Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2022 d0i:10.20944/preprints202203.0248.v1

Some Results in Classes Of Neutrosophic Graphs
Henry Garrett

Independent Researcher

DrHenryGarrett@gmail.com

Twitter’s ID: @DrHenryGarrett | ©DrHenryGarrett.wordpress.com

Abstract

New setting is introduced to study co-neighborhood, neutrosophic t-neighborhood,
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Neutrosophic number, neutrosophic co-neighborhood, co-neutrosophic number,
quasi-number and quasi-co-number. Some classes of neutrosophic graphs are
investigated.
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1 Background )
Fuzzy set in Ref. [16], neutrosophic set in Ref. [3], related definitions of other sets in 2
Refs. [3,13,15], graphs and new notions on them in Refs. [1,4,8-11,14,17], 3
neutrosophic graphs in Ref. [5], studies on neutrosophic graphs in Ref. [2], relevant 4
definitions of other graphs based on fuzzy graphs in Ref. [12], related definitions of 5
other graphs based on neutrosophic graphs in Ref. (], are proposed. Also, some studies s
and researches about neutrosophic graphs, are proposed as a book in Ref. [7]. 7
2 Preliminaries 5
In this subsection, basic material which is used in this article, is presented. Also, new 0
ideas and their clarifications are elicited. 10

Basic idea is about the model which is used. First definition introduces basic model. 1

Definition 2.1. (Graph). 12

G = (V, E) is called a graph if V is a set of objects and F is a subset of V. x V (E 1

is a set of 2-subsets of V') where V is called vertex set and E is called edge set. 1

Every two vertices have been corresponded to at most one edge. 15

Neutrosophic graph is the foundation of results in this paper which is defined as 16

follows. Also, some related notions are demonstrated. 17
1/17
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Definition 2.2. (Neutrosophic Graph And Its Special Case). 18
NTG = (V,E,o = (01,02,03), 1t = (111, 42, 43)) is called a neutrosophic graph if

it’s graph, o; : V' — [0,1], and y; : E — [0,1]. We add one condition on it and we use

special case of neutrosophic graph but with same name. The added condition is as

follows, for every v;v; € F,

n(vivg) < o(vi) Ao(v).

(i) : o is called neutrosophic vertex set. 19
(i) : w is called neutrosophic edge set. 20
(i#i) : |V is called order of NTG and it’s denoted by O(NTG). 2
(1) : Byeyo(v) is called neutrosophic order of NTG and it’s denoted by O, (NTG). =
(v) : |E] is called size of NTG and it’s denoted by S(NT'G). 23
(vi) : XeerY?_ipi(e) is called neutrosophic size of NTG and it’s denoted by 2
Sn(NTG). 25
Some classes of well-known neutrosophic graphs are defined. These classes of 2
neutrosophic graphs are used to form this study and the most results are about them. 27
Definition 2.3. Let NTG : (V, E, 0, 1) be a neutrosophic graph. Then 28
() : a sequence of vertices P : xg,x1,- - , &, is called path where 20
rixiy1 €, 1=0,1,--- ,n—1,; 30

(79) : strength of path P : zg, 21, , @, is /\i:O,--- P w(xiziv); 31

(#4i) : connectedness amid vertices xg and x,, is

2y = N N waiin);

P:xo,x1, ,xp =0, ,n—1

(iv) : a sequence of vertices P : xg,x1,- -+ ,x, is called cycle where 2
zixiy1 € E, 1=0,1,--- ;n — 1 and there are two edges xy and uv such that 33

w(xy) = p(uww) = Nig ... poy #(0V11); 3

(v) : it’s t-partite where V is partitioned to ¢ parts, V4, Va,- -, V; and the edge zy 35
implies « € V; and y € V; where ¢ # j. If it’s complete, then it’s denoted by 36

K, oy, o, Where o; is 0 on Vj instead V' which mean z ¢ V; induces o;(x) = 0; 37

(vi) : t-partite is complete bipartite if ¢t = 2, and it’s denoted by Ky, o,; 38
(vii) : complete bipartite is star if |V;| = 1, and it’s denoted by Si 4,; 39
(viti) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then it’s 40
wheel and it’s denoted by W1 q,; a1

(iz) : it’s complete where Yuv € V, pu(uwv) = o(u) A o(v); 2
(z) : it’s strong where Yuv € E, u(uv) = o(u) A o(v). P!

The notions of neighbor and neighborhood are about some vertices which have one 4
edge with a fixed vertex. These notions present vertices which are close to a fixed vertex s
as possible. Based on strong edge, it’s possible to define different neighborhood as 46
follows. 7
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Definition 2.4. (Neighborhood). 1
Let NTG : (V,E, o, 1) be a neutrosophic graph. Suppose z € V. Then

N@)={yeV |zy € E}.

Definition 2.5. (Co-Neighborhood). 49
Let NTG : (V, E,o, 1) be a neutrosophic graph and ¢ € N. Suppose 50
z;e€V,i=1,2,---,t. Then 51

(2)
Ny(z1, 29, - ,x¢) ={yeV |zyeE, i=1,2,--- t}.
If ming, 4y o,ev Ne[21, 22, -+ , 2] =V, then neutrosophic t-neighborhood
is called neutrosophic quasi-vertex set and t is called neutrosophic
quasi-order. Generally, when ¢ isn’t fixed, it’s called neutrosophic
neighborhood. Neutrosophic number is

3 s
Zminxl,zg,«-« wyev Ne[zi,@a,- ,wt]:VEj:IUJ (74)-

Ny(z1, 29, ,2y) ={e € E|le=xy € E, i=1,2,--- t}.

If ming, 4. o,ev Ne[21, 22, -+ , 2] = E, then neutrosophic
co-t-neighborhood is called neutrosophic quasi-edge set and ¢ is called
neutrosophic quasi-size. Generally, when ¢ isn’t fixed, it’s called
neutrosophic co-neighborhood. Co-neutrosophic number is

3
2rninucl,m,... zpev Ne[z1,22, ,wt]:Eijlaj(Ii)'

3 Neutrosophic Quasi-Order 2
Proposition 3.1. Let NTG : (V,E,o,u) be an odd path. Then {x2, x4, -+ ,xp_1} is 53
related to quasi-order | %]. 54
Proof. Suppose NTG : (V,E, o, u) be an odd path. Thus NTG : (V,E, o, u) is 55
P:xy,29, - ,z, where n and 1 has same parity. There are two sets. {x1,23, - ,Zn} s
has quasi-order |&] + 1 but {x2, x4, -, 2,1} has quasi-order | %] which is minimum
number amid these two sets. So {z2, x4, - ,2,_1} is related to quasi-order |3 |. 58
{z2,24, - ,Tp_1} is quasi-vertex set which is optimal. O s

Proposition 3.2. Let NTG : (V,E,o,u) be an even path. Then {xo, x4, - ,Zpn} is 60

related to quasi-order % . 61
Proof. Suppose NTG : (V, E, o0, 1) be an even path. Thus NTG : (V, E, o, u) is 62
P:xy,z9,--- ,x, where n and 1 has different parity. There are two sets. 63
{®1,23, -+ ,xn_1} has quasi-order |5 ]| and {x2,24,---,2,} has quasi-order [ | which &
is minimum number like first set. So {2, x4, -+ ,2,} and {z1, 23, -+ ,Tp_1} are 65
related to quasi-order |§]. {2, 24, -+ ,2,} and {1,253, -+ ,2,_1} are quasi-vertex 66
sets which are optimal. O e

Proposition 3.3. Let NTG: (V,E,o,u) be an odd cycle. Then {xa, x4, ,Xn_1} 05 e

related to quasi-order | % ]. 6
Proof. Suppose NTG : (V,E,o0,u) be an odd cycle. Thus NTG : (V, E, o, u) is 70
P :xy,29, -+ ,x,,x1 where n and 1 has same parity. There are two sets. 7
{x1,23,--- ,2,} has quasi-order |5 | 41 but {x2, 24, -+, 2,1} has quasi-order | %] 72
which is minimum number amid these two sets. So {x2, 4, -+ ,zn_1} is related to 7
quasi-order | §|. {z2,24, -+ ,2n_1} is quasi-vertex set which is optimal. O =
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Proposition 3.4. Let NTG : (V,E,o,u) be an even cycle. Then {xa,24, -+ ,2,} and 1

{@1,23,--+ ,xn_1} are related to quasi-order 3. 76
Proof. Suppose NTG : (V, E, o, 1) be an even cycle. Thus NTG : (V, E, o, p) is 7
P:xy,29,-+ ,x,, 21 where n and 1 has different parity. There are two sets. 78
{z1,23, -+, 2,1} has quasi-order | %] and {2, 24,--- ,2,} has quasi-order || which
is minimum number like first set. So {zq, x4, - ,2,} and {x1, 23, - ,z,_1} are 8
related to quasi-order | §]. {22, %4, -+ ,2,} and {x1,23, -+ , 2,1} are quasi-vertex 81
sets which are optimal. O e
Proposition 3.5. Let NTG : (V,E, o, u) be complete. Then {x} is related to &
quasi-order 1. 8

Proof. Let NTG : (V, E, o0, ) be complete. Suppose z is a given vertex. Thus

Nlz] = min  Ngfz1, 22, - 2] = V.
T1,T2, Lt €V

It implies the set {«} which is 1-neighborhood, is quasi-vertex set. Then {x} is related s
to quasi-order 1. O e

Proposition 3.6. Let NTG : (V, E,o,u) be star. Then {x} is related to quasi-order 1. &

Proof. Let NTG : (V,E, o, u) be star. Suppose c is the center. Thus

Nle] = min  Ny[zy, 22, - ,2¢] = V.
T1,T2, - ,xtEV

It implies the set {c} which is 1-neighborhood, is quasi-vertex set. Then {c} is related s

to quasi-order 1. O s
4 Neutrosophic Quasi-Size a0
Proposition 4.1. Let NTG : (V, E,o,u) be an odd path. Then either {x1,x3, -+ ,2n} o
or {x1,x3, -+ ,Tn_1} are related to quasi-size | % |. 0
Proof. Suppose NTG : (V,E, o, u) be an odd path. Thus NTG : (V,E, o, u) is o
P:xy,z9,--- ,x, where n and 1 has same parity. There is two sets. Either o
{@1, 23, ,2n} or {@1,23, -+, 2,1} has quasi-size [ 5| which are minimum number o
amid these all sets. So either {1,235, - ,2,} or {1,235, -+ ,x,—1} is related to %
quasi-size| 5 |. Either {xy,23, -+ ,xn} or {z1,23, -+ , 2,1} are quasi-vertex set which o
are optimal. I

Proposition 4.2. Let NTG : (V,E, o, u) be an even path. Then {xa, x4, - ,Zn} is %

related to quasi-size | % ]. 100
Proof. Suppose NTG : (V, E, o, 1) be an even path. Thus NTG : (V, E, o, 1) is 101
P:xy,29,--- ,x, where n and 1 has different parity. There are two sets. Either 102
{@1, 23, ,2n} or {@1, 23, -+ ,2n_1}. {T1,23,- -+, 2, } has quasi-size | 5| and 103
T1,%3, "+ ,Tp_1} has quasi-size | 2| which is minimum number like first set. So either 104
{ 1,43, s <bn 1} q Lg
{x1,23, -+ ,xn} or {x1,23,--- ,x,_1} is related to quasi-size | §]. Either 105
{x1,23, - ,&n} or {®1,23, - ,Tp_1} is quasi-vertex set which is optimal. TS

Proposition 4.3. Let NTG : (V,E,o,u) be an odd cycle. Then {x1,x4, -+ ,Tp_3} s 107
related to quasi-size | % ]. 108
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Proof. Suppose NTG : (V,E, o, 1) be an odd cycle. Thus NTG : (V, E,o, ) is 109
P :xy,29, -+ ,xn,x1 where n and 1 has same parity. There are two sets. 110
{®1,23, -+ ,x,} has quasi-size | 5] and {x1, 23, -+, 2,1} has quasi-size | 5| which are
minimum numbers amid all sets. So either {x1,x3, -+ ,z,—1} or {1,235, -+ ,2,} is 12
related to quasi-size | 7 ]. Either {z1,23,--- 2,1} or {w1,23,--- ,7,} is quasi-edge set 13
which is optimal. O s

Proposition 4.4. Let NTG : (V,E,o,u) be an even cycle. Then {x1,x4, -+ ,Tp_3} is 1s

related to quasi-size | % ]. 116
Proof. Suppose NTG : (V, E, o, 1) be an even cycle. Thus NTG : (V, E, o, p) is 17
P:xy,29,-+ ,x,, 21 where n and 1 has different parity. There are two sets. 118
{®1,23,--+ ,xn_1} has quasi-size | 5| and {x1,23,--- ,7,_1} has quasi-size [ 5] which 1o
is minimum number like first set. So either {z1, s, -+ ,x,} or {z1, 23, -+ ,&p_1} are 120
related to quasi-size | %] which this number is optimal. Either {21, 23,---,2z,} or 121
{x1,23, - ,Zn_1} is quasi-edge set which are optimal. O 1
Proposition 4.5. Let NTG : (V,E, o, u) be complete. Then {x1,22, -+ ,Zn_1} i 123
related to quasi-size n — 1. 124

Proof. Let NTG : (V, E, 0, ) be complete. Suppose z is a given vertex. Thus

Nlz1, 29, ,Tp_1] = min Nilzy, 29, -+ yxp_1] = E.
T1,&2, 1€
It implies the set {x1, 29, ,x,—1} which is co-(n — 1)-neighborhood, is only 125
quasi-vertex set as optimal set. Then {1,229, -+ ,z,—1} is related to quasi-size 126
n — 1. O 127

Proposition 4.6. Let NTG : (V,E,o,u) be star. Then {x} is related to quasi-size 1. 12s
Proof. Let NTG : (V,E, o0, u) be star. Suppose c is the center. Thus

N[C]: min Nt[$1,x2,"‘ ,.’Et]:E.
T1,@2, T EV

It implies the set {c} which is 1-neighborhood, is quasi-vertex set. Then {c} is related 1

to quasi-order 1. O 130
5 Setting of Neutrosophic Quasi-Number and -
Quasi-Co-Number 2
Definition 5.1. (Quasi-Number & Quasi-Co-Number). 133
Let NTG : (V,E,o, 1) be a neutrosophic graph. Then 134

(i) quasi-number for zg is

C(z0) = \/ \/ /\ w(Tiziv1);

€V P:xg,x1, oy 1=0,--+ ;t—1
(i1) quasi-co-number for x is

Ce(wo) = {womr | pao) = \/ \/ /\ w(xizivr)}

€V P:xg,x1, -,y 7=0,--- t—1
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Proposition 5.2. Let NTG : (V,E, o, u) be a complete-neutrosophic graph. Then

-V VA s

z €V Pixg,x1, - ,x¢ =0, ,t—l

.Z'()Q?

\|<@

Proof. Assume NTG : (V, E, o, 1) is a complete-neutrosophic graph and zozj € E.

Then

VOV A = Vo)
€V P:xg,x1, - ,x¢ 1=0,--- ,t*l
Since
/
\V N nl@win) = plroxp).
P:xo,x1, ,11() Ii1i+1€V(P)
and

\/ /\ pl@izipr) < plzozp)

P:xg,x1,,x) xixi41 €V (P)
hold if NTG : (V, E, 0, 1) is a complete-neutrosophic graph. Also,
V N @) > pzoxp)

P:xo,x1, -,z xixip1EV(P)

holds since zogzy, is a path from zg to xf. 135
D 136

Proposition 5.3. Let NTG : (V,E,o,pn) be a path-neutrosophic graph. Suppose xq is
a leaf and xgz € E. Then

= \/ \/ /\ w(@izip1) < p(zoz).

€V P:xg,x1, - ,xy 7=0,--- t—1

Proof. Assume NTG : (V, E,o,u) is a path-neutrosophic graph. Suppose zg is a leaf
and zgz € E. An arbitrary path P has consecutive vertices xg, z as their ends from a
given vertex to leaf z. Thus

V N wmizign) < (o).
P:xo,x1, - 2t 1=0,-- ,t—1
It implies for every given vertex z; € V,
\/ \/ /\ pw(xizier) < p(xo2).
2 €V Pixo,m1, @4 i=0,-- ,t—1

Therefore,

ro) = \/ \V N\ pmizign) < plaoz).

€V Pixg,x1, - ,xs 7=0,--- t—1

D 137

Proposition 5.4. Let NTG : (V,E, o, u) be a path-neutrosophic graph. Suppose g is
a leaf and xoz € E is weakest edge. Then

=\ \ N\ n(mizig) = p(oz).

€V P:xo,x1, -,y 9=0,--- ,;t—1
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Proof. Assume NTG : (V, E, o0, ) is a path-neutrosophic graph. Suppose z is a leaf
and xgz € E is a weakest edge. An arbitrary path P has consecutive vertices xg, z as
their ends from a given vertex to leaf xy. Thus

\/ /\ p(zizisr) < p(zoz).

P:zg,x1,--- ,x¢ 1=0,--- ,t—1

By x9z € E is a weakest edge,

\/ /\ p(xirip1) = p(xo2).

P:xg,x1, - ,x¢ 1=0,--- ,t—1

It implies for every given vertex x; € V,

\/ \/ /\ w(xixipr) = w(xoz).

€V P:xg,x1, -,y 1=0,--- t—1

Therefore,

Clzo) = \/ \ N @) = plxoz).

€V P:xg,x1, -,y 7=0,--- ,t—1
O 13

Proposition 5.5. Let NTG : (V,E, o, u) be a cycle-neutrosophic graph. Suppose xg
has a weakest edge xoz € E. Then

Clzo) = \/ \V N\ n(@iziga) > p(xoz).

€V P:xg,x1, - ,xs 1=0,--- t—1

Proof. Assume NTG : (V, E,o,u) is a cycle-neutrosophic graph. Suppose xg has a
weakest edge xgz € E. For every vertex, there are only two ways to form a path. By
xoz € F is a weakest edge,

pxizipr) > p(xoz).
Thus
N w@iwig) > p(oz).

P : xg, z is a path from zg to z. It implies

\V N nl@izi) > paoz).

P:xg,x1, - ,x¢ 1=0,-- ;t—1

\/ \/ /\ w(wizip1) > p(woz).

z: €V P:xg,x1, - ,xs 1=0,--- t—1

Therefore,

It means that

Clzo) = \/ \V N\ n(@izign) > p(roz).
z+ €V P:xo,x1,-- ,x 1=0,--- =1

D 139

Proposition 5.6. Let NTG : (V,E, o, u) be a cycle-neutrosophic graph. Suppose xq is
incident to one edge xoz € E which isn’t a weakest edge. Then

Clzo) = \/ V N n@iwi) > pxoz).

z+€V P:xo,x1,-- ,x 9=0,--- ,t—1
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Proof. Assume NTG : (V, E, o0, u) is a cycle-neutrosophic graph. Suppose xg has an
edge xoz € E which isn’t a weakest edge. For every vertex, there are only two ways to
form a path. By zgz € F isn’t a weakest edge and P : xg, z is a path from zg to z. It

implies
\/ N n(mizign) > p(oz).

P:xo,z1, - ,x¢ 1=0,--- ,t—1

\/ \/ /\ w(xizip1) > p(woz).

x:€V Pixg,x1, - ,x¢ =0, t—1

Therefore,

It means that
Clzo) = \/ \/ /\ p(Tiwiv1) > p(xo2).
z4€V P:xg,x1, 24 =0, ;t—1
D 140

Proposition 5.7. Let NTG : (V,E, o, u) be a cycle-neutrosophic graph. Suppose xg is
incident to two edges xgz, 19z’ € E which aren’t weakest edges. Then

Clzo) = \/ \V N w@iwi) < ploz) V p(xo?).

TLEV Pig,m1,e g 1=0,00- t—1
Furthermore, if u(xoz) < p(xoz’), then
C(zo) < p(woz");
if w(xoz") < p(xoz), then
Clxo) < p(wo2);

if w(xoz') = u(xoz), then
Clxo) < p(woz") = p(woz).

Proof. Assume NTG : (V, E, o, u) is a cycle-neutrosophic graph. Suppose zg is incident
to two edges woz,T,2" € E which aren’t weakest edges. For every vertex, there are only
two ways to form a path which are with edges either zgz or z,2’. P : xg, 2z and

P’ : xq, 2" are paths from z to z and z’. It implies

V N nmizi) < plaoz) v p(zoz).
P:xg,x1, - ,x¢ 1=0,--- ,t—1

Therefore,

\/ \/ /\ plxizivr) < p(xoz) V p(xoz').

€V P:ixg,x1, - ,x¢ 1=0,--- t—1

It means that

Clzo) = \/ \V N sz < poz) V p(we?).

€V Pixg,x1, x4 1=0,--+ t—1
Furthermore, if p(zoz) < p(xoz’), then
C(wo) < p(x02');

if p(zoz’) < p(xoz), then
Clzo) < p(woz);
if u(zoz') = p(xpz), then
Clzo) < plxoz’) = p(wo2).
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Proposition 5.8. Let NTG : (V,E, o, ) be a star-neutrosophic graph. Suppose g is
center. Then

Clzo) = \/ \V N waiwia) =\ plwow).

2t €V Pizo,x1, @ 1=0,- ,t—1 i=1,---,0

Proof. Consider NTG : (V, E, o, ) is a star-neutrosophic graph. Suppose xq is center.
All paths from x( has a form zgx;. Thus

N pmizig) = plzoxs).

1=0,--- ,t—1
Hence
\/ /\ p(TiTig1) = \/ (o).
P:xg,x1, - ,x¢ 1=0,--- ,t—1 i=1,---,0
So
VooV A mema= Vst
z: €V P:xg,x1, - ,xs 1=0,--- t—1 i=1,---,0
It implies

Clzo) = \/ \V N waizia) =\ plwew).

€V P:xg,x1, - ,xs 1=0,--- t—1 i=1,---,0
D 142
Proposition 5.9. Let NTG : (V, E, o0, u) be a star-neutrosophic graph. Suppose xq
isn’t center and c is a center. Then
Clzo) = \/ \/ N wzizign) = plzoc).
€V Pixg,x1, - ,xs 1=0,--- t—1
Proof. Consider NTG : (V, E, o, u) is a star-neutrosophic graph. Suppose zg isn’t
center and c is a center. There’s only one path from zy has a form xgc. Thus
N wzizier) = plzoc).
1=0,--- ,t—1
Hence
\/ N w@iziin) = plaoc).
P:xg,x1, - ,x¢ =0, ;t—1
So
\V \V N i) = plago).
€V Pixg,x1, - ,x¢ =0, t—1
It implies
Clzo) = \/ \/ /\ w(wiriy1) = p(woc).
€V P:xg,x1, - ,x¢ 1=0,--- t—1
D 143

Proposition 5.10. Let NTG : (V,E, o, u) be a star-strong-neutrosophic graph.
Suppose x is center such that /\?:61 = o(xg). Then

Clzo) = \/ V N w@izi) = o(xo).

z: €V P:xg,x1, - ,xs 1=0,--- t—1
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Proof. Consider NTG : (V, E, o, u) is a star-neutrosophic graph. Suppose zg is center
such that /\?;01 = o(xzg). All paths from z( has a form xgz;. Thus

N\ n(mizig) = plzoxs) = o(xo).

=0, ,t—1
Hence
\ N wmizia) =\ wlxox:) = o(xo).
P:xg,x1, - ,x¢ 1=0,--- t—1 i=1,---,0
So
\V \V N w@izi) =\ pzow) = o(xo).
€V Pixg,x1, - x4 1=0,--- t—1 i=1,---,0
It implies
=\ V A @) = o(xo).
€V P:xg,x1, - x4 1=0,--- t—1
O 144
Proposition 5.11. Let NTG : (V,E, o, u) be a complete-neutrosophic graph. Then 145
Ce(mo) = {zo2y | plxr2,) \/ \/ /\ w(ziziv)} =
€V P:xg,x1, -,y 7=0,--- t—1
{-szz -Tz-Tz \/ acoxl
Proof. Assume NTG : (V, E, o, u) is a complete-neutrosophic graph and zoz{, € E.
Then
o
=\ V A @) =\ nlzow:).
€V P:ixg,x1, - ,xs 1=0,--- t—1 =1
Since
\V N @) = pzorp).
P:xo,zy,,x) xizip1 €V (P)
and
\V N @) < plwoxh)
P:zo,x1, 2 ©ixi41 €V (P)
hold if NTG : (V, E, 0, ) is a complete-neutrosophic graph. Also,
\V N i) > pwoxp)
Pizo,x1, 30 zi2i41€V(P)
holds since zozy is a path from zg to xf. So
Ce(wo) = {222 | pla,720) = \/ \/ /\ wEizip1)} =
€V P:xg,x1, -,y 3=0,--- t—1
@]
{zxy | pla.z,) \/ w(xox;)}
i=1
D 146
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Proposition 5.12. Let NTG : (V, E,o, 1) be a path-neutrosophic graph. Suppose xq is
a leaf and xoz € E. Then

Ce(wo) = {z.2s | pz222) = \/ \/ /\ w(@izipr)} =

€V P:xg,x1, -,y 9=0,--- t—1

{woze | plwzae) < plxoz)}

Proof. Assume NTG : (V, E, o, u) is a path-neutrosophic graph. Suppose z is a leaf
and xgz € E. An arbitrary path P has consecutive vertices xg, z as their ends from a
given vertex to leaf z. Thus

\V N n@izi) < plaoz).
P:xg,x1, - ,x¢ 1=0,--- ,t—1
It implies for every given vertex x; € V,
\V \V N\ p@izign) < p(oz).
x+ €V Pixg,x1, - x4 1=0,- ,t—1

Therefore,

Clzo) = \/ \/ N n(mizig) < ploz).

€V P:xo,x1, -,y 9=0,--- t—1

Thus

Ce(wo) = {222 | pl2,720) = \/ \/ /\ wEizip1)} =

z+€V P:xo,x1, -,z 9=0,--- ,t—1

{w.2o | plaaa) < p(woz)}
D 147

Proposition 5.13. Let NTG : (V, E,o, 1) be a path-neutrosophic graph. Suppose xq is
a leaf and xoz € E is a weakest edge. Then

Ce(wo) = {222 | pla.2sr) = \/ \/ /\ p(@iwiv1)} =

z+€V P:xo,x1, -,z 9=0,--- ;=1

{wo2o | w(@za) = pxoz)}-

Proof. Assume NTG : (V,E, o, u) is a path-neutrosophic graph. Suppose zg is a leaf
and zoz € E is a weakest edge. An arbitrary path P has consecutive vertices xg, z as
their ends from a given vertex to leaf xy. Thus

\/ /\ w(Eizipr) < p(woz).
P:xg,x1, - ,x¢ 1=0,--- ,t—1
By z9z € E is a weakest edge,
\V N wl@izi) = paoz).
P:xg,x1, - ,x¢ 1=0,--- ,t—1
It implies for every given vertex x; € V,

\/ \/ /\ p(xiwip1) = p(2o2).

€V Pixg,x1, - ,x¢ 1=0,--- t—1
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Therefore,

Clzo) = \/ V N nl@wien) = pxoz).

€V Pixzo,w1, w1 1=0, ,t—1
Thus
Cc(ﬂﬁ'o) = {mzxz/ | u(xzwz’) = \/ \/ /\ l‘[’(xlwl—‘,-l)} _
z4€V P:xg,x1, 24 =0, ;t—1
{le‘zl | N(xzxz’) = ,Uz(l‘()Z)}
O s

Proposition 5.14. Let NTG : (V,E, o, u) be a cycle-neutrosophic graph. Suppose xg
has two weakest edges xoz, 192" € E. Then

Ce(wo) = {222 | pla.22) = \/ \/ /\ w(@iwiv1)} =
€V P:xo,x1, -, 9=0,--- ;t—1
{@wy | p(zozy) = p(xoz) V pu(xoz') = u(zoz) = p(xoz'), .2 € E)} = {xo2, 202"}

Proof. Assume NTG : (V, E, o0, u) is a cycle-neutrosophic graph. Suppose zo has a
weakest edge zgz € E. For every vertex, there are only two ways to form a path. By
xoz € F is a weakest edge,

w(@iiv1) 2 p(oz).
Thus
N w@iwig) > p(oz).

P : g,z is a path from xy to z. It implies

\/ /\ p(xiziyr) > ulxoz).

P:xg,x1,-- 2 1=0,--- ,t—1

\/ \/ /\ w(xizipr) > p(zoz).

z, €V P:xg,x1, x4 1=0,-- t—1

Therefore,

It means that

Clzo) = \/ \V N\ n@izign) > p(roz).

@€V Piag,my, g i=0, t—1
By z92’ € E is a weakest edge,
p(wizip1) > p(woz).
Thus
/\ pw(xizisr) > p(xoz').

P : 1z, 2 is a path from z( to 2’. It implies

\/ /\ w(@izip1) > plxoz').

P:zg,z1,-- ,x¢ 1=0,--- ,t—1

\/ \/ /\ p(izipr) > plwoz’).

z+€V P:xo,x1, -,z 9=0,--- ,t—1

Therefore,
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It means that

- \/ \/ /\ (ziwip1) > p(woz’).

x4€V Pixg,x1, 04 1=0,-- ;t—1
By for every vertex, there are only two ways to form a path,

Ce(wo) = {z222 | plw22r) \/ \/ /\ w(@iwip1)} =

€V P:xg,x1, - ,xs 1=0,--- t—1
{zmy | p(xs2y) = p(woz) V p(zoz") = plxoz) = p(woz'), zx € E)} = {z02,202"}.
D 149

Proposition 5.15. Let NTG : (V,E, o, u) be a cycle-neutrosophic graph. Suppose xg
1s incident to one edge xoz € E which isn’t a weakest edge. Then

Co(wo) = {wzzar | plasea) = V N i)} =
€V Pixo,x1, - ¢ =0, ,t—1

{22y | p(zs2y) > u(zoz), x.2, € E}.

Proof. Assume NTG : (V, E,o,u) is a cycle-neutrosophic graph. Suppose xg has an
edge xpz € E which isn’t a weakest edge. For every vertex, there are only two ways to
form a path. By zgz € E isn’t a weakest edge and P : xg, z is a path from xg to z. It

implies
\/ /\ (zizip1) > p(wo2).

P:xg,x1,-- ,x¢ 1=0,--- =1

\/ \/ /\ pw(wizip1) > p(woz).

x: €V Pixg,x1, - ,x¢ 1=0,--- t—1

0) = \/ \/ /\ w@iziv1) > p(wo2).

z+€V P:xo,x1, -,z 9=0,--- ,t—1

Therefore,

It means that

Thus
Ce(wo) = {z222 | plw22r) \/ \/ /\ w(@iwip)} =

€V P:xg,x1, - ,xs 7=0,--- t—1
{zxy | wlx,zy) > p(roz), T2 € EY.
D 150

Proposition 5.16. Let NTG : (V, E,o0,u) be a cycle-neutrosophic graph. Suppose xg
is incident to two edges oz, 192’ € E which aren’t weakest edges. Then

Co(wo) = {zomr | plazaa) = \/ \/ N i)} =

z+€V P:xo,x1, -,z 9=0,--- ,t—=1

{@my | p(zozy) < p(xoz) V p(xoz'), z,2, € E}.
Furthermore, if u(xoz) < p(xoz’), then

Cel@o) = {wswar | pzs2sr) < p(ao2’), w222 € B
if u(zoz’) < p(zoz), then
Celwo) = {z222 | plao22r) < pl202), 2222 € B}
if p(xoz") = p(woz), then
Ce(wo) = {zomy | p(zoms) < pu(w02) = p(x02'), T2, € EY.
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Proof. Assume NTG : (V, E, o, pu) is a cycle-neutrosophic graph. Suppose zg is incident
to two edges xoz,T,2" € E which aren’t weakest edges. For every vertex, there are only
two ways to form a path which are with edges either zgz or z,2’. P : xg, 2z and

P’ : xg, 2" are paths from z( to z and 2’. It implies

\/ /\ w(zizipr) < p(zoz) V wlxoz').
P:xg,x1, - ,x¢ =0, ;t—1

Therefore,

\/ \/ /\ w(@izipr) < p(zoz) V p(xoz').

€V Pixg,x1, - ,x¢ =0, t—1

It means that

Clxo) = \/ \V N sz < poz) v p(we?).

€V Pixg,x1, - x4 1=0,--- t—1
Furthermore, if p(zoz) < u(xoz’), then
C(xo) < p(o2');

if p(zoz’) < p(xoz), then
C(zo) < plo2);

if u(zoz') = p(xpz), then
Clzo) < plzoz’) = p(w02).

Ce(wo) =z | pla.aer) = \/ \/ /\ p(@izipr)} =

2, €V Pizg,a1,- w4 =0, t—1
{zmy | pz2y) < pwlwoz) V u(zoz’), z.2, € E}
Furthermore, if p(zoz) < p(xoz’), then
Ce(wo) = {w,my | plx,22) < pwo2’), w2 € E};
if p(xo2’) < p(xoz), then
Ce(xo) = {moxy | plro2y) < p(xo2), .2, € EY;
if u(xoz’) = p(xoz), then
Celzo) = {momy | pwomy) < p(wo2) = (202, 2.2, € E}.
O s

Proposition 5.17. Let NTG : (V, E, o0, u) be a star-neutrosophic graph. Suppose xg is 15
center. Then 153

Ce(@o) = {22 | plao2sr) = \/ \/ /\ w(@izip1)} =

€V P:xg,x1, -,y 7=0,--- t—1

{reze | plezas) = \/ u(woxi)}-

i=1,---,0
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Proof. Consider NTG : (V, E, o, u) is a star-neutrosophic graph. Suppose z is center.
All paths from zg has a form zgx;. Thus

N wl@iwin) = pzox:).

1=0,---,t—1
Hence
\ N nzizig) \/ p(wow;)
P:xo,x1, x4 1=0,--- ,t—1 i=1,---,0
So
VoV A sV sGeon)
€V P:xg,x1, - ,xs 1=0,--- t—1 i=1,---,0
It implies
VOV A s Vs
€V P:xg,x1, - ,xs 1=0,--- t—1 i=1,---,0
Thus

Ce(wo) = {zo | plaz220) \/ \/ /\ p(@iwiv1)} =

€V P:xo,x1, -, 9=0,--- ,;t—1

{woze | plaaa) = \/ p(ows ) }-

i=1,--,0
D 154

Proposition 5.18. Let NTG : (V,E, o, u) be a star-neutrosophic graph. Suppose xg
isn’t center and c is a center. Then

Cc(xO) = {$z$21 | xzmz \/ \/ /\ M(xixiJrl)} =

z:€V P:xo,x1, -,z 9=0,--- ;=1

{0 | p(wo22) = p(exo)} = {ewo}

Proof. Consider NTG : (V, E, 0, ) is a star-neutrosophic graph. Suppose xq isn’t
center and c is a center. There’s only one path from xy has a form xgc. Thus

/\ w(@iziy1) = p(woc).

i=0,- t—1
Hence
\/ /\ w(xizip1) = p(xoc).
Pizo,x1, @4 i=0,- ,t—1
So
\/ \/ /\ p(iriyr) = p(woc).
21 €V Pixg,x1, - o i=0,-- ,t—1

It implies

\/ \/ /\ (@iwip1) = p(xoc).

21 €V Pixg,x1, - ,x¢ i=0, t—1

Thus

Ce(wo) = {z22 | plw22r) \/ \/ /\ w(@iwip1)} =

€V P:xg,x1, -, 1=0,--- ,t—1

{w.22 | plazzer) = pleao)}t = {exo}

15/17


https://doi.org/10.20944/preprints202203.0248.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2022 d0i:10.20944/preprints202203.0248.v1

Proposition 5.19. Let NTG : (V, E,o,u) be a star-strong-neutrosophic graph.
Suppose xg is center such that /\?;01 = o(xg). And x isn’t center. Then

Ce(wo) = {z22r | p(z2m2r) \/ \/ /\ (i)} =
z+€V P:xo,x1, -,z 9=0,--- =1
{z,xy | plrxy) =0(x0)} = {Jiol‘i}?:_ll.

And
Ce(w) ={z.22 | p(2.720) \/ \/ /\ p(wizip1)} =

z, €V P:xg,x1, - ,x¢ 1=0,--- t—1
{we2e | plazaz) =o(x0)} = {xoxi}?:_ll.
Proof. Consider NTG : (V,E,o,pu) is a star-neutrosophic graph. Suppose x¢ is center
such that /\ 0 = o(xg). All paths from z( has a form xgz;. Thus

N n@izio) = plzow:) = o(xo).

1=0,---,t—1
Hence
\/ /\ wEiTis1) = \/ w(xox;) = o(xg).
P:xg,x1, - 2 1=0,--- ;-1 i=1,,0
So
\/ \/ /\ H(l"il’i+1) = \/ ,U(ll?()l‘z) = 0’(,1;0).
€V P:xg,x1, - ,xs 1=0,--- t—1 i=1,-,0

It implies

- \/ \/ /\ p(xixip1) = o(xo).

z: €V P:xg,x1, - x4 1=0,-+ t—1
Thus
Celwo) = {azmer | plazzz) =\ \/ N i)} =
x4 €V Pixg,x1, - x4 =0, ,t—1

{waaer | praaa) = o(x0)} = {wori} 25"

And
Cel@) = {zo2a | plzz22) \/ \/ /\ (@) =
€V Pixg,x1, - ,xs 1=0,--+ ,t—1
{reze | plaowsr) = o(z0)} = {xozz’}z@:_ll'
D 156
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