital field which the AM 
depends on. Researchers in this field are constantly developing new materials for 3D 
printing applications. AM technologies can have extreme impact on production planning 
and control, and it has the potential of giving industries high degree of production flexi-
bility in areas of product redesign and modification. In this I4.0 age, several materials have 
been developed or are under developments that are suitable for application in AM [4, 28-
30]. There materials are grouped into 4 as shown in Figure 2 below: 
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Figure 2: General Overview of current research materials for AM [29] 

To standardize the constantly evolving technology of Additive Manufacturing, the 
International Standards Organization (ISO) together with the American Society for Test-
ing and Materials (ASTM) classified the scope of additive manufacturing into 7 types [31]: 

I. Material Extrusion: In this type of AM, material in a filament form is drawn 
through a nozzle, heated, and then extruded and deposited in layers onto a build plat-
form. It offers quick prototyping of simple parts and commonly used for printing house-
hold items, toys, games, and similar products. 

II. VAT photopolymerization: This uses a vat of liquid photosensitive polymer 
resin which hardens on exposure to UV light to build objects layer-by-layer. 

III. Powder Bed Fusion: This type of AM fuses powdered material to additively 
create 3D objects. IT uses a laser electron beam to sinter, melt and fuse powder together 
while it traces the cross section of the object to be created. This process is repeated layer 
by layer until object is built. 

IV. Material Jetting: This works in similar way as the inkjet printer by depositing 
a photosensitive polymer liquid which harden on exposure to UV light thereby building 
the part layer by layer. It is typically used for building parts that require high dimensional 
accuracy and smooth surface finish. 

V. Binder Jetting: It is like material jetting but uses two material instead of one. 
The two materials are a powder base material and a binder material. The binder material 
acts as a binding agent for individual layers of the powder material. 

VI. Sheet Lamination: this process includes two types of manufacturing tech-
niques, Ultrasonic Additive Manufacturing (UAM) where sheets or ribbons of metal are 
bound together using ultrasonic welding after which the parts do not require any addi-
tional step of machining or removal of material. The other type is the Laminated Object 
Manufacturing (LOM) which uses sheets of paper as base material and adhesive in place 
of welding. Objects manufactured with this process are not fit for structural us and can 
only be used for aesthetic purpose. 

VII. Direct Energy Deposition (DED): This is typically used for 3D printing of metal 
and alloys. In DED, a nozzle holds the material in a wire form which is known as a feed 
and moves across multiple axis and an electron beam projector which melts the feed as it 
moves across while tracing the object geometry. DED method is also called as Laser engi-
neered net shaping, 3D laser cladding, directed light fabrication or direct metal deposition 

Various forms and shapes of products can be easily manufactured by the above ad-
ditive manufacturing type simply by using data from 3D computer models [28, 31, 32]. 
The key capabilities that AM introduces are new geometry possibilities, shorter time-to-
market, unique material. 

 
Simulation: Simulation involves modelling of processes or systems, so that the 

model mimics responses of the actual system to events that take place over time. Supports 
experimentation and validation of different scenarios and configurations for existing and 
new manufacturing resources and systems, contributing to an improved design and per-
formance assessment [33]. Modeling and simulation have become vital parts of industrial 
engineering, operations, and supply chain management. It enables the management of 
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complex systems. “Modeling and simulation denote a set of methods and technological 
tools that allows the experimentation and validation of products, processes, systems de-
sign and to predict system performance. It also supports decision making, education and 
training, aiding to reduce costs and development cycles” [34]. Some simulation ap-
proaches include Agent-Based Modeling and Simulation (ABMS), Discrete Event Simula-
tion (DES), System Dynamics (SD), Virtual Reality (VR), Augmented Reality (AR), Petri 
Nets simulation (PN), Hybrid Simulation (HS)-which involves the combination of two or 
more simulation methods, Digital Twins (DT), Virtual Commissioning (VC) etc. [7, 33, 34]. 

I4.0 capabilities which Simulation offers include decision making support, evaluation 
of autonomous planning rules and digital twin model. 

Cybersecurity: The advent of I4.0 has seen very high degree of digitalization of man-
ufacturing processes, systems, and industries. In some instances, the entire value chain of 
manufacturing industries has extremely high degree of digital interconnectivity and this 
possess the absolute need for security of the system.  

CISCO defined cybersecurity as the practice of protecting systems, networks, and 
programs from digital attacks. The implementation of effective cybersecurity is a very 
challenging and dynamic undertaking. The approach of implementing multiple layers of 
protection across networks, computer, programs, or data constitutes a successful cyberse-
curity [35]. The goal of cybersecurity is three-fold; Confidentiality which involves preven-
tion of unauthorized disclosure of sensitive data and information. Integrity which consti-
tutes maintaining the consistency, accuracy, and trustworthiness of the data. Availability 
involves keeping data and resources available for authorized use [4]. 

Mobile Technologies: This is one of the driving forces behind Industry 4.0, creating 
“smart factories” and streamlining manufacturing operations with mobility [3]. It consists 
of the wireless integration of communication technology based on wireless devices [36]. 
Mobile technology in manufacturing brings vast palpable improvement in industries with 
enhancements across all divisions from the shop floor to warehouse to management. The 
concept of I4.0 requires manufacturing operations to be closely connected, wherein com-
munication and cooperation happens among machines and with people in real time via 
wireless web. We can view the benefits of mobile technology in two aspects: The benefits 
in manufacturing and the benefits in operations. The main benefits of mobility in manu-
facturing include, but not limited to; portability, real-time problems/real-time solutions, 
Relatability to increase worker productivity (Task-on-the-go) and precision monitoring. 
The operational benefits include overall productivity increase, cost reduction, increased 
efficiency, fast access to critical information, Connectivity, and interaction from anywhere 
at any time of anything, collaboration between people at all levels, improved return on 
investment, increased customer reach and Sales, competitive edge etc. [3, 7, 36]. 

Adaptive Robotics: The growing popularity of I4.0 has led to dramatic developments 
in robotic technology. They are those categories of devices that can be programmed to 
perform activities with little or no human intervention. There are numerous predictions 
on the direction of robotics, and they all tend to make same point which is that the next 
generation of robotics and its associated technologies will play more pronounced roles to 
meet the need of collaborative and intelligent manufacturing. Autonomous robots and 
cobots are very important technology for plant automation and commissioning. With ro-
botics in manufacturing the numerous capabilities are introduced, control and autonomy, 
communication efficiency, high computation, near certainty in output, etc. [24, 36, 37]. 

These Industry-4.0 concepts and technologies discussed are relatively novel and they 
seek to overcome contemporary challenges such as global competition, volatile markets 
and demand, increased customization through communication, information, and intelli-
gence, and decreasing innovation and product life cycles [38].  

 
2.2. Production Strategies 
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The ever-growing importance of production planning is due to the dynamism, com-
plexity, and the globalization of economies. Production planning is a tool which enables 
firms to react as flexibly as is required by the market. Speedy response to customer is vital 
for customer satisfaction in a diverse and ever-changing market [18]. Production strate-
gies aims to determine best possible ways and justifications to determine what, how 
much, when to produce, buy, and deliver so that company can match manufacturing per-
formances with customer demands. It is a value adding process of the manufacturing ac-
tivity [36]. 

In this section, we will discuss two manufacturing types: High-mix Low-volume 
(HMLV) and Low-mix High-Volume (LMHV) Manufacturing strategies. For this study, 
more emphasis will be laid on HMLV and the various factors, requirements and capabil-
ities that promote flexible and sustainable manufacturing. 

 
 Low-Mix High-Volume Manufacturing 
This type of manufacturing is sometimes referred to as mass production. It involves 

the fabrication of large quantity of products that have little or no variation. Manufacturers 
employ a variety of techniques and technologies to achieve high levels of output ranging 
from automation of certain production tasks, assembly lines, etc. Two main advantage of 
this form of manufacturing is the high level of output within a short period of time, ease 
of automation and digitalization, does not require highly skilled workers and reduced 
overall cost of production per unit. Some of the disadvantage of this type of manufactur-
ing is that there is usually high upfront cost, inability to meet specific desires of customers 
and low production flexibility [39]. 

 
 High-Mix Low Volume Manufacturing 
High-mix Low-Volume (HMLV) production is a type of production that allows for a 

high variety of products to be produced in relatively small amount [18]. It is sometimes 
referred to as “Mass Customization” as it focuses on providing individualized products 
[40]. Production management is a very vital field that requires adequate attention in every 
industry. It contains the tasks of design, planning, monitoring and control of the produc-
tive system and business resources such as people, processes, machine, material, and in-
formation [7]. In HMLV manufacturing, production management is a daunting task and 
every aspect must be vigorously monitored and optimized for a company to remain com-
petitive [2, 7, 8, 30, 31, 40, 41].  

Several methods have been deployed to support production process; an example be-
ing the Total Productive Maintenance whose goal is to increase the effectiveness of pro-
duction equipment based on the idea that six types of losses (Equipment failure, setup 
and adjustment times, idling and minor stoppages, reduce equipment speed, defects and 
reduced yield) can be identified and reduced. In this approach, Overall Equipment Effec-
tiveness is used as performance indicator; However, unlike in mass production, applica-
tion of this in HMLV manufacturing means such analysis is only done by considering the 
individual product parameters and mathematically combine this to derive OEE perfor-
mance factor value for entire production.  

There are many literatures which discussed various HMLV production planning 
techniques and models aimed at the optimization of manufacturing. However, the scope 
of this study is not to discuss the specific techniques but rather to outline the general ca-
pabilities required to achieve these strategies to identify the industry 4.0 technologies that 
will assist, promote, or enhance the implementation of such production strategies. 

One of the major capability requirements for HMLV production systems is real-time 
decision-making support system for various aspects like production scheduling [18]. The 
ability to manage resources, logistics flow, products, and support manufacturing deci-
sions in real time coupled with other complexities involved in HMLV manufacturing begs 
the need for several aspects of production planning and control to be smart and techno-
logically optimized. An extension of this real time capability requirement is visibility and 
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traceability which has to do with the ability to trace, visualize, and make decisions re-
garding resources information and products. Adaptability and dynamism as well as the 
scalability and reconfiguration are also vital capability requirements in PPC activities of 
HMLV manufacturing environments. These determine the degree of dynamism on prod-
uct, process, or demand and ability of PPC to change its configurations flexibly and easily. 
The ability of manufacturing industries to synchronize the planning and control activities 
with the physical manufacturing environment in real time. (Routes, flows, data, opera-
tions, systems etc.) is paramount for production flexibility and sustainability. This capa-
bility requirement can be referred to as synchronization. Planning and control need inte-
gration into new and legacy systems and reach full interoperability between system layers 
therefore the integration and interoperability of systems can be viewed as a key require-
ment. An extension of the integration and interoperability of systems capability is collab-
oration and cooperation involving ability to support resource and information sharing 
among managers, workers, and systems. Predictability and autonomy aids in the flexi-
bility of PPC in HMLV manufacturing environment. Planning and control systems are 
required to act autonomously and have the ability to predict and react to manufacturing 
events and customer demands. Other capability requirements that enhance production 
flexibility and business sustainability include but not limited to the following: Distributed 
PPC: Ability to decentralize PPC to manage distributed manufacturing environments. Big 
data-driven: Ability of PPC to extract, load, transform and embed data for use of learning, 
analytics, and event-based decision making. Accuracy: Precise decision making and op-
eration. Context Awareness: Ability to properly manage machine to machine communi-
cation as well as machine to human communications and vice versa.  [1-6, 8, 9, 11, 14, 16, 
18, 19, 21, 26, 28-33, 38, 40-48] 

The range of capabilities described in above are required in various aspects of Pro-
duction Planning and Control (PPC). In most cases, to achieve effectiveness and/or effi-
ciency in the any single activities/tasks of PPC, it may require two or more of the capabil-
ities discussed above. In production management, the required tasks or aspect of PPC are 
not identical across board; It may vary based on several factors such as industry type, 
product types, location, size etc.  

  
2.3. Multi-criteria decision-making (MCDM) 

MCDM involves the determination of the best alternative among multiple, conflict-
ing, and interactive criteria which are often correlated [49]. In this section we shall discuss 
some MCDM methods which, if applied by production managers, can streamline a wide 
range of decision-making activities. 
 2.3.1 Analytic Hierarchy Process (AHP) 

Analytic Hierarchy Process (AHP) was developed in the 1970s by Thomas L. Saaty. 
It is typically used in decision making for complex scenarios, where people work together 
to make decisions when human perceptions, judgments, and consequences have long-
term repercussions. The multi-criteria programming made using the AHP is a technique 
for decision making in complex environments in which many variables or criteria are con-
sidered in the prioritization and selection of alternatives or projects. The AHP has a focus 
on departure from consistency, its measurement and on dependence within and between 
the groups of elements of its structure. One of the widest applications of AHP is in plan-
ning and resource allocation [45, 49, 50]. 

In AHP, a hierarchy or network structure is required to represent a problem and 
pairwise comparison is used to establish relations within the structure. This comparison 
may use concrete data from the alternatives or human judgments to input additional in-
formation. The steps involved in AHP can be summarized as follows: 

 Decompose problem into hierarchy of criteria having the goal at the top level, attrib-
utes at the second level and alternatives at the third level. 
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Figure 3: Hierarchy of objectives [51] 

  
I. Determine the relative importance of different attributes or Criteria with re-

spect to the goal using pair-wise comparison matrix. Also create a scale of 
relative importance to aid this. 

II. Calculate the normalized pairwise matrix by dividing all the elements of the 
column by the sum of the column. 

III. Calculate the criteria weight by averaging all the elements in the rows 
IV. Calculate the consistency by multiplying each value in the column of the un-

normalized matrix by the criteria weight 
V. Calculate the weighted sum value by taking the sum of each valued in the 

rows of result in v. 
VI. Determine the ratio between the weighted sum value and the criteria weight. 

VII. Calculate λmax by taking the average of the ratios derived in vii. 
VIII. Calculate the consistency index (CI) = (஛୫ୟ୶ି )

୬ିଵ
 

IX. Calculate the consistency ratio by dividing the consistency ratio by random 
index. (Using random consistency index table) 

X. If consistency ratio is less than the standard 0.10, then you can assume that 
your matrix is reasonably consistent. 

After calculating the weight of the criteria and determining that it has appropriate 
consistency level (as outlined in steps i – xi) you can then proceed with the decision mak-
ing using the hierarchies for further calculation as outlined in subsequent steps 

Compare the alternatives with each other with respect to criterion 1 and repeat steps 
with all other criterions. After performing this comparison, priority level of all the alter-
natives can them be deduced from the results. One of the major setbacks of the AHP is 
that it does not allow for the measurement of the possible dependencies among factors. 
This setback is handled with the introduction of the Analytical Network Process which is 
discussed in next section of this literature. 
 2.3.2. Analytical network process (ANP) 

This is an extension of the Analytical Hierarchy process. it is more comprehensive 
and can be viewed as a generalization of the AHP method. The ANP has wide applications 
in various areas such as supply chain management, waste management, energy, construc-
tion, risk assessment and healthcare. It proves to be an effective decision-making method-
ology [52].  

The ANP captures the dependency and feedback among the different elements in the 
decision model; it takes into consideration the dependency among elements in same clus-
ter (inner dependency) and the dependency among element in different cluster (outer de-
pendency) to prioritize alternatives [53].  Therefore, ANP can model complex decision 
problems where the hierarchical model, as used in the ANP is not sufficient. In this liter-
ature, we shall discuss the general implementation of AHP while acknowledging the best 
practices to verify model assumptions prior to analysis, during analysis and reporting of 
results. 

As mentioned earlier, the AHP is incorporated in the ANP therefore, in the process 
on performing the ANP analysis, you will have to perform the same AHP activities and 
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more. To move from the hierarchical model to the network model, we take into consider-
ation the impact of alternatives on the importance of criteria. First, compare all the criteria 
with respect to each of the alternative (This will enable the identification of the outstand-
ing qualities of each alternative). After this comparison, arrange the corresponding 
weights into the super-matrix, we get the unweighted super-matrix of the network model. 
The matrix is then normalized (i.e., the sum of all columns is scaled to 1) resulting in the 
weighted super-matrix. The whole model is then synthesized by calculating the “Limit 
Matrix”. The limit matrix is the weighted Super-Matrix taken to the power of k+1, where 
k is an arbitrary number. This results to the ranking of the alternatives in the network 
model. In ANP, it is possible for the importance of criteria to change based on the available 
alternatives unlike in the AHP [54]. 

In the ANP model, we can have a control hierarchy where there are multiple layers 
with sub-networks as shown in the example Figure 4 below: 

 

  
Figure 4: Control Hierarchy Decision network [54] 

 
We have a two-layer model with a control hierarchy (benefits and costs) and a sub-

network under benefits and hierarchy under costs. Ranking in of alternatives in a two-
layer model as shown in this example can be evaluated using a ratio formular between 
benefit and cost or an additive formular benefit – cost. The control hierarchy could even 
be extended with additional control parameters and appropriate mathematical formular 
is then used to evaluate the ranking of the alternatives. 

Enrique Mu, in his article on “Best practices in Analytic Network Process studies” 
outlines the best practice requirements in various aspects of the ANP process and report-
ing used for validation purposes [53]. These include 

Influence Matrix: which allows one to easily identify which elements are interdepend-
ent, as well as potential absorbing states. 

Pairwise Comparison Matrix Consistency: It is vital to indicate consistency ratio of any 
pairwise comparison that is done. 

Cluster Comparison Matrix: It is necessary to provide cluster comparison matrix for 
each network. This can be used together with the weighted super-matrix to see what level 
of dependency was captured as the cluster weights were applied and how column nor-
malization was obtained. 

Limit Matrix: It is good to always report the limit super-matrix and not just the final 
priorities of interest. This helps with result verification. 

Weighted Super-matrix: This contains a lot of information and detailed reporting on 
this will enhance the result verification process. 

Sensitivity Analysis: It is important to examine how robust the decision is. The sensi-
tivity analysis within each subnetwork may be done at the level of the criteria clusters or 
even at the level of an individual criterion. While the type and extent of the sensitivity 
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analysis will vary from study to study, it is necessary to discuss the sensitivity approach 
that was followed and explain why those specific analyses were important. 

Rating scale: it is important to report the rating scales for each criterion, particularly 
if there have been different scales used for the different criteria. As much as possible, set 
the rating scales using mathematical models or as objective as possible. 

  
2.3.3. Data Envelopment Analysis 

Another form of multi-criteria decision-making methodology is the use of “Data En-
velopment Analysis” model. It is a mathematical programming approach used to measure 
productive efficiency, based on the idea of the production frontier in micro-economics 
[55]. Although DEA has a strong link to production theory in economics, the tool is also 
used for benchmarking in operations management, where a set of measures is selected to 
benchmark the performance of manufacturing and service operations. In benchmarking, 
the efficient DMUs, as defined by DEA, may not necessarily form a “production frontier”, 
but rather lead to a “best-practice frontier” [56]. 

DEA has various applications such as in performance evaluations, cost benefit anal-
ysis etc. However, we shall discuss it in the context its application in multi-criteria deci-
sion-making. The DEA is used to measure the performance efficiency of set of entities or 
alternatives also known as Decision Making Units (DMU). To explain the concept of DEA, 
we shall use a combination of existing literatures in the topic and arbitrary data example 
for clarification of the concepts. We shall be using the CCR model of DEA which is based 
linear programing as developed by Charnes in 1978 [56]. 

The sample in table/matrix below, shows the attributes of different gaming console 
alternatives. These alternatives can be regarded as decision making units (DMU) 1 to 4. 

 

   
Table 1: Specifications for different gaming consoles laptops 

 
The DEA model employs the concept of system efficiency which uses output or input 

to determine the overall efficiency of a DMU. The non-beneficial criteria are classified as 
inputs, in this case ‘Price’ while the beneficial criteria are classified as outputs i.e., ‘stor-
age’, ‘camera’ and ‘screen thickness’. A DMU is considered to be inefficient if it fails to 
attain maximum output with minimum input. 

The first step I the evaluation is to normalize the matrix using the formula below 

𝑁௜௝ =
𝑋௜௝

ට∑ 𝑋ଶ
௜௝

௡
௝ୀଵ

 

 
This results to  

  Attribute or Criteria   

  Price 
($) 

Storage 
(GB) 

Camera 
(MP) Screen thickness (mm) 

  

A
lte

rn
at

iv
es

 

Console 
1 250 16 12 

 
4 

  
DMU-1 

Console 
2 225 16 8 

 
5 

  
DMU-2 

Console 
3 

300 32 16 
 

4.5 
  

DMU-3 

Console 
4 

275 32 8 
 

4 
  

DMU-4 
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Table 2: Normalized matrix 

 
Given that the basic fractional CCR model is a non- convex programming which is 

very tough to compute, the linear programming method developed by Charnes in 1978 
makes computations easier and it is articulated either by maximizing the output or mini-
mizing the input criteria. The formular is  

𝑔௞ = min (෍ 𝑣௜ . 𝑥௜௞

௠

௜ୀଵ

) 

 

𝐻௞ =
1

𝑔௞

 

 
Subject to the following constraints  

− ෍ 𝑢௥𝑦௥௞ + ෍ 𝑣௜𝑥𝑖𝑘 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … , 𝑛

௠

௜ୀଵ

௦

௥ୀଵ

 

 

෍ 𝑢௥𝑦௥௞

௦

௥ୀଵ

= 1 

 
 
ur ≥ 1, r = 1,…., s and vr ≥ 0, i=1,….,m 
n = number of alternatives (DMUs) 
m = number of input criteria 
s = number of output criteria 

xik and yrk denotes the values of the ith input criterion and rth output criterion for kth alter-
native (inputs and outputs) 
ur and vr are the non-negative variable weights to be determined by the solution of the 
minimization problem. 

If evaluate the first DMU (console 1), we have the objective function as 
g1 = min(0.4735V1) 
subject to constraints 
- 0.3162u1 - 0.5222u2 - 0.4551u3 + 0.4735V1  ≥ 0 
- 0.3162u1 - 0.3482u2 - 0.5689u3 + 0.4262V1  ≥ 0 
- 0.6325u1 - 0.6963u2 - 0.5120u3 + 0.5682V1  ≥ 0 
- 0.6325u1 - 0.3482u2 - 0.4551u3 + 0.5209V1  ≥ 0 
 
With equality constraint of 0.3162u1 + 0.5222u2 + 0.4551u3 = 1 
u1, u2, u3, v1 ≥ 0 

same is repeated for the other DMU where the common constraints remain the same and 
the equality constraint and objective function changes as shown below: 

g2 = min(0.4262V1)  with equality constraint: 0.3162u1 + 0.3482u2 + 0.5689u3 = 1 
g3 = min(0.5682V1) with equality constraint: 0.6325u1 + 0.6963u2 + 0.512u3 = 1 
g4 = min(0.5209V1) with equality constraint: 0.6325u1 + 0.3482u2 + 0.4551u3 = 1  
After outlining all the required equations for the objective functions and constraints, 

you may now optimize each of the DMU parameters to calculate outputs and outputs (gk 

    
Price ($) Storage 

(GB) 
Camera (MP) Screen thickness 

(mm) 

A
lte

rn
at

iv
es

 Console 1 0.4735 0.3162 0.5222 0.4551 

Console 2 0.4262 0.3162 0.3482 0.5689 

Console 3 0.5682 0.6325 0.6963 0.5120 

Console 4 0.5209 0.6325 0.3482 0.4551 
 

Common constraints 
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and Hk) Applications such as math lab or excel can be utilized for such optimization. The 
solution for our sample shows that consoles 2 3 and 4 are all efficient and anyone of them 
can be chosen since they have same values in the input criteria and the output criteria. 
The choices are based on the need to get the maximum output with minimal input. 

DEA makes it possible to identify efficient and inefficient units in a framework where 
results are considered in their context. In addition, DEA also provides information that 
enables the comparison of each inefficient unit with its “peer group”, that is, a group of 
efficient units that are identical with the units under analysis [57]. To achieve sustainable 
manufacturing, the DEA approach can be utilized to evaluate productivity from input to 
output as derived from economic factors. The DEA bad-output model can be used to eval-
uate the sustainability performance of a manufacturing company [55] . 

  
2.4. Product Development (Quality Function Deployment) 

 Quality function deployment (QFD) is a method used to help transform customer's 
expectations, preferences, and aversions (Voice of customer) into engineering characteris-
tics for a product. It was originally developed in Japan in 1966 by Yoji Akao and he de-
scribed it as a “method to transform qualitative user demands into quantitative parame-
ters, to deploy the functions forming quality, and to deploy methods for achieving the 
design quality into subsystems and component parts, and ultimately to specific elements 
of the manufacturing process” [58, 59]. QFD was introduced in the Unites States in the 
early 1980s by the major auto manufacturers like Ford and General Motors, also some 
electronics manufacturers used the concept [60]. 

QFD is used in several sectors ranging from manufacturing, health care and service 
organizations. In the world of business, every organization has customers who they work 
towards satisfying their demands and a great approach or tool of choice is the QFD. It is 
a focused methodology to carefully listen to the voice of customer and effectively respond 
to their need and expectations.  QFD translates customer requirements into measurable 
design targets and drive them from the assembly level down to the sub assembly, compo-
nent, and production process controls. The methodology provides a defined set of ma-
trixes utilized to translate these progressions [58, 61, 62]. 

One of the most important aspects of every organization success is effective commu-
nication. It is vital that the Voice of Customer (VOC) is communicated to multiple opera-
tions throughout the organizations ranging from design, quality, manufacturing, produc-
tion, marketing, and sales etc. This allows the entire organization to work together to make 
a product with very high level of customer perceived value. This is the key benefit of the 
use of QFD as it is customer focused and provides avenue for direct competitor analysis 
i.e., it allows for direct comparison of how an organization’s design or product compares 
with competitors in meeting the VOC. Another key benefit of the QFD is short product 
development time and lower costs because it reduces the likelihood of late design changes 
by focusing on product features and improvements based on customer requirements [58, 
60, 61]. QFD provides a structured method and tools for documenting/recording the de-
cisions made and lessons learned during the product development process which can 
serve as a historical record for utilization in future projects/products [62]. 

The QFD methodology can be described as a 4-phase process that encompasses the 
activities throughout the product development cycle. A series of matrixes are utilized at 
each phase. The voice of customer is utilized to translate the VOC to design requirements 
for each system, sub-system, and components. The four phases of QFD are described in 
Figure 5 below: 
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Figure 5: QFD implementation phases 

 Product Definition: This involves the collection of VOC and translating it into prod-
uct specifications. Sometimes, it may also involve some form of competitive analysis to 
evaluate how effectively the existing competitors are fulfilling customer wants and needs. 
There is also an initial product design concept with specifications and performance. [60, 
62, 63]. 

 Product Development: In this phase, the critical parts and assemblies are identified. 
These product characteristics are cascaded down and translated into critical parts and as-
sembly specifications. Also, the functional requirements for the specification are defined 
for each functional level [60-62]. 

 Process Development: Here, the manufacturing and assembly processes are de-
signed based on product and component specifications. The process flow is developed, 
and the critical process characteristics are identified [60, 62]. 

 Process Quality Control: Prior to production launch, process parameters are deter-
mined, and the appropriate process controls are developed and implemented. Production 
only begins after capability studies are done. 

The House of Quality (HoQ) is an effective QFD tool that is used to translate the VOC 
into product or service design characteristics. It utilizes relationship matrixes and is usu-
ally the first matrix used in the QFD process [59]. Figure 6 shows the HoQ with its key 
sections. 

  
Figure 6: QFD House of Quality [63] 

 
The HoQ demonstrated the relationships between the customer wants i.e., the 

“WHATs” section in Figure 6 and the design parameters i.e., the “HOWs”. The matrix is 
data intensive and allows the capture of large amount of information in one place. HoQ’s 
name is derived from its structure resembling that of a house [63]. 

Level 1 QFD: 
The “WHATs” section of the level 1 HoQ is usually the first section to be determined. 

This is where the VOC are listed. There are various tools and techniques used to determine 
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the VOC ranging from observation, interview, questionnaire, database, checklists etc. The 
outlined functions from the VOC are ranked based on their level of importance to the 
customer using appropriate scales of importance [62, 63]. The “HOWs” section (also 
known as Ceiling) contains the design features and/or technical requirements of the prod-
uct to align with the VOC. The body of the HOW-WHAT matrix is where the “Hows” are 
ranked according to their correlation in fulfilling each of the “Whats”. Ranking systems 
are used is a set of symbols which indicates either strong, moderate, weak or no correla-
tion. The table in Figure 6 titled “Body Ranking System” show the ranking symbols and 
their corresponding values. The “Roof” matrix is used to indicates the level of interrela-
tionship between the design requirements. The rating for the roof matrix ranges from 
strong positive to strong negative as shown in “Roof Ranking System” table in Figure 6. 
There is also a competitor comparison which visualized a comparison between our prod-
ucts and other competitor products in the context of how they fulfil the customer require-
ment. This section should be filled out using mainly direct feedback from customers. The 
relative importance section is derived by sum-product of the value of each column and 
the importance factor. These can be represented as discreet number or a percentage of 
total; it is useful for ranking each of the “Hows” to identify where to allocate most of the 
resources. The lower level or foundation lists more specific target values for technical 
specifications relating to the “Hows” that are used to satisfy he VOC. The data from the 
foundation is deployed to appropriate teams within the organization and it populated 
into the HoQ for the level 2 QFD [58-64]. 

3. Methods 
3.1. Problem statement 

The advent of the Fourth industrial revolution has led to the emanation of new fronts 
for competitiveness, strategy and productivity in industrial processes and manufacturing. 
The flexibility of production planning and control plays a vital role in a business’s ability 
to meet demands, stay viable and differentiate itself from competitors. 

Environmental, Social, Political and Economic factors are having increasing impacts 
on industry operations. However, with globalization and the exponential pace of techno-
logical advancements have introduced various areas of opportunities for industries. Busi-
nesses are seeking to take advantage of these opportunities to implement various com-
puter-aided systems and industry 4.0 concepts that will tackle various aspects of their 
operations to achieve production flexibility which in turn provides key sustainability 
qualities. 

Computer-aided Production flexibility, if achieved and optimized, can promote key 
aspects of business including: 
High availability: Production is up and running for long periods of time, with little or no 
unplanned downtime. 
Elasticity and Scalability: Ability to automatically or dynamically increase or decrease 
resources as needed for any given workload 
Agility and Fault tolerance: Ability to react quickly with minimal human intervention 
and remain up and running in the event of a component/process failure or malfunction.  
Disaster recovery: Capability to quickly recover from catastrophic events that occur that 
may seriously affect the business. 

 
The focus point of this study is the identification of key industry 4.0 attributes (computer-
aided systems) that are implemented in production planning/control, subsequent deduc-
tion of the requirements to achieve production flexibility in manufacturing industries and 
the level of impact it has on sustainability. 

 
3.2. Objectives 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0254.v1

https://doi.org/10.20944/preprints202203.0254.v1


 16 of 57 
 

The aim of the research is to discuss the various segments of typical manufacturing 
life cycle and their corresponding digital manufacturing tools, outline the outline the in-
dustry 4.0 technological requirements the respective tools and finally identify the level of 
impact it has in achieving production flexibility that promotes business sustainability. 

 
3.3. Research Questions 

 What are the smart requirements in production planning and control that 
promote flexibility? 

 What kind of computer-aided systems (Industry 4.0 technological concepts) 
can be integrated for production management? 

 What are the most effective technological concepts for providing the smart 
capability requirements identified in 1 above? 

 How does production flexibility promote business sustainability in areas of 
availability, elasticity/scalability, agility/fault tolerance and disaster recov-
ery? 

3.4. Conceptualization 
Industry 4.0: This refers to the fourth industrial revolution; centering on the integration 
of business, information technology and engineering processes. It provides digital solu-
tions for the automation of manufacturing. [4, 6, 9, 10] 
Digitalized manufacturing: This implies the integration of computational intelligence, 
automation, robotics, additive manufacturing, and human-machine interaction in the pro-
cess of manufacturing.  [4] 
Production flexibility: Ability to easily adapt to and implement changes in the type, 
quantity and frequency of product being manufactured. [4, 5, 7, 44]  
Computer-aided systems: This refers to the concepts and technologies of industry 4.0 
such as digital simulation, autonomous robots, cloud computing, Internet of Things, Big 
Data & Analytics, Augmented Reality, Cyber security etc. [4, 9]   
Sustainability: This refers to business sustainability involving the ability of industries to 
possess capabilities such as high availability, elasticity, scalability, agility, fault tolerance 
and disaster recovery. [5, 45]  

4. Results 
In the previous sections, we identified key capabilities which are required that pro-

mote smart and flexible production planning and control in HMLV manufacturing envi-
ronment. We also identified the industry 4.0 concepts that are applicable in a wide range 
of manufacturing industries. In this section, we shall use content-analysis based approach 
to outline and rank the smart requirements for production planning and control that pro-
mote flexibility and the level of impact the industry 4.0 concepts have in providing these 
smart capability requirements.  
The capabilities and industry-4.0 concepts as identified are outlined below: 
Capabilities: 

C-1. Real-Time 
C-2. Adaptability and Dynamic 
C-3. Visibility and traceability 
C-4. Synchronization 
C-5. Autonomy 
C-6. Predictability 
C-7. Integration and Interoperability of systems 
C-8. Scalability and Reconfiguration 
C-9. Distributed PPC 
C-10. Collaboration and Cooperation 
C-11. Mass Customization 
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C-12. Big data-driven 
C-13. Accuracy 
C-14. Context Awareness   
 

Industry 4.0 Concepts: 
A-1. Cyber-Physical Systems (CPS) 
A-2. Cloud Computing 
A-3. Internet of Things (IoT) 
A-4. Big Data and Analytics/ Artificial Intelligence (BDA/AI) 
A-5. Additive Manufacturing (AM) 
A-6. Simulation 
A-7. Cybersecurity 
A-8. Mobile Technologies 
A-9. Adaptive Robotics 
 

Using the Analytical Hierarchy Process multi-criteria decision-making approach, we can 
group the aspects of the evaluation using the below: 
 

Goal = Production Flexibility 
Criteria = PPC Capabilities 
Alternatives = Industry 4.0 technologies 
 
 The criteria can be broken down into further levels i.e., sub-criteria based on specific 

industry and/or specific PPC to conduct the analysis in a more granular level.  However, 
for the purpose of this study, we shall limit the hierarchy of the AHP to just 3 levels as 
shown in figure13 below. (For readability, not all criteria and alternatives are designed in 
the hierarchy, rather they are outlined by the right side.)
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 1 

 2 
Figure 7: Hierarchy of criteria/objectives [Author’s Work] 3 
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 4 
Table 3: Articles discussing various kinds of requirements for production flexibility (Authors own compilation) 5 

Real-
Time

Adaptability 
and Dynamic

Visibility and 
traceability

Synchronization Autonomy Predictability
Integration and 

Interoperability of 
systems

Scalability and 
Reconf iguration

Distributed 
PPC

Collaboration 
and 

Cooperation

Mass 
Customization

Big data-
driven

Accuracy
Context 

Aw areness

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-11 C-12 C-13 C-14

(Qin, Liu, and Grosvenor 173-178) 1 1 1 1
(Manavalan and Jayakrishna 925-

953) 1 1 1 1 1 1 1 1 1 1 1 1
(Craveiro et al. 251-267) 1 1 1 1 1 1 1 1 1

 (Rojo Gallego Burin, Perez-
Arostegui, and Llorens-Montes 

100610) 1 1 1 1 1 1 1
 (Hansen and Bøgh ) 1 1 1 1 1 1 1 1 1 1 1

  (Singh ) 1 1 1 1 1 1 1 1 1 1
 (Messner et al. 689-694) 1 1 1 1 1 1 1 1

 (Gaub 401-404) 1 1 1 1 1 1

 (Gallego García and García García )
1 1 1 1 1 1 1 1 1 1 1 1 1 1

  (Van Dierdonck and Miller 37-46) 1 1 1 1 1 1 1 1 1 1 1 1 1
 (Jaskó et al. 103300) 1 1 1 1 1 1 1 1 1 1

 (Héctor, Luis, and Sánchez ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 (Jauregui Becker, Borst, and van 
der Veen 419-422) 1 1 1 1 1 1 1 1 1

 (García and García 415) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 (Machado et al. 1113) 1 1 1 1 1 1

 (Innovapptive ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 (ISO and ASTM-international ) 1 1 1 1

 (Silva, Elias Ribeiro da et al. 174) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 (William J Stevenson ) 1 1 1 1 1 1 1

 (Müller, Veile, and Voigt 106733) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 (Kocsi et al. ) 1 1 1 1 1 1 1

 (Silva, Elias Hans Dener Ribeiro da 
et al. 240) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 (Schumacher, Nemeth, and Sihn 
409) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(Litster and Bogle 1003) 1 1 1 1 1 1 1 1 1 1 1 1 1
 (Bueno, Filho, and Frank 106774) 1 1 1 1 1 1 1 1 1 1 1

  (KIEL et al. 1740015) 1 1 1 1 1 1
 (Delic and Eyers 107689) 1 1 1 1 1 1 1 1

 (Ojstersek and Buchmeister ) 1 1 1 1 1 1 1 1 1
 (Dilberoglu et al. 545-554) 1 1 1 1 1 1 1 1 1

 (Ming-w ei and Shi-lian 151) 1 1 1 1 1 1 1 1
 (Wall et al. 1) 1 1 1

  (Shang and You 1010-1016) 1 1 1 1 1 1 1 1 1 1 1 1 1
 (Rossit, Tohmé, and Frutos 2164) 1 1 1 1 1

 (Wu, Huang, and Yang 143) 1 1 1 1 1 1 1 1 1 1 1 1 1
TOTAL 23 24 27 29 22 21 31 27 18 22 20 27 24 18

CAPABILITY REQUIREMENTS REFERENCED PER ARTICLE
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To minimize the level of subjectivity in conducting the pairwise comparison of the 

criteria, we use Table 3 which shows the list of articles from various scientific databases 
that identified the capabilities discussed in the literature review as requirements for pro-
duction flexibility. It can be seen that “Integration and Interoperability of Systems” is 
identified in 31 of the articles out of the 34 articles reviewed while capabilities like “Con-
text awareness” and “Distributed PPC” had the least number of articles that identified 
them. This table will form the basis of the objectivity in assigning importance index for 
the purpose of the AHP decision-making analysis. 

First, we determine the percentage reference which is 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝐶௡

𝑇
 

Equation 1 
 
Where Cn = total number of articles that cited the capability and T is total number of 

articles reviewed. 
This gives: 

Capability Ref_Ratio 

C-1 0.676471 
C-2 0.705882 

C-3 0.794118 

C-4 0.852941 
C-5 0.647059 

C-6 0.617647 
C-7 0.911765 

C-8 0.794118 

C-9 0.529412 
C-10 0.647059 

C-11 0.588235 
C-12 0.794118 

C-13 0.705882 

C-14 0.529412 
Table 4: Reference ratio of capabilities (Author's Work) 

Then we calculate the reference ratio for each capability with other capabilities as 
shown in Table 17 in the appendix A. The rows are subtracted from the column therefore 
the positive values indicate that the row item is referenced in more articles than the col-
umn items by that percentage of articles while the negative values indicate less. 

To apply this ‘reference ratio’ into the Saaty’s scale of relative importance, we apply 
conditions for each assignment as representation as shown in the table below: 
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Table 5: Scale of importance 

  
Using the scale in Table 5 above, we conduct the pairwise comparison of the criteria 

resulting to Table below. The B-Box software application is used for conduction the AHP 
analysis.  

On Standardizing the importance (see Table 7) we see the ranking of the various cri-
teria as it relates to the requirements for the goal of flexibility in manufacturing. ‘Integra-
tion and interoperability of systems’ rank the highest followed by, ‘synchronization’, ‘vis-
ibility/traceability’ and ‘scalability/reconfiguration’. Although, also required for produc-
tion flexibility (as discussed in the literature review); ‘context awareness’, ‘distribute PPC’ 
and predictability ranked lowest, and this may be attributed to the fact that they highly 
depend on the existence of the other capabilities.

Condition for 
reference ratio

Equal Importance 1 0 to 10%
Weak/light 2 >10% and <=20%

Moderate Importance 3 >20% and <=30%
Moderate Plus 4 >30% and <=40%

Strong Importance 5 >40% and <= 50%

Strong Plus 6 >50% and <=60%
Very Strong Importance 7 >60% and <= 70%
Very, very Importance 8 >70% and <=80%

Extreme Importance 9 >80%

Scale of relative importance
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Table 6: Pairwise Matrix Comparison of the criteria [Author’s Work] 

 

 
Table 7: Standardization of Criteria Importance [Author’s Work] 

Criteria Real-Time
Adaptability 

and Dynamic
Visibility and 
traceability Synchronization Autonomy Predictability

Integration and 
Interoperability 

of systems
Scalability and 

Reconfiguration
Distributed 

PPC

Collaboration 
and 

Cooperation
Mass 

Customization
Big data-

driven Accuracy
Context 

Awareness
Real-Time 1 1 1/2 1/2 1 1 1/3 1/2 2 1 1 1/2 1 2

Adaptability and Dynamic 1 1 1 1/2 1 1 1/3 1 2 1 2 1 1 2
Visibility and traceability 2 1 1 1 2 2 1/2 1 3 2 3 1 1 3

Synchronization 2 2 1 1 3 3 1 1 3 3 1/3 1 2 4
Autonomy 1 1 1/2 1/3 1 1 1/3 1/2 2 1 1 1/2 1 2

Predictability 1 1 1/2 1/3 1 1 1/3 1/2 1 1 1 1/2 1 1
Integration and Interoperability of systems 3 3 2 1 3 3 1 2 4 3 4 2 2 4

Scalability and Reconfiguration 2 1 1 1 2 2 1/2 1 3 2 3 1 1 3
Distributed PPC 1/2 1/2 1/3 1/3 1/2 1 1/4 1/3 1 1/2 1 1/3 1/2 1

Collaboration and Cooperation 1 1 1/2 1/3 1 1 1/3 1/2 2 1 1 1/2 1 2
Mass Customization 1 1/2 1/3 3 1 1 1/4 1/3 1 1 1 1/3 1/2 2

Big data-driven 2 1 1 1 2 2 1/2 1 3 2 3 1 1 3
Accuracy 1 1 1 1/2 1 1 1/2 1 2 1 2 1 1 2

Context Awareness 1/2 1/2 1/3 1/4 1/2 1 1/4 1/3 1 1/2 1/2 1/3 1/2 1

Crieria Real-Time
Adaptability and 

Dynamic
Visibility and 
traceability

Synchronization Autonomy Predictability
Integration and 

Interoperability of 
systems

Scalability and 
Reconfiguration

Distributed 
PPC

Collaboration 
and Cooperation

Mass 
Customization

Big data-
driven

Accuracy
Context 

Awareness
Relative 

importance
Rank

Real-Time 0.053 0.065 0.045 0.045 0.050 0.048 0.052 0.045 0.067 0.050 0.042 0.045 0.069 0.063 0.053 9
Adaptability and Dynamic 0.053 0.065 0.091 0.045 0.050 0.048 0.052 0.091 0.067 0.050 0.084 0.091 0.069 0.063 0.065 7
Visibility and traceability 0.105 0.065 0.091 0.090 0.100 0.095 0.078 0.091 0.100 0.100 0.126 0.091 0.069 0.094 0.092 3

Synchronization 0.105 0.129 0.091 0.090 0.150 0.143 0.156 0.091 0.100 0.150 0.014 0.091 0.138 0.125 0.112 2
Autonomy 0.053 0.065 0.045 0.030 0.050 0.048 0.052 0.045 0.067 0.050 0.042 0.045 0.069 0.063 0.052 10

Predictability 0.053 0.065 0.045 0.030 0.050 0.048 0.052 0.045 0.033 0.050 0.042 0.045 0.069 0.031 0.047 12
Integration and Interoperability of systems 0.158 0.194 0.182 0.090 0.150 0.143 0.156 0.182 0.133 0.150 0.168 0.182 0.138 0.125 0.154 1

Scalability and Reconfiguration 0.105 0.065 0.091 0.090 0.100 0.095 0.078 0.091 0.100 0.100 0.126 0.091 0.069 0.094 0.092 3
Distributed PPC 0.026 0.032 0.030 0.030 0.025 0.048 0.039 0.030 0.033 0.025 0.042 0.030 0.034 0.031 0.033 13

Collaboration and Cooperation 0.053 0.065 0.045 0.030 0.050 0.048 0.052 0.045 0.067 0.050 0.042 0.045 0.069 0.063 0.052 10
Mass Customization 0.053 0.032 0.030 0.271 0.050 0.048 0.039 0.030 0.033 0.050 0.042 0.030 0.034 0.063 0.058 8

Big data-driven 0.105 0.065 0.091 0.090 0.100 0.095 0.078 0.091 0.100 0.100 0.126 0.091 0.069 0.094 0.092 3
Accuracy 0.053 0.065 0.091 0.045 0.050 0.048 0.078 0.091 0.067 0.050 0.084 0.091 0.069 0.063 0.067 6

Context Awareness 0.026 0.032 0.030 0.023 0.025 0.048 0.039 0.030 0.033 0.025 0.021 0.030 0.034 0.031 0.031 14
sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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The consistency ratio of the criteria shows that the methodology used for the com-

parison of the input data is consistent. See results for the consistency test below. 
 

 
Table 8: Consistency test on the criteria 

Having ranked the smart capability requirements, the AHP analysis proceeds to eval-
uate the respective industry 4.0 concepts on how well they can help industries exhibit 
these capabilities. The pairwise comparison conducted for the alternatives shows con-
sistency in the data for all criteria hence this was used for subsequent assignment of rela-
tive importance to the alternatives (See Table 18 to Table 23). The ranking resulting from 
the AHP analysis is as shown in Table 9 below. Internet of Things has a weighting of 1.81 
followed closely by Cyber-Physical system with 1.76 weight to rank number 1 and 2 re-
spectively. On the other hand, Cybersecurity ranked lowest amongst all the technologies.  

Criteria Average Weight (A) product of Matrices (B) Consistency Measure (B/A) Consistency index
Real-Time 0.053 0.766 14.526 0.040
Adaptability and Dynamic 0.065 0.962 14.697 0.054
Visibility and traceability 0.092 1.368 14.794 0.061
Synchronization 0.112 1.605 14.287 0.022
Autonomy 0.052 0.747 14.466 0.036
Predictability 0.047 0.684 14.539 0.041
Integration and Interoperability of systems 0.154 2.244 14.614 0.047
Scalability and Reconfiguration 0.092 1.368 14.794 0.061
Distributed PPC 0.033 0.481 14.717 0.055
Collaboration and Cooperation 0.052 0.747 14.466 0.036
Mass Customization 0.058 0.889 15.451 0.112
Big data-driven 0.092 1.368 14.794 0.061
Accuracy 0.067 0.988 14.672 0.052
Context Awareness 0.031 0.442 14.450 0.035

0.051
0.032

Consistency index average (CI)
Consistency ratio (CR)
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Table 9: Rank of the alternatives (Industry 4.0 concepts) 

  
4.1. SURVEY CASE STUDY 

The analysis done so far have been based off a literature review approach and the objectivity employed in the AHP analysis 
discussed above have been based on studies extracted from the work of various authors. However, the respective literatures where 
information is sourced have their publication date ranging between 1992 and 2020. However, due to the rapid advancement of tech-
nology, we shall examine the current application of these I4.0 concepts in today’s industries. We shall continue the case study using a 
survey approach and comparing the results with the ones derived so far.

Items Real-Time
Adaptability 

and 
Dynamic

Visibility 
and 

traceability

Synchroniz
ation

Autonomy Predictability
Integration and 
Interoperability 

of systems

Scalability and 
Reconfiguration

Distributed 
PPC

Collaboration 
and 

Cooperation

Mass 
Customization

Big data-
driven

Accuracy
Context 

Awareness
Total RANK

Cyber-Physical Systems 0.219 0.160 0.228 0.246 0.205 0.073 0.214 0.166 0.206 0.109 0.050 0.131 0.121 0.252 0.176 2
Cloud Computing 0.113 0.108 0.099 0.052 0.081 0.194 0.066 0.039 0.116 0.077 0.051 0.196 0.121 0.057 0.094 5
Internet of Things 0.219 0.179 0.214 0.209 0.205 0.099 0.266 0.166 0.111 0.143 0.170 0.093 0.112 0.197 0.181 1
Big Data and Analytics/ Artificial Intelligence 0.107 0.076 0.130 0.166 0.055 0.314 0.112 0.038 0.156 0.181 0.051 0.350 0.204 0.132 0.147 3
Additive Manufacturing 0.024 0.061 0.021 0.043 0.100 0.024 0.018 0.343 0.029 0.021 0.312 0.017 0.074 0.034 0.080 6
Simulation 0.067 0.103 0.070 0.067 0.055 0.075 0.056 0.063 0.027 0.037 0.090 0.045 0.112 0.064 0.067 8
Cybersecurity 0.040 0.021 0.051 0.023 0.030 0.037 0.029 0.021 0.082 0.094 0.020 0.032 0.058 0.023 0.037 9
Mobile Technologies 0.147 0.202 0.145 0.113 0.134 0.117 0.164 0.078 0.228 0.302 0.162 0.093 0.095 0.153 0.144 4
Adaptive Robotics 0.064 0.089 0.044 0.080 0.137 0.067 0.076 0.088 0.045 0.035 0.092 0.045 0.104 0.089 0.075 7

weight(e) 0.053 0.065 0.092 0.112 0.052 0.047 0.154 0.092 0.033 0.052 0.058 0.092 0.067 0.031
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The survey was conducted between February and March 2021 to gather firsthand 

information from successful industries across various sectors. The survey was both ex-
ploratory and descriptive in nature, aiming to gather current data on industrial status as 
it relates to their smart capabilities and application of industry 4.0 concepts in their general 
manufacturing/business operations. 

The responses received were from various regions across the world and below is a 
distribution of the responses by volume with a total of 117 responses. 

 
Figure 8: Responses by region 

  
 

 
Figure 9: Responses by country. 

  
Although the responses were received from various forms of industries however, the 

primary target was manufacturing industries therefore 78% of the responses were re-
ceived from such industries which run some form of HMLV manufacturing environment. 
Also, the AHP analysis we shall conduct will include only responses from the manufac-
turing industries while further comparisons and discussions will be done using infor-
mation derived from the analysis involving the rest of the data. 

Assigning ranks to the I4.0 concepts: 
The percentage of the industries which utilize the respective I4.0 concepts is as show 

below: 

  
 
When we take the average for the comparison of the respective technologies, and factor it 
into the Saaty’s scale of relative importance, we have the pairwise comparison below: 

Cyber-
Phys ical  
Systems

Cloud 
Computing

Internet 
of 

Things

Big data  
Analyti cs/Arti fi cia l  

intel l i gence

Addi tive 
Manufacturing

Simulation
cyber-

security
Mobile 

Technology
Adaptive 
Robotics

A1 A2 A3 A4 A5 A6 A7 A8 A9
50.43% 48.72% 93.16% 82.05% 12.82% 37.61% 43.59% 52.14% 33.33%

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0254.v1

https://doi.org/10.20944/preprints202203.0254.v1


 2 of 57 
 

   

 
Table 10: Pairwise comparison derived from survey data 

  
Going forward, for readability, we shall be using A1 to A9 to denote the respective indus-
try 4.0 concepts in tables. 

Normalizing the pairwise comparison and calculating for the weight we derive a pre-
liminary ranking as shown in Table 11 below. 

  

 
Table 11: Preliminary ranking of the alternatives 

Note: The above rankings only serve as an aid when calculating for relative importance 
during the AHP analysis. 

A part of the survey was to determine the level of importance attributed to the re-
spective capabilities by the industries and this resulted in the summary score in table be-
low: 

 
Table 12: Attributed importance to the capabilities 

Applying the same concept as in the literature review approach case study (See Equation 
1). However, Cn now denotes number of industries that ranked the concept as vital, and 
T is the total number of industries that conducted the ranking; we conduct the pairwise 
comparison of the capabilities resulting in Table 13 (We shall use C1 to C12 to denote the 
capabilities going forward)  

  A1 A2 A3 A4 A5 A6 A7 A8 A9 
A1 1     3      1/4  1/3 4     6     2      1/2 4     
A2  1/3 1      1/6  1/5 2     3      1/2  1/4 3     
A3 4     6     1     2     7     9     4     3     8     
A4 3     5      1/2 1     5     8     4     2     7     
A5  1/4  1/2  1/7  1/5 1     3      1/3  1/5 2     
A6  1/6  1/3  1/9  1/8  1/3 1      1/5  1/7  1/2 
A7  1/2 2      1/4  1/4 3     5     1      1/3 3     
A8 2     4      1/3  1/2 5     7     3     1     6     
A9  1/4  1/3  1/8  1/7  1/2 2      1/3  1/6 1     
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Table 13: Pairwise comparison of the Criteria 

Table 14 below and Table 24 in appendix A shows the standardization of the im-
portance and the consistency test respectively. This showed that the decision data as de-
rived from the analysis of the survey is consistent therefore, we can proceed with further 
AHP analysis using the results. The ranking shows “Integration and interoperability of 
systems” as the most important capability required for production flexibility. 

 
Table 14: Standardization of importance 

  
Proceeding further, we evaluate the relative importance of the alternatives to have a deci-
sion matrix where we rank the alternative based on how important they are at providing 
the criteria required for production flexibility. Table 25 to 28 in appendix A shows the 
calculations involved and the consistency for all the alternatives derived from the survey 
are within the acceptable range.  

  
The decision matrix in Table 15 below shows the weights and ranking of the respec-

tive technologies. 

 
Table 15: Decision matrix 

  

Crieria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Relative 

importance
Rank

C1 0.074 0.051 0.074 0.105 0.083 0.059 0.060 0.056 0.061 0.101 0.080 0.105 0.076 6
C2 0.148 0.103 0.148 0.105 0.125 0.176 0.179 0.167 0.121 0.017 0.160 0.105 0.130 2
C3 0.037 0.026 0.037 0.035 0.042 0.029 0.045 0.056 0.030 0.025 0.040 0.035 0.036 12
C4 0.074 0.103 0.111 0.105 0.125 0.118 0.090 0.111 0.121 0.151 0.080 0.105 0.108 3
C5 0.037 0.034 0.037 0.035 0.042 0.029 0.045 0.056 0.061 0.050 0.040 0.035 0.042 11
C6 0.074 0.034 0.074 0.053 0.083 0.059 0.060 0.056 0.061 0.050 0.080 0.053 0.061 8
C7 0.222 0.103 0.148 0.211 0.167 0.176 0.179 0.167 0.182 0.202 0.160 0.211 0.177 1
C8 0.074 0.034 0.037 0.053 0.042 0.059 0.060 0.056 0.061 0.050 0.080 0.053 0.055 10
C9 0.074 0.051 0.074 0.053 0.042 0.059 0.060 0.056 0.061 0.050 0.080 0.053 0.059 9
C10 0.037 0.308 0.074 0.035 0.042 0.059 0.045 0.056 0.061 0.050 0.040 0.035 0.070 7
C11 0.074 0.051 0.074 0.105 0.083 0.059 0.090 0.056 0.061 0.101 0.080 0.105 0.078 5
C12 0.074 0.103 0.111 0.105 0.125 0.118 0.090 0.111 0.121 0.151 0.080 0.105 0.108 3
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5. Discussion 
In HMLV production environment, there is high level of complexity involved in pro-

duction planning and control activities. The intricacy of many of the activities including 
but not limited to production system design, location planning and analysis, facilities and 
layout, demand forecasting, capacity planning, lot sizing, inventory and supply chain 
management etc. become more complex; The AHP analysis conducted using both ap-
proaches (Literature review and Questionnaire survey) in the case study section identifies 
Integration and interoperability of systems as the most important capability requirement 
for production flexibility. However, the ranking of the importance level of other capabili-
ties varies as outlined in Table 7 and Table 14. 

Comparing the results of the AHP from both case studies (See Table 9 and Table 15) 
we can see that there is a significant difference in the ranking of the industry 4.0 im-
portance. Although the Literature review study and the survey study both identifies In-
ternet of things as the most important concept for provision of the capability requirement, 
we can see the level of importance for most of the other concepts changed. The below table 
shows the ranking from the two case studies: 

 
Table 16: Case study ranking of the alternatives 

The survey rank has mobile technologies and cyber-physical system 2nd and 3rd in 
importance while cloud computing ranked lowest. This is different for the literature re-
view ranking which has cybersecurity as the least important. This discrepancy may be 
attributed to the fact that the literature review is based on old data and information de-
rived from previous works of authors. However, giving the fast pace of technological ad-
vancement and adoption of industry 4.0 concepts in manufacturing industries, the survey 
analysis presents a more current information on the state of the application of the industry 
4.0 technologies and concepts in the manufacturing industry. 

Further findings from the survey analysis are outlined below: 
o The average number of industry 4.0 concepts used simultaneously by manu-

facturing companies is 5 but the distribution varies on the type of technology 
being deployed. 

o 93% of manufacturing companies that deploy more than 5 industry 4.0 tech-
nological concepts have intercontinental customer base and office locations 
with more than 250 employees and they have highly decentralized mode of 
operation. 

o Additive manufacturing is the least utilized technology with only 12.8% of the 
industries having such as part of their manufacturing processes/technologies. 
The literature shows that this is because the field is relatively new compared 
to other technologies and therefore the advancements required for widespread 
adoption with reduced cost implication is still in the early stages. However, 
for the industries that utilize the technology, the analysis shows that the im-
portance is very high relative to other technological concepts which they de-
ploy. This is evident in one of the comments received in the survey responses 
from a woodworking manufacturing company in Africa: 
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“Although a very expensive addition to the factory, Since the installation of 
my CNC router, there has been high improvement in the efficiency and output 
of the company” 

o Internet of Things ranked very high in both number of industries that utilize 
the concept and the level of importance attributed to it. Big data analytics and 
artificial intelligence followed closely in terms of number industries that use 
the concept. However, mobile technologies ranked higher at providing the ca-
pabilities required for production flexibility and this is evident in the results 
of the AHP analysis. 

o The simple analysis of the responses from the service industries shows that the 
average number of I4.0 technology concepts simultaneously deployed is 3 and 
the prevalent concepts are Big data Analytics, Cloud Computing and Cyber-
security. Although this study is focused on manufacturing industries, the same 
analytical approaches can also be used to determine the ranking of the capa-
bility requirement and technological concepts. 

6. Conclusions 
Production flexibility is paramount for the sustainability of any industry with a high-

mix low-volume manufacturing environment. This article conducts a literature review 
and case study that answers the research questions on smart requirements in production 
planning and control that promote flexibility Industry 4.0 technological concepts that can 
be integrated for production management. See page 16 
This study also addressed the most effective technological concepts for providing the 
smart capability requirements. (See discussion above and ranking in Table 15: Decision 
matrix) 
Production flexibility promotes business sustainability in areas of availability, elastic-
ity/scalability, agility/fault tolerance and disaster recovery. The complex calculations and 
activities involved in the production management lifecycle and operations can easily be 
handle efficiently and effectively with the use of these industry 4.0 concepts with little 
trade-offs. With these I4.0 concepts, industries combine multiple scheduling approaches 
high levels of accuracy and dependability thereby enhancing flexibility. Also, the product 
development activities discussed in section 1.1 and others can seamlessly run with close 
to limitless amount of input data from various sources and the manufacturing system will 
be able to handle and adapt to various scenarios that may come up. 

We can also see that Multi-Criteria Decision Making (MCDM) methodologies can 
provide effective way for industries to determine the best technology implementation re-
quired for various aspects of production management. Further research in this field in-
cludes Digitalized MCDM systems for Production planning and control with very high 
levels of objectivity. This study took a broad approach to determine the impact of these 
technologies. However, it can be developed to target a particular industry type, sector, or 
operation. For example, forecasting or capacity planning in a specific automotive industry 
can be handled using one or more MCDM approaches to determine the best combination 
of technological concepts that will best provide desired results that will serve as inputs to 
the manufacturing process. 

As a further step, a promising approach that may be able to handle complex systems 
and information flow to dynamically determine best productions approaches is the “Ge-
netic Algorithm”. Further studies can be done on the application of genetic algorithm as 
key aspect in the development of dynamic production scheduling models that enhances 
sustainability. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0254.v1

https://doi.org/10.20944/preprints202203.0254.v1


 6 of 57 
 

Author Contributions: The entire work was done primarily by Victor Onyeneke. The article is a 
section of a broader MSc thesis research with immense supervision, guidance and tutoring provided 
by László Pusztai who is a lecturer at the University of Debrecen. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable 

Informed Consent Statement: Not applicable 
 
Data Availability Statement: Data used were generated by author and included in the submission 

Acknowledgments: Special thanks to László Pusztai for providing technical support and guidance 
during the research. I also wish to acknowledge Kocsi Balazs and István Budai (PhD) for their vari-
ous form of assistance which had great impact in the success of the research. 

Conflicts of Interest: The authors declare no conflict of interest 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0254.v1

https://doi.org/10.20944/preprints202203.0254.v1


  

 

 

Appendix A 
Literature review approach AHP Analysis Tables 

 
Table 17: Comparison of the ratios of the capabilities (Author’s work) 

 

 
Table 18: Standardized comparison of the technologies (Author’s work) 

RATIO: 0.676471 0.705882 0.794118 0.852941 0.647059 0.617647 0.911765 0.794118 0.529412 0.647059 0.588235 0.794118 0.705882 0.529412

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-11 C-12 C-13 C-14

0.676471 C-1 0.0000 -0.0294 -0.1176 -0.1765 0.0294 0.0588 -0.2353 -0.1176 0.1471 0.0294 0.0882 -0.1176 -0.0294 0.1471

0.705882 C-2 0.0294 0.0000 -0.0882 -0.1471 0.0588 0.0882 -0.2059 -0.0882 0.1765 0.0588 0.1176 -0.0882 0.0000 0.1765

0.794118 C-3 0.1176 0.0882 0.0000 -0.0588 0.1471 0.1765 -0.1176 0.0000 0.2647 0.1471 0.2059 0.0000 0.0882 0.2647

0.852941 C-4 0.1765 0.1471 0.0588 0.0000 0.2059 0.2353 -0.0588 0.0588 0.3235 0.2059 0.2647 0.0588 0.1471 0.3235

0.647059 C-5 -0.0294 -0.0588 -0.1471 -0.2059 0.0000 0.0294 -0.2647 -0.1471 0.1176 0.0000 0.0588 -0.1471 -0.0588 0.1176

0.617647 C-6 -0.0588 -0.0882 -0.1765 -0.2353 -0.0294 0.0000 -0.2941 -0.1765 0.0882 -0.0294 0.0294 -0.1765 -0.0882 0.0882

0.911765 C-7 0.2353 0.2059 0.1176 0.0588 0.2647 0.2941 0.0000 0.1176 0.3824 0.2647 0.3235 0.1176 0.2059 0.3824

0.794118 C-8 0.1176 0.0882 0.0000 -0.0588 0.1471 0.1765 -0.1176 0.0000 0.2647 0.1471 0.2059 0.0000 0.0882 0.2647

0.529412 C-9 -0.1471 -0.1765 -0.2647 -0.3235 -0.1176 -0.0882 -0.3824 -0.2647 0.0000 -0.1176 -0.0588 -0.2647 -0.1765 0.0000

0.647059 C-10 -0.0294 -0.0588 -0.1471 -0.2059 0.0000 0.0294 -0.2647 -0.1471 0.1176 0.0000 0.0588 -0.1471 -0.0588 0.1176

0.588235 C-11 -0.0882 -0.1176 -0.2059 -0.2647 -0.0588 -0.0294 -0.3235 -0.2059 0.0588 -0.0588 0.0000 -0.2059 -0.1176 0.0588

0.794118 C-12 0.1176 0.0882 0.0000 -0.0588 0.1471 0.1765 -0.1176 0.0000 0.2647 0.1471 0.2059 0.0000 0.0882 0.2647

0.705882 C-13 0.0294 0.0000 -0.0882 -0.1471 0.0588 0.0882 -0.2059 -0.0882 0.1765 0.0588 0.1176 -0.0882 0.0000 0.1765

0.529412 C-14 -0.1471 -0.1765 -0.2647 -0.3235 -0.1176 -0.0882 -0.3824 -0.2647 0.0000 -0.1176 -0.0588 -0.2647 -0.1765 0.0000

Real-Time
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.241 0.252 0.241 0.255 0.189 0.189 0.152 0.237 0.214 0.219
Cloud Computing 0.080 0.084 0.080 0.028 0.108 0.126 0.114 0.237 0.161 0.113
Internet of Things 0.241 0.252 0.241 0.255 0.189 0.189 0.152 0.237 0.214 0.219
Big Data and Analytics/ Artificial Intelligence 0.080 0.252 0.080 0.085 0.135 0.063 0.152 0.059 0.054 0.107
Additive Manufacturing 0.034 0.021 0.034 0.017 0.027 0.032 0.013 0.024 0.018 0.024
Simulation 0.080 0.042 0.080 0.085 0.054 0.063 0.114 0.030 0.054 0.067
Cybersecurity 0.060 0.028 0.060 0.021 0.081 0.021 0.038 0.030 0.018 0.040
Mobile Technologies 0.121 0.042 0.121 0.170 0.135 0.253 0.152 0.118 0.214 0.147
Adaptive Robotics 0.060 0.028 0.060 0.085 0.081 0.063 0.114 0.030 0.054 0.064
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Table 19: Standardized comparison of the technologies cont. 

Adaptability and Dynamic
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.181 0.217 0.192 0.171 0.096 0.150 0.116 0.189 0.129 0.160
Cloud Computing 0.090 0.109 0.096 0.057 0.096 0.150 0.116 0.189 0.065 0.108
Internet of Things 0.181 0.217 0.192 0.171 0.241 0.150 0.140 0.189 0.129 0.179
Big Data and Analytics/ Artificial Intelligence 0.060 0.109 0.064 0.057 0.145 0.025 0.116 0.094 0.016 0.076
Additive Manufacturing 0.090 0.054 0.038 0.019 0.048 0.037 0.093 0.038 0.129 0.061
Simulation 0.090 0.054 0.096 0.171 0.096 0.075 0.116 0.038 0.194 0.103
Cybersecurity 0.036 0.022 0.032 0.011 0.012 0.015 0.023 0.027 0.013 0.021
Mobile Technologies 0.181 0.109 0.192 0.114 0.241 0.374 0.163 0.189 0.259 0.202
Adaptive Robotics 0.090 0.109 0.096 0.228 0.024 0.025 0.116 0.047 0.065 0.089

Visibility and traceability
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.248 0.264 0.221 0.229 0.136 0.263 0.162 0.354 0.172 0.228
Cloud Computing 0.083 0.088 0.074 0.114 0.114 0.105 0.121 0.059 0.129 0.099
Internet of Things 0.248 0.264 0.221 0.343 0.136 0.263 0.162 0.118 0.172 0.214
Big Data and Analytics/ Artificial Intelligence 0.124 0.088 0.074 0.114 0.136 0.105 0.162 0.236 0.129 0.130
Additive Manufacturing 0.041 0.018 0.037 0.019 0.023 0.013 0.008 0.017 0.011 0.021
Simulation 0.050 0.044 0.044 0.057 0.091 0.053 0.162 0.039 0.086 0.070
Cybersecurity 0.062 0.029 0.055 0.029 0.114 0.013 0.040 0.029 0.086 0.051
Mobile Technologies 0.083 0.176 0.221 0.057 0.159 0.158 0.162 0.118 0.172 0.145
Adaptive Robotics 0.062 0.029 0.055 0.038 0.091 0.026 0.020 0.029 0.043 0.044

Synchronization
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.283 0.148 0.404 0.301 0.216 0.181 0.158 0.324 0.201 0.246
Cloud Computing 0.094 0.049 0.051 0.050 0.018 0.060 0.105 0.022 0.022 0.052
Internet of Things 0.142 0.198 0.202 0.301 0.180 0.241 0.158 0.259 0.201 0.209
Big Data and Analytics/ Artificial Intelligence 0.142 0.148 0.101 0.150 0.180 0.181 0.132 0.259 0.201 0.166
Additive Manufacturing 0.047 0.099 0.040 0.030 0.036 0.020 0.079 0.016 0.022 0.043
Simulation 0.094 0.049 0.051 0.050 0.108 0.060 0.105 0.022 0.067 0.067
Cybersecurity 0.047 0.012 0.034 0.030 0.012 0.015 0.026 0.013 0.017 0.023
Mobile Technologies 0.057 0.148 0.051 0.038 0.144 0.181 0.132 0.065 0.201 0.113
Adaptive Robotics 0.094 0.148 0.067 0.050 0.108 0.060 0.105 0.022 0.067 0.080
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Table 20:Standardized comparison of the technologies cont. 

Autonomy
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.225 0.254 0.225 0.148 0.189 0.148 0.161 0.228 0.267 0.205
Cloud Computing 0.056 0.063 0.056 0.098 0.126 0.098 0.129 0.038 0.067 0.081
Internet of Things 0.225 0.254 0.225 0.148 0.189 0.148 0.161 0.228 0.267 0.205
Big Data and Analytics/ Artificial Intelligence 0.075 0.032 0.075 0.049 0.013 0.049 0.097 0.057 0.044 0.055
Additive Manufacturing 0.075 0.032 0.075 0.246 0.063 0.246 0.065 0.028 0.067 0.100
Simulation 0.075 0.032 0.075 0.049 0.013 0.049 0.097 0.057 0.044 0.055
Cybersecurity 0.045 0.016 0.045 0.016 0.031 0.016 0.032 0.023 0.044 0.030
Mobile Technologies 0.112 0.190 0.112 0.098 0.252 0.098 0.161 0.114 0.067 0.134
Adaptive Robotics 0.112 0.127 0.112 0.148 0.126 0.148 0.097 0.228 0.133 0.137

Predictability
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.055 0.033 0.140 0.061 0.086 0.020 0.110 0.099 0.055 0.073
Cloud Computing 0.275 0.166 0.350 0.122 0.143 0.177 0.146 0.198 0.165 0.194
Internet of Things 0.028 0.033 0.070 0.091 0.143 0.118 0.146 0.099 0.165 0.099
Big Data and Analytics/ Artificial Intelligence 0.330 0.499 0.280 0.365 0.200 0.296 0.183 0.397 0.275 0.314
Additive Manufacturing 0.018 0.033 0.014 0.052 0.029 0.015 0.012 0.025 0.018 0.024
Simulation 0.165 0.055 0.035 0.073 0.114 0.059 0.110 0.033 0.028 0.075
Cybersecurity 0.018 0.042 0.018 0.073 0.086 0.020 0.037 0.025 0.018 0.037
Mobile Technologies 0.055 0.083 0.070 0.091 0.114 0.177 0.146 0.099 0.220 0.117
Adaptive Robotics 0.055 0.055 0.023 0.073 0.086 0.118 0.110 0.025 0.055 0.067

Integration and Interoperability of systems
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.245 0.201 0.290 0.241 0.188 0.195 0.178 0.267 0.119 0.214
Cloud Computing 0.061 0.050 0.058 0.040 0.104 0.098 0.127 0.033 0.020 0.066
Internet of Things 0.245 0.251 0.290 0.321 0.167 0.244 0.178 0.400 0.297 0.266
Big Data and Analytics/ Artificial Intelligence 0.082 0.101 0.072 0.080 0.104 0.195 0.153 0.044 0.178 0.112
Additive Manufacturing 0.027 0.010 0.036 0.016 0.021 0.012 0.006 0.017 0.015 0.018
Simulation 0.061 0.025 0.058 0.020 0.083 0.049 0.102 0.044 0.059 0.056
Cybersecurity 0.035 0.010 0.041 0.013 0.083 0.012 0.025 0.027 0.015 0.029
Mobile Technologies 0.122 0.201 0.097 0.241 0.167 0.146 0.127 0.133 0.238 0.164
Adaptive Robotics 0.122 0.151 0.058 0.027 0.083 0.049 0.102 0.033 0.059 0.076
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Table 21: Standardized comparison of the technologies cont. 

 

Scalability and Reconfiguration
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.119 0.183 0.119 0.177 0.080 0.201 0.150 0.232 0.232 0.166
Cloud Computing 0.024 0.037 0.024 0.035 0.067 0.017 0.100 0.019 0.026 0.039
Internet of Things 0.119 0.183 0.119 0.177 0.080 0.201 0.150 0.232 0.232 0.166
Big Data and Analytics/ Artificial Intelligence 0.024 0.037 0.024 0.035 0.057 0.017 0.100 0.019 0.026 0.038
Additive Manufacturing 0.595 0.220 0.595 0.248 0.400 0.251 0.175 0.290 0.310 0.343
Simulation 0.030 0.110 0.030 0.106 0.080 0.050 0.100 0.019 0.039 0.063
Cybersecurity 0.020 0.009 0.020 0.009 0.057 0.013 0.025 0.014 0.019 0.021
Mobile Technologies 0.030 0.110 0.030 0.106 0.080 0.151 0.100 0.058 0.039 0.078
Adaptive Robotics 0.040 0.110 0.040 0.106 0.100 0.100 0.100 0.116 0.077 0.088

Distributed PPC
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.209 0.293 0.096 0.141 0.188 0.171 0.166 0.404 0.188 0.206
Cloud Computing 0.052 0.073 0.191 0.070 0.156 0.143 0.166 0.040 0.150 0.116
Internet of Things 0.209 0.037 0.096 0.070 0.063 0.143 0.166 0.067 0.150 0.111
Big Data and Analytics/ Artificial Intelligence 0.209 0.147 0.191 0.141 0.125 0.171 0.166 0.067 0.188 0.156
Additive Manufacturing 0.035 0.015 0.048 0.035 0.031 0.029 0.021 0.034 0.013 0.029
Simulation 0.035 0.015 0.019 0.023 0.031 0.029 0.041 0.034 0.013 0.027
Cybersecurity 0.105 0.037 0.048 0.070 0.125 0.057 0.083 0.101 0.113 0.082
Mobile Technologies 0.105 0.366 0.287 0.422 0.188 0.171 0.166 0.202 0.150 0.228
Adaptive Robotics 0.042 0.018 0.024 0.028 0.094 0.086 0.028 0.051 0.038 0.045

Collaboration and Cooperation
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.074 0.113 0.037 0.055 0.136 0.142 0.173 0.071 0.180 0.109
Cloud Computing 0.037 0.056 0.027 0.055 0.114 0.106 0.086 0.059 0.150 0.077
Internet of Things 0.221 0.226 0.110 0.083 0.159 0.177 0.043 0.118 0.150 0.143
Big Data and Analytics/ Artificial Intelligence 0.221 0.169 0.219 0.165 0.159 0.142 0.259 0.118 0.180 0.181
Additive Manufacturing 0.012 0.011 0.016 0.024 0.023 0.009 0.043 0.044 0.008 0.021
Simulation 0.018 0.019 0.022 0.041 0.091 0.035 0.022 0.059 0.030 0.037
Cybersecurity 0.037 0.056 0.219 0.055 0.045 0.142 0.086 0.118 0.090 0.094
Mobile Technologies 0.368 0.338 0.329 0.495 0.182 0.212 0.259 0.354 0.180 0.302
Adaptive Robotics 0.012 0.011 0.022 0.028 0.091 0.035 0.029 0.059 0.030 0.035
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Table 22Standardized comparison of the technologies cont.  

  

Mass Customization
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.047 0.045 0.046 0.050 0.074 0.023 0.119 0.026 0.021 0.050
Cloud Computing 0.047 0.045 0.069 0.050 0.074 0.017 0.119 0.026 0.015 0.051
Internet of Things 0.142 0.090 0.138 0.149 0.093 0.209 0.143 0.317 0.247 0.170
Big Data and Analytics/ Artificial Intelligence 0.047 0.045 0.046 0.050 0.074 0.035 0.119 0.026 0.021 0.051
Additive Manufacturing 0.236 0.225 0.552 0.248 0.371 0.279 0.167 0.423 0.309 0.312
Simulation 0.142 0.180 0.046 0.099 0.093 0.070 0.095 0.026 0.062 0.090
Cybersecurity 0.009 0.009 0.023 0.010 0.053 0.017 0.024 0.021 0.015 0.020
Mobile Technologies 0.189 0.180 0.046 0.198 0.093 0.279 0.119 0.106 0.247 0.162
Adaptive Robotics 0.142 0.180 0.034 0.149 0.074 0.070 0.095 0.026 0.062 0.092

Big data-driven
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.094 0.065 0.214 0.069 0.130 0.145 0.102 0.214 0.145 0.131
Cloud Computing 0.188 0.131 0.286 0.083 0.152 0.218 0.205 0.286 0.218 0.196
Internet of Things 0.031 0.033 0.071 0.104 0.130 0.145 0.102 0.071 0.145 0.093
Big Data and Analytics/ Artificial Intelligence 0.563 0.654 0.286 0.416 0.196 0.254 0.239 0.286 0.254 0.350
Additive Manufacturing 0.016 0.019 0.012 0.046 0.022 0.009 0.011 0.012 0.009 0.017
Simulation 0.023 0.022 0.018 0.059 0.087 0.036 0.102 0.018 0.036 0.045
Cybersecurity 0.031 0.022 0.024 0.059 0.065 0.012 0.034 0.024 0.012 0.032
Mobile Technologies 0.031 0.033 0.071 0.104 0.130 0.145 0.102 0.071 0.145 0.093
Adaptive Robotics 0.023 0.022 0.018 0.059 0.087 0.036 0.102 0.018 0.036 0.045

Accuracy
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.167 0.105 0.121
Cloud Computing 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.167 0.105 0.121
Internet of Things 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.083 0.105 0.112
Big Data and Analytics/ Artificial Intelligence 0.235 0.235 0.222 0.207 0.138 0.222 0.118 0.250 0.211 0.204
Additive Manufacturing 0.059 0.059 0.056 0.103 0.069 0.056 0.118 0.042 0.105 0.074
Simulation 0.118 0.118 0.111 0.103 0.138 0.111 0.118 0.083 0.105 0.112
Cybersecurity 0.059 0.059 0.056 0.103 0.034 0.056 0.059 0.042 0.053 0.058
Mobile Technologies 0.059 0.059 0.111 0.069 0.138 0.111 0.118 0.083 0.105 0.095
Adaptive Robotics 0.118 0.118 0.111 0.103 0.069 0.111 0.118 0.083 0.105 0.104

Context Awareness
Cyber-Physical 

Systems
Cloud 

Computing
Internet of 

Things

Big Data and 
Analytics/ Artificial 

Intelligence

Additive 
Manufacturing

Simulation Cybersecurity
Mobile 

Technologies
Adaptive 
Robotics

Relative 
importance

Cyber-Physical Systems 0.290 0.204 0.385 0.316 0.191 0.210 0.154 0.275 0.242 0.252
Cloud Computing 0.058 0.041 0.048 0.035 0.128 0.017 0.128 0.028 0.027 0.057
Internet of Things 0.145 0.164 0.192 0.316 0.160 0.210 0.154 0.275 0.161 0.197
Big Data and Analytics/ Artificial Intelligence 0.097 0.123 0.064 0.105 0.160 0.210 0.128 0.138 0.161 0.132
Additive Manufacturing 0.048 0.010 0.038 0.021 0.032 0.026 0.077 0.028 0.027 0.034
Simulation 0.072 0.123 0.048 0.026 0.064 0.052 0.103 0.046 0.040 0.064
Cybersecurity 0.048 0.008 0.032 0.021 0.011 0.013 0.026 0.028 0.020 0.023
Mobile Technologies 0.145 0.204 0.096 0.105 0.160 0.157 0.128 0.138 0.242 0.153
Adaptive Robotics 0.097 0.123 0.096 0.053 0.096 0.105 0.103 0.046 0.081 0.089
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Consistency index of the alternatives 

Real-Time 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.219 2.178 9.948 0.118 

Cloud Computing  0.113 1.131 9.995 0.124 

Internet of Things  0.219 2.178 9.948 0.118 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.107 1.078 10.098 0.137 

Additive Manufacturing  0.024 0.234 9.587 0.073 

Simulation  0.067 0.645 9.640 0.080 

Cybersecurity  0.040 0.367 9.247 0.031 

Mobile Technologies  0.147 1.440 9.780 0.098 

Adaptive Robotics  0.064 0.614 9.611 0.076 

 Consistency index average (CI) 0.095 

 Consistency ratio (CR) 0.066 

 Input data are consistent. 

           

Adaptability and Dynamic 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.160 1.599 9.976 0.122 

Cloud Computing  0.108 1.080 10.039 0.130 

Internet of Things  0.179 1.803 10.076 0.135 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.076 0.744 9.753 0.094 

Additive Manufacturing  0.061 0.611 10.038 0.130 

Simulation  0.103 1.091 10.544 0.193 

Cybersecurity  0.021 0.203 9.517 0.065 

Mobile Technologies  0.202 2.128 10.517 0.190 

Adaptive Robotics  0.089 0.893 10.040 0.130 

 Consistency index average (CI) 0.132 

 Consistency ratio (CR) 0.091 

 Input data are consistent. 

           

Visibility and traceability 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 
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Cyber-Physical Systems  0.228 2.283 10.029 0.129 

Cloud Computing  0.099 0.975 9.893 0.112 

Internet of Things  0.214 2.122 9.914 0.114 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.130 1.302 10.028 0.129 

Additive Manufacturing  0.021 0.195 9.414 0.052 

Simulation  0.070 0.694 9.988 0.123 

Cybersecurity  0.051 0.471 9.267 0.033 

Mobile Technologies  0.145 1.429 9.855 0.107 

Adaptive Robotics  0.044 0.410 9.345 0.043 

 Consistency index average (CI) 0.093 

 Consistency ratio (CR) 0.064 

 Input data are consistent. 

           

Synchronization 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.246 2.557 10.390 0.174 

Cloud Computing  0.052 0.487 9.291 0.036 

Internet of Things  0.209 2.189 10.475 0.184 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.166 1.776 10.703 0.213 

Additive Manufacturing  0.043 0.410 9.471 0.059 

Simulation  0.067 0.649 9.631 0.079 

Cybersecurity  0.023 0.219 9.550 0.069 

Mobile Technologies  0.113 1.144 10.142 0.143 

Adaptive Robotics  0.080 0.771 9.613 0.077 

 Consistency index average (CI) 0.115 

 Consistency ratio (CR) 0.079 

 Input data are consistent. 

           

Autonomy 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.205 2.052 10.019 0.127 

Cloud Computing  0.081 0.834 10.249 0.156 

Internet of Things  0.205 2.052 10.019 0.127 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.055 0.508 9.327 0.041 
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Additive Manufacturing  0.100 0.984 9.881 0.110 

Simulation  0.055 0.508 9.327 0.041 

Cybersecurity  0.030 0.291 9.707 0.088 

Mobile Technologies  0.134 1.417 10.581 0.198 

Adaptive Robotics  0.137 1.388 10.153 0.144 

 Consistency index average (CI) 0.115 

 Consistency ratio (CR) 0.079 

 Input data are consistent. 

           

Predictability 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.073 0.756 10.329 0.166 

Cloud Computing  0.194 2.089 10.785 0.223 

Internet of Things  0.099 0.989 9.962 0.120 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.314 3.262 10.397 0.175 

Additive Manufacturing  0.024 0.235 9.755 0.094 

Simulation  0.075 0.752 10.063 0.133 

Cybersecurity  0.037 0.346 9.289 0.036 

Mobile Technologies  0.117 1.201 10.232 0.154 

Adaptive Robotics  0.067 0.663 9.940 0.118 

 Consistency index average (CI) 0.135 

 Consistency ratio (CR) 0.093 

 Input data are consistent. 

           

Integration and Interoperability of 

systems 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.214 2.146 10.044 0.131 

Cloud Computing  0.066 0.641 9.751 0.094 

Internet of Things  0.266 2.754 10.356 0.170 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.112 1.151 10.263 0.158 

Additive Manufacturing  0.018 0.171 9.598 0.075 

Simulation  0.056 0.542 9.710 0.089 

Cybersecurity  0.029 0.267 9.143 0.018 

Mobile Technologies  0.164 1.719 10.506 0.188 

Adaptive Robotics  0.076 0.755 9.930 0.116 
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 Consistency index average (CI) 0.115 

 Consistency ratio (CR) 0.080 

 Input data are consistent. 

           

Scalability and Reconfiguration 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.166 1.732 10.440 0.180 

Cloud Computing  0.039 0.359 9.272 0.034 

Internet of Things  0.166 1.732 10.440 0.180 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.038 0.351 9.316 0.039 

Additive Manufacturing  0.343 3.697 10.790 0.224 

Simulation  0.063 0.596 9.507 0.063 

Cybersecurity  0.021 0.201 9.723 0.090 

Mobile Technologies  0.078 0.773 9.898 0.112 

Adaptive Robotics  0.088 0.877 10.002 0.125 

 Consistency index average (CI) 0.116 

 Consistency ratio (CR) 0.080 

 Input data are consistent. 

           

Distributed PPC 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.206 2.116 10.269 0.159 

Cloud Computing  0.116 1.135 9.802 0.100 

Internet of Things  0.111 1.065 9.584 0.073 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.156 1.557 9.979 0.122 

Additive Manufacturing  0.029 0.281 9.762 0.095 

Simulation  0.027 0.255 9.595 0.074 

Cybersecurity  0.082 0.795 9.697 0.087 

Mobile Technologies  0.228 2.389 10.459 0.182 

Adaptive Robotics  0.045 0.425 9.393 0.049 

 Consistency index average (CI) 0.105 

 Consistency ratio (CR) 0.072 

 Input data are consistent. 
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Collaboration and Cooperation 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.109 1.107 10.170 0.146 

Cloud Computing  0.077 0.766 9.973 0.122 

Internet of Things  0.143 1.526 10.679 0.210 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.181 1.916 10.566 0.196 

Additive Manufacturing  0.021 0.204 9.697 0.087 

Simulation  0.037 0.357 9.538 0.067 

Cybersecurity  0.094 0.970 10.285 0.161 

Mobile Technologies  0.302 3.167 10.489 0.186 

Adaptive Robotics  0.035 0.331 9.392 0.049 

 Consistency index average (CI) 0.136 

 Consistency ratio (CR) 0.094 

 Input data are consistent. 

           

Mass Customization 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.050 0.475 9.467 0.058 

Cloud Computing  0.051 0.488 9.475 0.059 

Internet of Things  0.170 1.904 11.213 0.277 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.051 0.490 9.522 0.065 

Additive Manufacturing  0.312 3.370 10.793 0.224 

Simulation  0.090 0.898 9.945 0.118 

Cybersecurity  0.020 0.202 9.967 0.121 

Mobile Technologies  0.162 1.741 10.755 0.219 

Adaptive Robotics  0.092 0.920 9.947 0.118 

 Consistency index average (CI) 0.140 

 Consistency ratio (CR) 0.097 

 Input data are consistent. 

           

Big data-driven 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.131 1.399 10.669 0.209 
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Cloud Computing  0.196 2.115 10.787 0.223 

Internet of Things  0.093 0.921 9.944 0.118 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.350 3.859 11.040 0.255 

Additive Manufacturing  0.017 0.170 9.819 0.102 

Simulation  0.045 0.415 9.282 0.035 

Cybersecurity  0.032 0.301 9.560 0.070 

Mobile Technologies  0.093 0.921 9.944 0.118 

Adaptive Robotics  0.045 0.415 9.282 0.035 

 Consistency index average (CI) 0.130 

 Consistency ratio (CR) 0.089 

 Input data are consistent. 

           

Accuracy 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.121 1.124 9.297 0.037 

Cloud Computing  0.121 1.124 9.297 0.037 

Internet of Things  0.112 1.030 9.219 0.027 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.204 1.891 9.257 0.032 

Additive Manufacturing  0.074 0.676 9.134 0.017 

Simulation  0.112 1.030 9.219 0.027 

Cybersecurity  0.058 0.529 9.157 0.020 

Mobile Technologies  0.095 0.875 9.228 0.029 

Adaptive Robotics  0.104 0.956 9.187 0.023 

 Consistency index average (CI) 0.028 

 Consistency ratio (CR) 0.019 

 Input data are consistent. 

           

Context Awareness 

 
Average 

Weight 

(A) 

product 

of 

Matrices 

(B) 

Consistency 

Measure 

(B/A) 

Consistency 

index 

Cyber-Physical Systems  0.252 2.495 9.903 0.113 

Cloud Computing  0.057 0.533 9.412 0.051 

Internet of Things  0.197 1.992 10.090 0.136 

Big Data and Analytics/ Artificial 

Intelligence 

 
0.132 1.322 10.044 0.131 

Additive Manufacturing  0.034 0.317 9.279 0.035 
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Simulation  0.064 0.634 9.938 0.117 

Cybersecurity  0.023 0.216 9.388 0.048 

Mobile Technologies  0.153 1.535 10.048 0.131 

Adaptive Robotics  0.089 0.880 9.929 0.116 

 Consistency index average (CI) 0.098 

 Consistency ratio (CR) 0.067 

 Input data are consistent. 

Table 23: Consistency index of the alternatives

 
 

AHP analysis using survey data 
 

 
Table 24: Consistency test of the Criteria 

Criteria Average Weight (A)
Product of 

Matrices (B)
Consistency 

Measure (B/A)
Consistency 

index
Accuracy 0.076 0.965 12.746 0.068

Adaptability and Dynamic 0.130 1.591 12.284 0.026

Autonomy 0.036 0.454 12.467 0.042

Big data-driven 0.108 1.383 12.827 0.075

Context Awareness 0.042 0.529 12.681 0.062

Distributed PPC 0.061 0.766 12.485 0.044

Integration and Interoperability of systems 0.177 2.241 12.646 0.059

Mass Customization 0.055 0.688 12.554 0.050

Predictability 0.059 0.746 12.577 0.052

Real-Time 0.070 0.942 13.442 0.131

Synchronization 0.078 0.995 12.718 0.065

Visibility and traceability 0.108 1.383 12.827 0.075

0.063

0.041

Consistency index average (CI)

Consistency ratio (CR)
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Table 25: Relative importance of the criteria 
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Table 26: Relative importance of the criteria contd; 
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Standardization of importance (Survey data analysis) 
 

Accuracy A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.207 0.118 0.222 0.250 0.211 0.138 0.222 0.235 0.235 0.204 

A2 0.103 0.059 0.056 0.042 0.053 0.034 0.056 0.059 0.059 0.058 

A3 0.103 0.118 0.111 0.083 0.105 0.138 0.111 0.118 0.118 0.112 

A4 0.069 0.118 0.111 0.083 0.105 0.138 0.111 0.059 0.059 0.095 

A5 0.103 0.118 0.111 0.083 0.105 0.069 0.111 0.118 0.118 0.104 

A6 0.103 0.118 0.056 0.042 0.105 0.069 0.056 0.059 0.059 0.074 

A7 0.103 0.118 0.111 0.083 0.105 0.138 0.111 0.118 0.118 0.112 

A8 0.103 0.118 0.111 0.167 0.105 0.138 0.111 0.118 0.118 0.121 

A9 0.103 0.118 0.111 0.167 0.105 0.138 0.111 0.118 0.118 0.121 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Adaptability and 

Dynamic 
A1 A2 A3 A4 A5 A6 A7 A8 A9 

Relative 

importance 

A1 0.057 0.116 0.064 0.094 0.016 0.145 0.025 0.060 0.109 0.076 

A2 0.011 0.023 0.032 0.027 0.013 0.012 0.015 0.036 0.022 0.021 

A3 0.171 0.140 0.192 0.189 0.129 0.241 0.150 0.181 0.217 0.179 

A4 0.114 0.163 0.192 0.189 0.259 0.241 0.374 0.181 0.109 0.202 

A5 0.228 0.116 0.096 0.047 0.065 0.024 0.025 0.090 0.109 0.089 

A6 0.019 0.093 0.038 0.038 0.129 0.048 0.037 0.090 0.054 0.061 

A7 0.171 0.116 0.096 0.038 0.194 0.096 0.075 0.090 0.054 0.103 

A8 0.171 0.116 0.192 0.189 0.129 0.096 0.150 0.181 0.217 0.160 

A9 0.057 0.116 0.096 0.189 0.065 0.096 0.150 0.090 0.109 0.108 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Autonomy A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.049 0.097 0.075 0.057 0.044 0.013 0.049 0.075 0.032 0.055 

A2 0.016 0.032 0.045 0.023 0.044 0.031 0.016 0.045 0.016 0.030 

A3 0.148 0.161 0.225 0.228 0.267 0.189 0.148 0.225 0.254 0.205 

A4 0.098 0.161 0.112 0.114 0.067 0.252 0.098 0.112 0.190 0.134 

A5 0.148 0.097 0.112 0.228 0.133 0.126 0.148 0.112 0.127 0.137 

A6 0.246 0.065 0.075 0.028 0.067 0.063 0.246 0.075 0.032 0.100 

A7 0.049 0.097 0.075 0.057 0.044 0.013 0.049 0.075 0.032 0.055 

A8 0.148 0.161 0.225 0.228 0.267 0.189 0.148 0.225 0.254 0.205 

A9 0.098 0.129 0.056 0.038 0.067 0.126 0.098 0.056 0.063 0.081 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Big data-driven A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.416 0.239 0.286 0.286 0.254 0.196 0.254 0.563 0.654 0.350 

A2 0.059 0.034 0.024 0.024 0.012 0.065 0.012 0.031 0.022 0.032 

A3 0.104 0.102 0.071 0.071 0.145 0.130 0.145 0.031 0.033 0.093 

A4 0.104 0.102 0.071 0.071 0.145 0.130 0.145 0.031 0.033 0.093 

A5 0.059 0.102 0.018 0.018 0.036 0.087 0.036 0.023 0.022 0.045 

A6 0.046 0.011 0.012 0.012 0.009 0.022 0.009 0.016 0.019 0.017 

A7 0.059 0.102 0.018 0.018 0.036 0.087 0.036 0.023 0.022 0.045 

A8 0.069 0.102 0.214 0.214 0.145 0.130 0.145 0.094 0.065 0.131 

A9 0.083 0.205 0.286 0.286 0.218 0.152 0.218 0.188 0.131 0.196 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Context 

Awareness 
A1 A2 A3 A4 A5 A6 A7 A8 A9 

Relative 

importance 

A1 0.105 0.128 0.064 0.138 0.161 0.160 0.210 0.097 0.123 0.132 

A2 0.021 0.026 0.032 0.028 0.020 0.011 0.013 0.048 0.008 0.023 

A3 0.316 0.154 0.192 0.275 0.161 0.160 0.210 0.145 0.164 0.197 

A4 0.105 0.128 0.096 0.138 0.242 0.160 0.157 0.145 0.204 0.153 

A5 0.053 0.103 0.096 0.046 0.081 0.096 0.105 0.097 0.123 0.089 

A6 0.021 0.077 0.038 0.028 0.027 0.032 0.026 0.048 0.010 0.034 

A7 0.026 0.103 0.048 0.046 0.040 0.064 0.052 0.072 0.123 0.064 

A8 0.316 0.154 0.385 0.275 0.242 0.191 0.210 0.290 0.204 0.252 

A9 0.035 0.128 0.048 0.028 0.027 0.128 0.017 0.058 0.041 0.057 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Distributed PPC A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.141 0.166 0.191 0.067 0.188 0.125 0.171 0.209 0.147 0.156 

A2 0.070 0.083 0.048 0.101 0.113 0.125 0.057 0.105 0.037 0.082 

A3 0.070 0.166 0.096 0.067 0.150 0.063 0.143 0.209 0.037 0.111 

A4 0.422 0.166 0.287 0.202 0.150 0.188 0.171 0.105 0.366 0.228 

A5 0.028 0.028 0.024 0.051 0.038 0.094 0.086 0.042 0.018 0.045 

A6 0.035 0.021 0.048 0.034 0.013 0.031 0.029 0.035 0.015 0.029 

A7 0.023 0.041 0.019 0.034 0.013 0.031 0.029 0.035 0.015 0.027 

A8 0.141 0.166 0.096 0.404 0.188 0.188 0.171 0.209 0.293 0.206 

A9 0.070 0.166 0.191 0.040 0.150 0.156 0.143 0.052 0.073 0.116 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Integration and 

Interoperability 

of systems 

A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 
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A1 0.080 0.153 0.072 0.044 0.178 0.104 0.195 0.082 0.101 0.112 

A2 0.013 0.025 0.041 0.027 0.015 0.083 0.012 0.035 0.010 0.029 

A3 0.321 0.178 0.290 0.400 0.297 0.167 0.244 0.245 0.251 0.266 

A4 0.241 0.127 0.097 0.133 0.238 0.167 0.146 0.122 0.201 0.164 

A5 0.027 0.102 0.058 0.033 0.059 0.083 0.049 0.122 0.151 0.076 

A6 0.016 0.006 0.036 0.017 0.015 0.021 0.012 0.027 0.010 0.018 

A7 0.020 0.102 0.058 0.044 0.059 0.083 0.049 0.061 0.025 0.056 

A8 0.241 0.178 0.290 0.267 0.119 0.188 0.195 0.245 0.201 0.214 

A9 0.040 0.127 0.058 0.033 0.020 0.104 0.098 0.061 0.050 0.066 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Mass 

Customization 
A1 A2 A3 A4 A5 A6 A7 A8 A9 

Relative 

importance 

A1 0.050 0.119 0.046 0.026 0.021 0.074 0.035 0.047 0.045 0.051 

A2 0.010 0.024 0.023 0.021 0.015 0.053 0.017 0.009 0.009 0.020 

A3 0.149 0.143 0.138 0.317 0.247 0.093 0.209 0.142 0.090 0.170 

A4 0.198 0.119 0.046 0.106 0.247 0.093 0.279 0.189 0.180 0.162 

A5 0.149 0.095 0.034 0.026 0.062 0.074 0.070 0.142 0.180 0.092 

A6 0.248 0.167 0.552 0.423 0.309 0.371 0.279 0.236 0.225 0.312 

A7 0.099 0.095 0.046 0.026 0.062 0.093 0.070 0.142 0.180 0.090 

A8 0.050 0.119 0.046 0.026 0.021 0.074 0.023 0.047 0.045 0.050 

A9 0.050 0.119 0.069 0.026 0.015 0.074 0.017 0.047 0.045 0.051 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Predictability A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.365 0.183 0.280 0.397 0.275 0.200 0.296 0.330 0.499 0.314 

A2 0.073 0.037 0.018 0.025 0.018 0.086 0.020 0.018 0.042 0.037 

A3 0.091 0.146 0.070 0.099 0.165 0.143 0.118 0.028 0.033 0.099 

A4 0.091 0.146 0.070 0.099 0.220 0.114 0.177 0.055 0.083 0.117 

A5 0.073 0.110 0.023 0.025 0.055 0.086 0.118 0.055 0.055 0.067 

A6 0.052 0.012 0.014 0.025 0.018 0.029 0.015 0.018 0.033 0.024 

A7 0.073 0.110 0.035 0.033 0.028 0.114 0.059 0.165 0.055 0.075 

A8 0.061 0.110 0.140 0.099 0.055 0.086 0.020 0.055 0.033 0.073 

A9 0.122 0.146 0.350 0.198 0.165 0.143 0.177 0.275 0.166 0.194 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Real-Time A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.085 0.152 0.080 0.059 0.054 0.135 0.063 0.080 0.252 0.107 

A2 0.021 0.038 0.060 0.030 0.018 0.081 0.021 0.060 0.028 0.040 

A3 0.255 0.152 0.241 0.237 0.214 0.189 0.189 0.241 0.252 0.219 
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A4 0.170 0.152 0.121 0.118 0.214 0.135 0.253 0.121 0.042 0.147 

A5 0.085 0.114 0.060 0.030 0.054 0.081 0.063 0.060 0.028 0.064 

A6 0.017 0.013 0.034 0.024 0.018 0.027 0.032 0.034 0.021 0.024 

A7 0.085 0.114 0.080 0.030 0.054 0.054 0.063 0.080 0.042 0.067 

A8 0.255 0.152 0.241 0.237 0.214 0.189 0.189 0.241 0.252 0.219 

A9 0.028 0.114 0.080 0.237 0.161 0.108 0.126 0.080 0.084 0.113 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Synchronization A1 A2 A3 A4 A5 A6 A7 A8 A9 
Relative 

importance 

A1 0.150 0.132 0.101 0.259 0.201 0.180 0.181 0.142 0.148 0.166 

A2 0.030 0.026 0.034 0.013 0.017 0.012 0.015 0.047 0.012 0.023 

A3 0.301 0.158 0.202 0.259 0.201 0.180 0.241 0.142 0.198 0.209 

A4 0.038 0.132 0.051 0.065 0.201 0.144 0.181 0.057 0.148 0.113 

A5 0.050 0.105 0.067 0.022 0.067 0.108 0.060 0.094 0.148 0.080 

A6 0.030 0.079 0.040 0.016 0.022 0.036 0.020 0.047 0.099 0.043 

A7 0.050 0.105 0.051 0.022 0.067 0.108 0.060 0.094 0.049 0.067 

A8 0.301 0.158 0.404 0.324 0.201 0.216 0.181 0.283 0.148 0.246 

A9 0.050 0.105 0.051 0.022 0.022 0.018 0.060 0.094 0.049 0.052 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           

Visibility and 

traceability 
A1 A2 A3 A4 A5 A6 A7 A8 A9 

Relative 

importance 

A1 0.114 0.162 0.074 0.236 0.129 0.136 0.105 0.124 0.088 0.130 

A2 0.029 0.040 0.055 0.029 0.086 0.114 0.013 0.062 0.029 0.051 

A3 0.343 0.162 0.221 0.118 0.172 0.136 0.263 0.248 0.264 0.214 

A4 0.057 0.162 0.221 0.118 0.172 0.159 0.158 0.083 0.176 0.145 

A5 0.038 0.020 0.055 0.029 0.043 0.091 0.026 0.062 0.029 0.044 

A6 0.019 0.008 0.037 0.017 0.011 0.023 0.013 0.041 0.018 0.021 

A7 0.057 0.162 0.044 0.039 0.086 0.091 0.053 0.050 0.044 0.070 

A8 0.229 0.162 0.221 0.354 0.172 0.136 0.263 0.248 0.264 0.228 

A9 0.114 0.121 0.074 0.059 0.129 0.114 0.105 0.083 0.088 0.099 

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 27: Standardization of importance 

 
Alternatives Consistency index (Survey data) 
 

Accuracy 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.204 1.891 9.257 0.032 

Cloud Computing 0.058 0.529 9.157 0.020 
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Internet of Things 0.112 1.030 9.219 0.027 

Big Data and Analytics/ 

Artificial Intelligence 
0.095 0.875 9.228 0.029 

Additive Manufacturing 0.104 0.956 9.187 0.023 

Simulation 0.074 0.676 9.134 0.017 

Cybersecurity 0.112 1.030 9.219 0.027 

Mobile Technologies 0.121 1.124 9.297 0.037 

Adaptive Robotics 0.121 1.124 9.297 0.037 

Consistency index average (CI) 0.028 

Consistency ratio (CR) 0.019 

data are consistent. 
     

Adaptability and Dynamic 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.076 0.744 9.753 0.094 

Cloud Computing 0.021 0.203 9.517 0.065 

Internet of Things 0.179 1.803 10.076 0.135 

Big Data and Analytics/ 

Artificial Intelligence 
0.202 2.128 10.517 0.190 

Additive Manufacturing 0.089 0.893 10.040 0.130 

Simulation 0.061 0.611 10.038 0.130 

Cybersecurity 0.103 1.091 10.544 0.193 

Mobile Technologies 0.160 1.599 9.976 0.122 

Adaptive Robotics 0.108 1.080 10.039 0.130 

Consistency index average (CI) 0.132 

Consistency ratio (CR) 0.091 

  
     

Autonomy 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.055 0.508 9.327 0.041 

Cloud Computing 0.030 0.291 9.707 0.088 

Internet of Things 0.205 2.052 10.019 0.127 

Big Data and Analytics/ 

Artificial Intelligence 
0.134 1.417 10.581 0.198 

Additive Manufacturing 0.137 1.388 10.153 0.144 

Simulation 0.100 0.984 9.881 0.110 

Cybersecurity 0.055 0.508 9.327 0.041 

Mobile Technologies 0.205 2.052 10.019 0.127 

Adaptive Robotics 0.081 0.834 10.249 0.156 
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Consistency index average (CI) 0.115 

Consistency ratio (CR) 0.079 

data are consistent. 
     

Big data-driven 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.350 3.859 11.040 0.255 

Cloud Computing 0.032 0.301 9.560 0.070 

Internet of Things 0.093 0.921 9.944 0.118 

Big Data and Analytics/ 

Artificial Intelligence 
0.093 0.921 9.944 0.118 

Additive Manufacturing 0.045 0.415 9.282 0.035 

Simulation 0.017 0.170 9.819 0.102 

Cybersecurity 0.045 0.415 9.282 0.035 

Mobile Technologies 0.131 1.399 10.669 0.209 

Adaptive Robotics 0.196 2.115 10.787 0.223 

Consistency index average (CI) 0.130 

Consistency ratio (CR) 0.089 

data are consistent. 
     

Context Awareness 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.132 1.322 10.044 0.131 

Cloud Computing 0.023 0.216 9.388 0.048 

Internet of Things 0.197 1.992 10.090 0.136 

Big Data and Analytics/ 

Artificial Intelligence 
0.153 1.535 10.048 0.131 

Additive Manufacturing 0.089 0.880 9.929 0.116 

Simulation 0.034 0.317 9.279 0.035 

Cybersecurity 0.064 0.634 9.938 0.117 

Mobile Technologies 0.252 2.495 9.903 0.113 

Adaptive Robotics 0.057 0.533 9.412 0.051 

Consistency index average (CI) 0.098 

Consistency ratio (CR) 0.067 

data are consistent. 
     

Distributed PPC 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.156 1.557 9.979 0.122 
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Cloud Computing 0.082 0.795 9.697 0.087 

Internet of Things 0.111 1.065 9.584 0.073 

Big Data and Analytics/ 

Artificial Intelligence 
0.228 2.389 10.459 0.182 

Additive Manufacturing 0.045 0.425 9.393 0.049 

Simulation 0.029 0.281 9.762 0.095 

Cybersecurity 0.027 0.255 9.595 0.074 

Mobile Technologies 0.206 2.116 10.269 0.159 

Adaptive Robotics 0.116 1.135 9.802 0.100 

Consistency index average (CI) 0.105 

Consistency ratio (CR) 0.072 

data are consistent. 
     

Integration and 

Interoperability of systems 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.112 1.151 10.263 0.158 

Cloud Computing 0.029 0.267 9.143 0.018 

Internet of Things 0.266 2.754 10.356 0.170 

Big Data and Analytics/ 

Artificial Intelligence 
0.164 1.719 10.506 0.188 

Additive Manufacturing 0.076 0.755 9.930 0.116 

Simulation 0.018 0.171 9.598 0.075 

Cybersecurity 0.056 0.542 9.710 0.089 

Mobile Technologies 0.214 2.146 10.044 0.131 

Adaptive Robotics 0.066 0.641 9.751 0.094 

Consistency index average (CI) 0.115 

Consistency ratio (CR) 0.080 

data are consistent. 
     

Mass Customization 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.051 0.490 9.522 0.065 

Cloud Computing 0.020 0.202 9.967 0.121 

Internet of Things 0.170 1.904 11.213 0.277 

Big Data and Analytics/ 

Artificial Intelligence 
0.162 1.741 10.755 0.219 

Additive Manufacturing 0.092 0.920 9.947 0.118 

Simulation 0.312 3.370 10.793 0.224 

Cybersecurity 0.090 0.898 9.945 0.118 

Mobile Technologies 0.050 0.475 9.467 0.058 
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Adaptive Robotics 0.051 0.488 9.475 0.059 

Consistency index average (CI) 0.140 

Consistency ratio (CR) 0.097 

data are consistent. 
     

Predictability 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.314 3.262 10.397 0.175 

Cloud Computing 0.037 0.346 9.289 0.036 

Internet of Things 0.099 0.989 9.962 0.120 

Big Data and Analytics/ 

Artificial Intelligence 
0.117 1.201 10.232 0.154 

Additive Manufacturing 0.067 0.663 9.940 0.118 

Simulation 0.024 0.235 9.755 0.094 

Cybersecurity 0.075 0.752 10.063 0.133 

Mobile Technologies 0.073 0.756 10.329 0.166 

Adaptive Robotics 0.194 2.089 10.785 0.223 

Consistency index average (CI) 0.135 

Consistency ratio (CR) 0.093 

data are consistent. 
     

Real-Time 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.107 1.078 10.098 0.137 

Cloud Computing 0.040 0.367 9.247 0.031 

Internet of Things 0.219 2.178 9.948 0.118 

Big Data and Analytics/ 

Artificial Intelligence 
0.147 1.440 9.780 0.098 

Additive Manufacturing 0.064 0.614 9.611 0.076 

Simulation 0.024 0.234 9.587 0.073 

Cybersecurity 0.067 0.645 9.640 0.080 

Mobile Technologies 0.219 2.178 9.948 0.118 

Adaptive Robotics 0.113 1.131 9.995 0.124 

Consistency index average (CI) 0.095 

Consistency ratio (CR) 0.066 

data are consistent. 
     

Synchronization 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0254.v1

https://doi.org/10.20944/preprints202203.0254.v1


 9 of 57 
 

Cyber-Physical Systems 0.166 1.776 10.703 0.213 

Cloud Computing 0.023 0.219 9.550 0.069 

Internet of Things 0.209 2.189 10.475 0.184 

Big Data and Analytics/ 

Artificial Intelligence 
0.113 1.144 10.142 0.143 

Additive Manufacturing 0.080 0.771 9.613 0.077 

Simulation 0.043 0.410 9.471 0.059 

Cybersecurity 0.067 0.649 9.631 0.079 

Mobile Technologies 0.246 2.557 10.390 0.174 

Adaptive Robotics 0.052 0.487 9.291 0.036 

Consistency index average (CI) 0.115 

Consistency ratio (CR) 0.079 

data are consistent. 
     

Visibility and traceability 

Average 

Weight 

(A) 

product of 

Matrices (B) 

Consistency 

Measure (B/A) 

Consistency 

index 

Cyber-Physical Systems 0.130 1.302 10.028 0.129 

Cloud Computing 0.051 0.471 9.267 0.033 

Internet of Things 0.214 2.122 9.914 0.114 

Big Data and Analytics/ 

Artificial Intelligence 
0.145 1.429 9.855 0.107 

Additive Manufacturing 0.044 0.410 9.345 0.043 

Simulation 0.021 0.195 9.414 0.052 

Cybersecurity 0.070 0.694 9.988 0.123 

Mobile Technologies 0.228 2.283 10.029 0.129 

Adaptive Robotics 0.099 0.975 9.893 0.112 

Consistency index average (CI) 0.093 

Consistency ratio (CR) 0.064 

data are consistent. 

Table 28: Alternatives consistency index (Survey data) 
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