Some Results in Classes Of Neutrosophic Graphs

Henry Garrett
Independent Researcher
DrHenryGarrett@gmail.com
Twitter's ID: @DrHenryGarrett | ©DrHenryGarrett.wordpress.com

Abstract

New setting is introduced to study co-neighborhood, neutrosophic t-neighborhood, neutrosophic quasi-vertex set, neutrosophic quasi-order, neutrosophic neighborhood, neutrosophic co-t-neighborhood, neutrosophic quasi-edge set, neutrosophic quasi-size, Neutrosophic number, neutrosophic co-neighborhood, co-neutrosophic number, quasi-number and quasi-co-number. Some classes of neutrosophic graphs are investigated.

Keywords: Neutrosophic Quasi-Order, Neutrosophic Quasi-Size, Neutrosophic Quasi-Number, Neutrosophic Quasi-Co-Number, Neutrosophic Co-t-Neighborhood

AMS Subject Classification: 05C17, 05C22, 05E45

1 Background

Fuzzy set in Ref. [16], neutrosophic set in Ref. [3], related definitions of other sets in Refs. [3, 13, 15], graphs and new notions on them in Refs. [1, 4, 8-11, 14, 17], neutrosophic graphs in Ref. [5], studies on neutrosophic graphs in Ref. [2], relevant definitions of other graphs based on fuzzy graphs in Ref. [12], related definitions of other graphs based on neutrosophic graphs in Ref. [6], are proposed. Also, some studies and researches about neutrosophic graphs, are proposed as a book in Ref. [7].

2 Preliminaries

In this subsection, basic material which is used in this article, is presented. Also, new ideas and their clarifications are elicited.

Basic idea is about the model which is used. First definition introduces basic model.
Definition 2.1. (Graph).
$G=(V, E)$ is called a graph if V is a set of objects and E is a subset of $V \times V(E$ is a set of 2 -subsets of V) where V is called vertex set and E is called edge set.
Every two vertices have been corresponded to at most one edge.
Neutrosophic graph is the foundation of results in this paper which is defined as follows. Also, some related notions are demonstrated.

Definition 2.2. (Neutrosophic Graph And Its Special Case).
$N T G=\left(V, E, \sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right), \mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)\right)$ is called a neutrosophic graph if it's graph, $\sigma_{i}: V \rightarrow[0,1]$, and $\mu_{i}: E \rightarrow[0,1]$. We add one condition on it and we use special case of neutrosophic graph but with same name. The added condition is as follows, for every $v_{i} v_{j} \in E$,

$$
\mu\left(v_{i} v_{j}\right) \leq \sigma\left(v_{i}\right) \wedge \sigma\left(v_{j}\right)
$$

$(i): \sigma$ is called neutrosophic vertex set.
(ii) : μ is called neutrosophic edge set.
(iii) : $|V|$ is called order of NTG and it's denoted by $\mathcal{O}(N T G)$.
$(i v): \Sigma_{v \in V} \sigma(v)$ is called neutrosophic order of NTG and it's denoted by $\mathcal{O}_{n}(N T G)$.
$(v):|E|$ is called size of NTG and it's denoted by $\mathcal{S}(N T G)$.
(vi) : $\Sigma_{e \in E} \Sigma_{i=1}^{3} \mu_{i}(e)$ is called neutrosophic size of NTG and it's denoted by $\mathcal{S}_{n}(N T G)$

Some classes of well-known neutrosophic graphs are defined. These classes of neutrosophic graphs are used to form this study and the most results are about them.

Definition 2.3. Let $N T G:(V, E, \sigma, \mu)$ be a neutrosophic graph. Then
(i) : a sequence of vertices $P: x_{0}, x_{1}, \cdots, x_{n}$ is called path where
$x_{i} x_{i+1} \in E, i=0,1, \cdots, n-1$;
(ii) : strength of path $P: x_{0}, x_{1}, \cdots, x_{n}$ is $\bigwedge_{i=0, \cdots, n-1} \mu\left(x_{i} x_{i+1}\right)$;
(iii) : connectedness amid vertices x_{0} and x_{n} is

$$
\mu^{\infty}(x, y)=\bigwedge_{P: x_{0}, x_{1}, \cdots, x_{n}} \bigwedge_{i=0, \cdots, n-1} \mu\left(x_{i} x_{i+1}\right) ;
$$

$(i v)$: a sequence of vertices $P: x_{0}, x_{1}, \cdots, x_{n}$ is called cycle where
$x_{i} x_{i+1} \in E, i=0,1, \cdots, n-1$ and there are two edges $x y$ and $u v$ such that $\mu(x y)=\mu(u v)=\bigwedge_{i=0,1, \cdots, n-1} \mu\left(v_{i} v_{i+1}\right) ;$
(v) : it's t-partite where V is partitioned to t parts, $V_{1}, V_{2}, \cdots, V_{t}$ and the edge $x y$ implies $x \in V_{i}$ and $y \in V_{j}$ where $i \neq j$. If it's complete, then it's denoted by
$K_{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{t}}$ where σ_{i} is σ on V_{i} instead V which mean $x \notin V_{i}$ induces $\sigma_{i}(x)=0 ;$
(vi) : t-partite is complete bipartite if $t=2$, and it's denoted by $K_{\sigma_{1}, \sigma_{2}}$;
(vii) : complete bipartite is star if $\left|V_{1}\right|=1$, and it's denoted by $S_{1, \sigma_{2}}$;
(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then it's wheel and it's denoted by $W_{1, \sigma_{2}}$;
$(i x)$: it's complete where $\forall u v \in V, \mu(u v)=\sigma(u) \wedge \sigma(v)$;
(x) : it's strong where $\forall u v \in E, \mu(u v)=\sigma(u) \wedge \sigma(v)$.
The notions of neighbor and neighborhood are about some vertices which have one edge with a fixed vertex. These notions present vertices which are close to a fixed vertex as possible. Based on strong edge, it's possible to define different neighborhood as follows.

Definition 2.4. (Neighborhood).
Let $N T G:(V, E, \sigma, \mu)$ be a neutrosophic graph. Suppose $x \in V$. Then

$$
N(x)=\{y \in V \mid x y \in E\} .
$$

Definition 2.5. (Co-Neighborhood).
Let $N T G:(V, E, \sigma, \mu)$ be a neutrosophic graph and $t \in \mathbb{N}$. Suppose $x_{i} \in V, i=1,2, \cdots, t$. Then
(i)

$$
N_{t}\left(x_{1}, x_{2}, \cdots, x_{t}\right)=\left\{y \in V \mid x_{i} y \in E, i=1,2, \cdots, t\right\}
$$

If $\min _{x_{1}, x_{2}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=V$, then neutrosophic t-neighborhood is called neutrosophic quasi-vertex set and t is called neutrosophic quasi-order. Generally, when t isn't fixed, it's called neutrosophic neighborhood. Neutrosophic number is

$$
\Sigma_{\min _{x_{1}, x_{2}}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=V{ }_{j=1}^{3} \sigma_{j}\left(x_{i}\right)
$$

(ii)

$$
N_{t}\left(x_{1}, x_{2}, \cdots, x_{t}\right)=\left\{e \in E \mid e=x_{i} y \in E, i=1,2, \cdots, t\right\} .
$$

If $\min _{x_{1}, x_{2}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=E$, then neutrosophic co-t-neighborhood is called neutrosophic quasi-edge set and t is called neutrosophic quasi-size. Generally, when t isn't fixed, it's called neutrosophic co-neighborhood. Co-neutrosophic number is

$$
\Sigma_{\min _{x_{1}, x_{2}}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=E \Sigma_{j=1}^{3} \sigma_{j}\left(x_{i}\right)
$$

3 Neutrosophic Quasi-Order

Proposition 3.1. Let $N T G:(V, E, \sigma, \mu)$ be an odd path. Then $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ is related to quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an odd path. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}$ where n and 1 has same parity. There are two sets. $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor+1$ but $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$ which is minimum number amid these two sets. So $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ is related to quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$. $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ is quasi-vertex set which is optimal.

Proposition 3.2. Let $N T G:(V, E, \sigma, \mu)$ be an even path. Then $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ is related to quasi-order $\frac{n}{2}$.
Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an even path. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}$ where n and 1 has different parity. There are two sets. $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$ and $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$ which is minimum number like first set. So $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are sets which are optimal.

Proposition 3.3. Let $N T G:(V, E, \sigma, \mu)$ be an odd cycle. Then $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ is related to quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an odd cycle. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}, x_{1}$ where n and 1 has same parity. There are two sets. $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor+1$ but $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$ which is minimum number amid these two sets. So $\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ is related to quasi-order $\left\lfloor\frac{n}{2}\right\rfloor .\left\{x_{2}, x_{4}, \cdots, x_{n-1}\right\}$ is quasi-vertex set which is optimal.

Proposition 3.4. Let $N T G:(V, E, \sigma, \mu)$ be an even cycle. Then $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are related to quasi-order $\frac{n}{2}$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an even cycle. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}, x_{1}$ where n and 1 has different parity. There are two sets. $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$ and $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ has quasi-order $\left\lfloor\frac{n}{2}\right\rfloor$ which is minimum number like first set. So $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are related to quasi-order $\left\lfloor\frac{n}{2}\right\rfloor .\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are quasi-vertex sets which are optimal.

Proposition 3.5. Let $N T G:(V, E, \sigma, \mu)$ be complete. Then $\{x\}$ is related to quasi-order 1.

Proof. Let $N T G:(V, E, \sigma, \mu)$ be complete. Suppose x is a given vertex. Thus

$$
N[x]=\min _{x_{1}, x_{2}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=V .
$$

It implies the set $\{x\}$ which is 1-neighborhood, is quasi-vertex set. Then $\{x\}$ is related to quasi-order 1.

Proposition 3.6. Let $N T G:(V, E, \sigma, \mu)$ be star. Then $\{x\}$ is related to quasi-order 1 .
Proof. Let $N T G:(V, E, \sigma, \mu)$ be star. Suppose c is the center. Thus

$$
N[c]=\min _{x_{1}, x_{2}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=V
$$

It implies the set $\{c\}$ which is 1-neighborhood, is quasi-vertex set. Then $\{c\}$ is related to quasi-order 1.

4 Neutrosophic Quasi-Size

Proposition 4.1. Let NTG: (V, E, σ, μ) be an odd path. Then either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an odd path. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}$ where n and 1 has same parity. There is two sets. Either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ which are minimum number amid these all sets. So either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ is related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$. Either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are quasi-vertex set which are optimal.

Proposition 4.2. Let $N T G:(V, E, \sigma, \mu)$ be an even path. Then $\left\{x_{2}, x_{4}, \cdots, x_{n}\right\}$ is related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an even path. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}$ where n and 1 has different parity. There are two sets. Either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\} .\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ which is minimum number like first set. So either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ is related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$. Either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ is quasi-vertex set which is optimal.

Proposition 4.3. Let $N T G:(V, E, \sigma, \mu)$ be an odd cycle. Then $\left\{x_{1}, x_{4}, \cdots, x_{n-3}\right\}$ is related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an odd cycle. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}, x_{1}$ where n and 1 has same parity. There are two sets.
$\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ which are minimum numbers amid all sets. So either $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ is related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$. Either $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ is quasi-edge set which is optimal.

Proposition 4.4. Let $N T G:(V, E, \sigma, \mu)$ be an even cycle. Then $\left\{x_{1}, x_{4}, \cdots, x_{n-3}\right\}$ is related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$.

Proof. Suppose $N T G:(V, E, \sigma, \mu)$ be an even cycle. Thus $N T G:(V, E, \sigma, \mu)$ is $P: x_{1}, x_{2}, \cdots, x_{n}, x_{1}$ where n and 1 has different parity. There are two sets. $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ and $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ has quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ which is minimum number like first set. So either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ are related to quasi-size $\left\lfloor\frac{n}{3}\right\rfloor$ which this number is optimal. Either $\left\{x_{1}, x_{3}, \cdots, x_{n}\right\}$ or $\left\{x_{1}, x_{3}, \cdots, x_{n-1}\right\}$ is quasi-edge set which are optimal.

Proposition 4.5. Let $N T G:(V, E, \sigma, \mu)$ be complete. Then $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$ is related to quasi-size $n-1$.

Proof. Let $N T G:(V, E, \sigma, \mu)$ be complete. Suppose x is a given vertex. Thus

$$
N\left[x_{1}, x_{2}, \cdots, x_{n-1}\right]=\min _{x_{1}, x_{2}, \cdots, x_{n-1} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{n-1}\right]=E .
$$

It implies the set $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$ which is co- $(n-1)$-neighborhood, is only quasi-vertex set as optimal set. Then $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$ is related to quasi-size $n-1$.

Proposition 4.6. Let $N T G:(V, E, \sigma, \mu)$ be star. Then $\{x\}$ is related to quasi-size 1 .
Proof. Let $N T G:(V, E, \sigma, \mu)$ be star. Suppose c is the center. Thus

$$
N[c]=\min _{x_{1}, x_{2}, \cdots, x_{t} \in V} N_{t}\left[x_{1}, x_{2}, \cdots, x_{t}\right]=E .
$$

It implies the set $\{c\}$ which is 1-neighborhood, is quasi-vertex set. Then $\{c\}$ is related to quasi-order 1.

5 Setting of Neutrosophic Quasi-Number and Quasi-Co-Number

Definition 5.1. (Quasi-Number \& Quasi-Co-Number).
Let $N T G:(V, E, \sigma, \mu)$ be a neutrosophic graph. Then
(i) quasi-number for x_{0} is

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) ;
$$

(ii) quasi-co-number for x_{0} is

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\} .
$$

Proposition 5.2. Let $N T G:(V, E, \sigma, \mu)$ be a complete-neutrosophic graph. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1}^{\mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a complete-neutrosophic graph and $x_{0} x_{0}^{\prime} \in E$. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1}^{\mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

Since

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{0}^{\prime}} \bigwedge_{x_{i} x_{i+1} \in V(P)} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} x_{0}^{\prime}\right)
$$

and

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{0}^{\prime}}^{x_{i} x_{i+1} \in V(P)} \bigwedge_{i} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} x_{0}^{\prime}\right)
$$

hold if $N T G:(V, E, \sigma, \mu)$ is a complete-neutrosophic graph. Also,

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{0}^{\prime} x_{i} x_{i+1} \in V(P)} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} x_{0}^{\prime}\right)
$$

holds since $x_{0} x_{0}^{\prime}$ is a path from x_{0} to x_{0}^{\prime}.

Proposition 5.3. Let $N T G:(V, E, \sigma, \mu)$ be a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$. An arbitrary path P has consecutive vertices x_{0}, z as their ends from a given vertex to leaf z. Thus

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

It implies for every given vertex $x_{t} \in V$,

$$
\bigvee_{x_{t} \in V P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

Therefore,

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

Proposition 5.4. Let $N T G:(V, E, \sigma, \mu)$ be a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$ is weakest edge. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right) .
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$ is a weakest edge. An arbitrary path P has consecutive vertices x_{0}, z as their ends from a given vertex to leaf x_{0}. Thus

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

By $x_{0} z \in E$ is a weakest edge,

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right)
$$

It implies for every given vertex $x_{t} \in V$,

$$
\bigvee_{x_{t} \in V P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right)
$$

Therefore,

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right)
$$

Proposition 5.5. Let $N T G:(V, E, \sigma, \mu)$ be a cycle-neutrosophic graph. Suppose x_{0} has a weakest edge $x_{0} z \in E$. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a cycle-neutrosophic graph. Suppose x_{0} has a weakest edge $x_{0} z \in E$. For every vertex, there are only two ways to form a path. By $x_{0} z \in E$ is a weakest edge,

$$
\mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

$P: x_{0}, z$ is a path from x_{0} to z. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Proposition 5.6. Let $N T G:(V, E, \sigma, \mu)$ be a cycle-neutrosophic graph. Suppose x_{0} is incident to one edge $x_{0} z \in E$ which isn't a weakest edge. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a cycle-neutrosophic graph. Suppose x_{0} has an edge $x_{0} z \in E$ which isn't a weakest edge. For every vertex, there are only two ways to form a path. By $x_{0} z \in E$ isn't a weakest edge and $P: x_{0}, z$ is a path from x_{0} to z. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Proposition 5.7. Let $N T G:(V, E, \sigma, \mu)$ be a cycle-neutrosophic graph. Suppose x_{0} is incident to two edges $x_{0} z, x_{0} z^{\prime} \in E$ which aren't weakest edges. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)
$$

Furthermore, if $\mu\left(x_{0} z\right)<\mu\left(x_{0} z^{\prime}\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z^{\prime}\right)
$$

if $\mu\left(x_{0} z^{\prime}\right)<\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z\right) ;
$$

if $\mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a cycle-neutrosophic graph. Suppose x_{0} is incident to two edges $x_{0} z, x_{o} z^{\prime} \in E$ which aren't weakest edges. For every vertex, there are only two ways to form a path which are with edges either $x_{0} z$ or $x_{o} z^{\prime} . P: x_{0}, z$ and $P^{\prime}: x_{0}, z^{\prime}$ are paths from x_{0} to z and z^{\prime}. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)
$$

Furthermore, if $\mu\left(x_{0} z\right)<\mu\left(x_{0} z^{\prime}\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z^{\prime}\right)
$$

if $\mu\left(x_{0} z^{\prime}\right)<\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z\right)
$$

if $\mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)
$$

Proposition 5.8. Let $N T G:(V, E, \sigma, \mu)$ be a star-neutrosophic graph. Suppose x_{0} is center. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right) .
$$

Proof. Consider $N T G:(V, E, \sigma, \mu)$ is a star-neutrosophic graph. Suppose x_{0} is center. All paths from x_{0} has a form $x_{0} x_{i}$. Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} x_{i}\right)
$$

Hence

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

So

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

It implies

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

Proposition 5.9. Let $N T G:(V, E, \sigma, \mu)$ be a star-neutrosophic graph. Suppose x_{0} isn't center and c is a center. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

Proof. Consider NTG: (V, E, σ, μ) is a star-neutrosophic graph. Suppose x_{0} isn't center and c is a center. There's only one path from x_{0} has a form $x_{0} c$. Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

Hence

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

So

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

It implies

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

Proposition 5.10. Let $N T G:(V, E, \sigma, \mu)$ be a star-strong-neutrosophic graph.
Suppose x_{0} is center such that $\bigwedge_{i=0}^{\mathcal{O}-1}=\sigma\left(x_{0}\right)$. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\sigma\left(x_{0}\right)
$$

Proof. Consider $N T G:(V, E, \sigma, \mu)$ is a star-neutrosophic graph. Suppose x_{0} is center such that $\bigwedge_{i=0}^{\mathcal{O}-1}=\sigma\left(x_{0}\right)$. All paths from x_{0} has a form $x_{0} x_{i}$. Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} x_{i}\right)=\sigma\left(x_{0}\right)
$$

Hence

So

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}=0, \cdots, \ldots-1} \bigwedge_{i\left(x_{i} x_{i+1}\right)=}^{\bigvee} \mu\left(x_{0} x_{i}\right)=\sigma\left(x_{0}\right) .
$$

It implies

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\sigma\left(x_{0}\right)
$$

Proposition 5.11. Let $N T G:(V, E, \sigma, \mu)$ be a complete-neutrosophic graph. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{i=1}^{\mathcal{O}} \mu\left(x_{0} x_{i}\right)\right\} .
\end{gathered}
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a complete-neutrosophic graph and $x_{0} x_{0}^{\prime} \in E$. Then

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1}^{\mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

Since

$$
\bigvee_{P: x_{0}, x_{1}, \ldots, x_{0}^{\prime} x_{i} x_{i+1} \in V(P)} \bigwedge_{\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} x_{0}^{\prime}\right) .}
$$

and

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{0}^{\prime}}^{x_{i} x_{i+1} \in V(P)} \bigwedge_{i} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} x_{0}^{\prime}\right)
$$

hold if $N T G:(V, E, \sigma, \mu)$ is a complete-neutrosophic graph. Also,

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{0}^{\prime}} \bigwedge_{x_{i} x_{i+1} \in V(P)} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} x_{0}^{\prime}\right)
$$

holds since $x_{0} x_{0}^{\prime}$ is a path from x_{0} to x_{0}^{\prime}. So

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{i=1}^{\mathcal{O}} \mu\left(x_{0} x_{i}\right)\right\} .
\end{gathered}
$$

Proposition 5.12. Let $N T G:(V, E, \sigma, \mu)$ be a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right)\right\} .
\end{gathered}
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$. An arbitrary path P has consecutive vertices x_{0}, z as their ends from a given vertex to leaf z. Thus

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

It implies for every given vertex $x_{t} \in V$,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

Therefore,

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

Thus

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right)\right\} .
\end{gathered}
$$

Proposition 5.13. Let $N T G:(V, E, \sigma, \mu)$ be a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$ is a weakest edge. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\mu\left(x_{0} z\right)\right\} .
\end{gathered}
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a path-neutrosophic graph. Suppose x_{0} is a leaf and $x_{0} z \in E$ is a weakest edge. An arbitrary path P has consecutive vertices x_{0}, z as their ends from a given vertex to leaf x_{0}. Thus

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right)
$$

By $x_{0} z \in E$ is a weakest edge,

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right)
$$

It implies for every given vertex $x_{t} \in V$,

$$
\bigvee_{x_{t} \in V P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right)
$$

Therefore,

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} z\right)
$$

Thus

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\mu\left(x_{0} z\right)\right\} .
\end{gathered}
$$

Proposition 5.14. Let $N T G:(V, E, \sigma, \mu)$ be a cycle-neutrosophic graph. Suppose x_{0} has two weakest edges $x_{0} z, x_{0} z^{\prime} \in E$. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left.\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)=\mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right)\right\}=\left\{x_{0} z, x_{0} z^{\prime}\right\} .
\end{gathered}
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a cycle-neutrosophic graph. Suppose x_{0} has a weakest edge $x_{0} z \in E$. For every vertex, there are only two ways to form a path. By $x_{0} z \in E$ is a weakest edge,

$$
\mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

$P: x_{0}, z$ is a path from x_{0} to z. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

By $x_{0} z^{\prime} \in E$ is a weakest edge,

$$
\mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z^{\prime}\right)
$$

$P: x_{0}, z^{\prime}$ is a path from x_{0} to z^{\prime}. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z^{\prime}\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z^{\prime}\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z^{\prime}\right)
$$

By for every vertex, there are only two ways to form a path,

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left.\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)=\mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right)\right\}=\left\{x_{0} z, x_{0} z^{\prime}\right\} .
\end{gathered}
$$

Proposition 5.15. Let $N T G:(V, E, \sigma, \mu)$ be a cycle-neutrosophic graph. Suppose x_{0} is incident to one edge $x_{0} z \in E$ which isn't a weakest edge. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \geq \mu\left(x_{0} z\right), x_{z} x_{z^{\prime}} \in E\right\} .
\end{gathered}
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a cycle-neutrosophic graph. Suppose x_{0} has an edge $x_{0} z \in E$ which isn't a weakest edge. For every vertex, there are only two ways to form a path. By $x_{0} z \in E$ isn't a weakest edge and $P: x_{0}, z$ is a path from x_{0} to z. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \geq \mu\left(x_{0} z\right)
$$

Thus

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \geq \mu\left(x_{0} z\right), x_{z} x_{z^{\prime}} \in E\right\}
\end{gathered}
$$

Proposition 5.16. Let $N T G:(V, E, \sigma, \mu)$ be a cycle-neutrosophic graph. Suppose x_{0} is incident to two edges $x_{0} z, x_{0} z^{\prime} \in E$ which aren't weakest edges. Then

$$
\begin{aligned}
\mathcal{C}_{c}\left(x_{0}\right)= & \left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
& \left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right\} .
\end{aligned}
$$

Furthermore, if $\mu\left(x_{0} z\right)<\mu\left(x_{0} z^{\prime}\right)$, then

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right\} ;
$$

if $\mu\left(x_{0} z^{\prime}\right)<\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right), x_{z} x_{z^{\prime}} \in E\right\}
$$

if $\mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right)=\mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right\}
$$

Proof. Assume $N T G:(V, E, \sigma, \mu)$ is a cycle-neutrosophic graph. Suppose x_{0} is incident to two edges $x_{0} z, x_{o} z^{\prime} \in E$ which aren't weakest edges. For every vertex, there are only two ways to form a path which are with edges either $x_{0} z$ or $x_{o} z^{\prime} . P: x_{0}, z$ and $P^{\prime}: x_{0}, z^{\prime}$ are paths from x_{0} to z and z^{\prime}. It implies

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)
$$

Therefore,

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right)
$$

It means that

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right) .
$$

Furthermore, if $\mu\left(x_{0} z\right)<\mu\left(x_{0} z^{\prime}\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z^{\prime}\right)
$$

if $\mu\left(x_{0} z^{\prime}\right)<\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z\right)
$$

if $\mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}\left(x_{0}\right) \leq \mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)
$$

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}=
$$

$$
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right) \vee \mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right\}
$$

Furthermore, if $\mu\left(x_{0} z\right)<\mu\left(x_{0} z^{\prime}\right)$, then

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right\} ;
$$

if $\mu\left(x_{0} z^{\prime}\right)<\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right), x_{z} x_{z^{\prime}} \in E\right\} ;
$$

if $\mu\left(x_{0} z^{\prime}\right)=\mu\left(x_{0} z\right)$, then

$$
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right) \leq \mu\left(x_{0} z\right)=\mu\left(x_{0} z^{\prime}\right), x_{z} x_{z^{\prime}} \in E\right\} .
$$

Proposition 5.17. Let $N T G:(V, E, \sigma, \mu)$ be a star-neutrosophic graph. Suppose x_{0} is center. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)\right\} .
\end{gathered}
$$

Proof. Consider NTG: (V, E, σ, μ) is a star-neutrosophic graph. Suppose x_{0} is center. All paths from x_{0} has a form $x_{0} x_{i}$. Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} x_{i}\right)
$$

Hence

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

So

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

It implies

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)
$$

Thus

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)\right\} .
\end{gathered}
$$

Proposition 5.18. Let $N T G:(V, E, \sigma, \mu)$ be a star-neutrosophic graph. Suppose x_{0} isn't center and c is a center. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\mu\left(c x_{0}\right)\right\}=\left\{c x_{0}\right\} .
\end{gathered}
$$

Proof. Consider NTG: (V, E, σ, μ) is a star-neutrosophic graph. Suppose x_{0} isn't center and c is a center. There's only one path from x_{0} has a form $x_{0} c$. Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

Hence

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

So

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right)
$$

It implies

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} c\right) .
$$

Thus

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\mu\left(c x_{0}\right)\right\}=\left\{c x_{0}\right\} .
\end{gathered}
$$

Proposition 5.19. Let $N T G:(V, E, \sigma, \mu)$ be a star-strong-neutrosophic graph. Suppose x_{0} is center such that $\bigwedge_{i=0}^{\mathcal{O}-1}=\sigma\left(x_{0}\right)$. And x isn't center. Then

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\sigma\left(x_{0}\right)\right\}=\left\{x_{0} x_{i}\right\}_{i=1}^{\mathcal{O}-1} .
\end{gathered}
$$

And

$$
\begin{gathered}
\mathcal{C}_{c}(x)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\sigma\left(x_{0}\right)\right\}=\left\{x_{0} x_{i}\right\}_{i=1}^{\mathcal{O}-1} .
\end{gathered}
$$

Proof. Consider $N T G:(V, E, \sigma, \mu)$ is a star-neutrosophic graph. Suppose x_{0} is center such that $\bigwedge_{i=0}^{\mathcal{O}-1}=\sigma\left(x_{0}\right)$. All paths from x_{0} has a form $x_{0} x_{i}$. Thus

$$
\bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\mu\left(x_{0} x_{i}\right)=\sigma\left(x_{0}\right)
$$

Hence

$$
\bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)=\sigma\left(x_{0}\right)
$$

So

$$
\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\bigvee_{i=1, \cdots, \mathcal{O}} \mu\left(x_{0} x_{i}\right)=\sigma\left(x_{0}\right)
$$

It implies

$$
\mathcal{C}\left(x_{0}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)=\sigma\left(x_{0}\right)
$$

Thus

$$
\begin{gathered}
\mathcal{C}_{c}\left(x_{0}\right)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\sigma\left(x_{0}\right)\right\}=\left\{x_{0} x_{i}\right\}_{i=1}^{\mathcal{O}-1} .
\end{gathered}
$$

And

$$
\begin{gathered}
\mathcal{C}_{c}(x)=\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\bigvee_{x_{t} \in V} \bigvee_{P: x_{0}, x_{1}, \cdots, x_{t}} \bigwedge_{i=0, \cdots, t-1} \mu\left(x_{i} x_{i+1}\right)\right\}= \\
\left\{x_{z} x_{z^{\prime}} \mid \mu\left(x_{z} x_{z^{\prime}}\right)=\sigma\left(x_{0}\right)\right\}=\left\{x_{0} x_{i}\right\}_{i=1}^{\mathcal{O}-1}
\end{gathered}
$$

References

1. N.H. Abughazalah, and M. Khan, "Selection of Optimum Nonlinear Confusion Component of Information Confidentiality Mechanism Using Grey Theory Based Decision-Making Technique." Preprints 2021, 2021120310 (doi: 10.20944/preprints202112.0310.v1).
2. M. Akram, and G. Shahzadi, "Operations on Single-Valued Neutrosophic Graphs", Journal of uncertain systems 11 (1) (2017) 1-26.
3. K. Atanassov, "Intuitionistic fuzzy sets", Fuzzy Sets Syst. 20 (1986) 87-96.
4. S. Boumova, P. Boyvalenkov, and M. Stoyanova, "Bounds for the Minimum Distance and Covering Radius of Orthogonal Arrays via Their Distance Distributions." Preprints 2021, 2021120293 (doi: 10.20944/preprints202112.0293.v1).
5. S. Broumi, M. Talea, A. Bakali and F. Smarandache, "Single-valued neutrosophic graphs", Journal of New Theory 10 (2016) 86-101.
6. N. Shah, and A. Hussain, "Neutrosophic soft graphs", Neutrosophic Set and Systems 11 (2016) 31-44.
7. Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 978-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).
8. Henry Garrett, "Co-degree and Degree of classes of Neutrosophic Hypergraphs", Preprints 2022, 2022010027 (doi: 10.20944/preprints202201.0027.v1).
9. D. Jean, and S. Fault-Tolerant Seo, "Detection Systems on the King's Grid." Preprints 2022, 2022010249 (doi: 10.20944/preprints202201.0249.v1).
10. H. Oliveira, "Synthesis of Strategic Games With Multiple Pre-set Nash Equilibria - An Artificial Inference Approach Using Fuzzy ASA." Preprints 2019, 2019080128 (doi: 10.20944/preprints201908.0128.v2).
11. R.E. Perez, F.N. Gonzalez, M.C. Molina, and J.M. Moreno "Methodological Analysis of Damage Estimation in Hydraulic Infrastructures." Preprints 2022, 2022010376 (doi: 10.20944/preprints202201.0376.v1).
12. A. Shannon and K.T. Atanassov, "A first step to a theory of the intuitionistic fuzzy graphs", Proceeding of FUBEST (Lakov, D., Ed.) Sofia (1994) 59-61.
13. F. Smarandache, "A Unifying field in logics neutrosophy: Neutrosophic probability, set and logic, Rehoboth: "American Research Press (1998).
14. F. Tang, X. Zhu, J. Hu, J. Tie, J. Zhou, and Y. Fu, "Generative Adversarial Unsupervised Image Restoration in Hybrid Degradation Scenes." Preprints 2022, 2022020159 (doi: 10.20944/preprints202202.0159.v1).
15. H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, "Single-valued neutrosophic sets", Multispace and Multistructure 4 (2010) 410-413.
16. L. A. Zadeh, "Fuzzy sets", Information and Control 8 (1965) 338-354.
17. S. Zuev, Z. Hussain, and P. Kabalyants,"Nanoparticle Based Water Treatment Model in Squeezing Channel under Magnetic Field." Preprints 2021, 2021120295 (doi: 10.20944/preprints202112.0295.v1).
