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Abstract: Groundwater models serve as support tools to among others: assess water resources, eval-

uate management strategies, design remediation systems and optimize monitoring networks. Thus, 

the assimilation of information from observations into models is crucial to improve forecasts and 

reduce uncertainty of their results. As more information is collected routinely due to the use of au-

tomatic sensors, data loggers and real time transmission systems; groundwater modelers are be-

coming increasingly aware of the importance of using sophisticated tools to perform model calibra-

tion in combination with sensitivity and uncertainty analysis. Despite their usefulness, available 

approaches to perform this kind of analyses still present some challenges such as non-unique solu-

tion for the parameter estimation problem, high computational burden and a need of a deep under-

standing of the theoretical basis for the correct interpretation and use of their results, in particular 

the ones related to uncertainty analysis. We present a brief derivation of the main equations that 

serve as basis for this kind of analysis. We demonstrate how to use them to estimate parameters, 

assess the sensitivity and quantify the uncertainty of the model results using an example inspired 

by a real world setting. We analyze some of the main pitfalls that can occur when performing 

such kind of analyses and comment on practical approaches to overcome them. We 

also demonstrate that including groundwater flow estimations, although helpful in constrain-

ing the solution of the inverse problem as shown previously, may be difficult to apply in prac-

tice and, in some cases, may not provide enough information to significantly constrain the set 

of potential solutions. 
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1. Introduction 

Groundwater models serve as support tools to assess water resources, evaluate man-

agement strategies, design remediation systems and optimize monitoring networks 

(Bredehoeft 2002, Zhou & Li 2011, Hrozencik et al. 2017, Noël & Cai 2017). As such, results 

of numerical groundwater models guide decision makers on practical issues of public 

concern (Oreskes et al. 1994). Therefore, the correct development of groundwater models 

and their ability to simulate the functioning of real groundwater systems are important 

beyond the realm of particular engineering or environmental projects. As a minimum, it 

is expected that models are able to reproduce observed data and that their results can be 

used as reasonably approximations to evaluate future or hypothetical scenarios for 

groundwater systems. This requires the integration of observations and models through 

calibration (Carrera et al. 2005, Vrugt et al. 2008, Zhout et al. 2014). Furthermore, for some 

applications is also important to quantify the uncertainty of the model results in order to 

include it into the risk associated to decisions supported by them (Doherty 2015, White et 

al. 2020). 

The increase in computational power and availability of new software have made 

possible the development of complex mathematical models to simulate groundwater 
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systems (Hunt et al. 2007, Doherty & Hunt 2010, Mirus & Nimmo 2013, Fatichi et al. 2016, 

White et al. 2020). Until recently, such models were developed, calibrated and analyzed 

in ad hoc ways, e.g. using trial and error for calibration and the manual variation of selected 

parameters for sensitivity analysis. However, the level of complexity and the number of 

parameters included in new models have made necessary the use of more systematic ap-

proaches (Hill 2006, Doherty & Hunt 2010; Bennett et al. 2013, White et al. 2020). Method-

ological frameworks for these purposes have become available during the past decades; 

some were brought to groundwater modelling from other fields, such as the oil industry 

or climate science (Hill 1998, Poeter & Hill 1999, Doherty 2015). However, the correct ap-

plication of a systematic approach to develop, calibrate and analyze the results of such 

mathematical models is challenging, because it requires understanding and applying con-

cepts that are far beyond traditional groundwater hydrology from disciplines such as lin-

ear algebra, calculus, and geostatistics. There are books, technical documents and detailed 

review articles about the subject (Zimmerman et al. 998, Poeter & Hill 1999, Carrera et al. 

2005, Hill 2006, Vrugt et al. 2008, Doherty & Hunt 2010, Anderson 2015, Zhou et al. 2014, 

Doherty 2015, White 2020). However, there is still much need for a brief, simple and prac-

titioner oriented introductory discussion that explains with the use of only a few equa-

tions the functioning of sophisticated software tools that modelers apply nowa-

days. 

Previous articles (Freyberg 1988, Hunt et al. 2020) used simple groundwater 

models to discuss problems that may arise when trying to calibrate them and assess 

the uncertainty of their results. Freyberg (1988) reported on the results of an exercise 

performed by graduate students who used trial and error (manual calibration) to cal-

ibrate a synthetic groundwater model using only a set of observed piezometric head 

values. The main findings of that exercise were that groups of students used very 

different strategies to accomplish the calibration and that their results were in some 

cases quite different. Moreover, the quality of the forecasts performed with the cali-

brated models assuming slightly different boundary conditions to the ones consid-

ered for calibration, was wide-ranging and, surprisingly, it did not correlated well 

with the quality of the calibration. Calibrated models that had low residuals between 

simulated and observed piezometric heads did not provide better forecasts than cali-

brated models that had larger residuals. The group of students that reported the worst 

prediction used different values of hydraulic conductivity for each cell of the model. 

Moreover, the quality of the forecasts did not directly correlated with the ability of 

the modelers to find the correct values of the hydraulic conductivity used in the syn-

thetic model adopted as virtual reality. Freyberg (1988) explained some of the results 

of the exercise based on the theoretical understanding about parameter estimation for 

groundwater models available at the time. The solution of the inverse problem to es-

timate parameters of groundwater models, even discounting differences in their con-

ceptualization, admits multiple solutions (e.g. Carrera et al. 2005). The non-unique-

ness of the solution can be due to a larger number of parameters than available obser-

vations or to correlation between parameters (Hunt et al. 2020). For example, the prob-

lem reported by Freyberg (1988) considered 1389 unknown values of hydraulic con-

ductivity (parameters), but only 22 piezometric head measurements. The findings of 

Freyberg (1988) established reservations with respect to the end result of the calibra-

tion of groundwater models and its usefulness to reduce the uncertainty of forecasts. 

Recently, Hunt et al. (2020) revisited the original problem presented by Freyberg 

(1988), this time applying the latest available automatic parameter estimation and un-

certainty analysis techniques, including mathematical regularization techniques 

based on subspace methods to decrease the effective number of parameters included 

in the inverse problem (Doherty and Hunt 2010; Doherty 2015). Their main findings 

were that automatic calibration of even highly parameterized models could be con-

strained, i.e. the potential large number of multiple solutions could be reduced to a 

much lower number, by including a single groundwater flow estimation as additional 

information to the available piezometric heads. Hunt et al. (2020) found that the use 
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of automatic frameworks for parameter estimation resulted in better-calibrated mod-

els that produced improved forecasts when compared to the original results pre-

sented by Freyberg (1988), which demonstrated the potential usefulness of using re-

cently developed methods. Then, contrary to one of the conclusions of Freyberg 

(1988), highly parameterized models with many parameters performed better than 

simple models with fewer parameters. The solution of the inverse problem for highly 

parameterized models, which demands a large number of model runs, is well suited 

for increasingly available parallel platforms. Thus, the calibration of this type of mod-

els is becoming more accessible in practical applications. On the other hand, Hunt et 

al. (2020) also concluded that good calibration does not necessarily imply good fore-

casts assuming slightly different forcing terms, e.g. boundary conditions, to the sce-

nario considered for calibration.  

The main objective of this article is to explain, using an example, the main concepts 

required to calibrate a physically based mathematical model to simulate a groundwater 

system, assess its sensitivity and estimate the uncertainty of its results. We explain the 

main steps that are required and comment on some of the main pitfalls that can arise. We 

use as example a simplified model of a real natural setting previously studied as part of a 

long-term environmental study (Bichler et al. 2016, Brunjes et al. 2016). To promote the 

use of simple analytical calculations to gain understanding that can be useful to interpret 

the results of more complex numerical models and to overcome some numerical chal-

lenges for obtaining reliable numerical solutions for this particular setting, we use an an-

alytical model instead of a numerical groundwater model (Haitjema, 2006). Therefore, 

this article aims to address the needs of modelers interested in applying methods for pa-

rameter estimation and uncertainty analysis. It also attempts to be useful for decision mak-

ers who base their decisions on the results of groundwater models and need to understand 

their potential and limitations. 

2. Example 

We will consider as example the estimation of the position of the phreatic surface 

(water table) for an aquifer located between two rivers as shown in Figure 1. Both rivers 

are separated by a distance � [L], the aquifer receives a constant recharge rate � [L/T], 

and we assume that there is only one observed value of the piezometric head ℎ [L], ℎ�, 

at the position of an existing well �� [L]. This example corresponds to an idealization of 

a real groundwater system previously analyzed as part of an environmental study (Bichler 

et al. 2016, Brunjes et al. 2016) and, hence, it provides a realistic case problem. The numer-

ical solution for this problem is challenging because it requires simulating the position of 

the water table, which for this case is very sensitive to the grid resolution due to the po-

tential occurrence of high hydraulic gradients as result of the combination of recharge and 

low hydraulic conductivity. See the Supplementary Material for details about the difficul-

ties to obtain reliable numerical solutions for this example. 
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Figure 1. Schematic of conceptual problem: Water table position for a phreatic aquifer located be-

tween two rivers that are connected to the groundwater system, so that they act as prescribed pie-

zometric head boundary conditions. 

This example provides a reasonable case of study of practical interest that is similar 

to many other cases (i.e. unconfined aquifer with recharge) that occur often in practice, 

while it includes only a limited number of parameters. Thus, the detailed explanation of 

the application of the methods for parameter estimation and uncertainty analysis can be 

kept brief. The development of a mathematical model to simulate a groundwater system 

similar to this example includes three main parts: 

a) Conceptual model: We consider only the part of the subsurface that is completely 

saturated and that the aquifer behaves as unconfined, so that all recharge � enters di-

rectly and immediately to the aquifer. Furthermore, the two rivers are connected to the 

aquifer and can be modeled as prescribed head boundary conditions, ℎ� and ℎ�. The wa-

ter elevation in both rivers and the recharge rate are relatively stable, so that we can model 

the system as steady-state. Given the different magnitude of the flow discharge in both 

rivers, it is likely that the shallow aquifer contains at least two materials of different grain 

size with an interface located at position �� [L]. Based on experience and comparison 

with similar sites, it is estimated that the values of �� ∈ ��[0.1,10] [L/T] and that �� ∈

��[0.1,10] [L/T], where �� and �� represent a scale of the magnitude of � for both ma-

terials. Therefore, the range of variability of � for each hydrogeological unit is two orders 

of magnitude, which for hydraulic conductivity is a reasonable estimate without addi-

tional information (Sudicky 1986). We use dimensionless variables to define parameters 

that have the same units: �� = ��/��, �� = �/�� and �� = (ℎ� − ℎ�)/�. The parameters 

are set such that recharge is never higher than hydraulic conductivity. 

b) Mathematical model: Darcy Law describes the saturated flow system, which com-

bined with the mass balance equation results in a partial differential equation. We assume 

that the Dupuit approximation is valid, i.e. flow is preferentially horizontal, so that verti-

cal piezometric gradients and velocity component are negligible (Bear 2012). Furthermore, 

the thickness of the saturated aquifer is equal to the piezometric head or water table ele-

vation, so that the datum level considered for computing the energy of the flow coincides 

with the horizontal bottom of the aquifer.  

c) Evaluating solution: Given these assumptions, the piezometric head as a function of 

the position measured from River 1, �, can be calculated from 

ℎ�(�) = �  
���� + ��� + ��, � ≤ ��

��(� − ��)� + ��(� − ��) + �� � > ��

    (1) 

The analytical solution depends upon the hydraulic conductivity � and piezometric 

head ℎ . The constant coefficients of both polynomials can be evaluated from both 
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boundary conditions, ℎ(� = 0) = ℎ� and ℎ(� = �) = ℎ�, and imposing continuity of the 

water table and flow through the interface, i.e.  ℎ(��
�) = ℎ(��

�) , and  −�� �ℎ
��

��
�

��
�

=

−�� �ℎ
��

��
�

��
�

. 

The model can be written most concisely as ℎ(�) = ℎ({��, ��}; {ℎ�, ℎ�, �}, �), where 

we can identify the following sets of output variables � = {ℎ}, input parameters to be es-

timated � = {��, ��}, and forcing input variables � = {ℎ�, ℎ�, �}. We have left � as a forc-

ing parameter for reasons that will become clear later.  

Although we perform this analysis based on an analytical solution, the same type of 

reasoning applies to a numerical model that solves similar partial differential equations, 

since the numerical solution should converge to the analytical solution. The comparison 

between the analytical and numerical solutions presented in the Supplementary Material, 

demonstrates that despite the presence of vertical gradients in this case, the analytical so-

lution based on the Dupuit approximation provides an adequate approximation. For this 

example, the solution (analytical or numerical) for the position of the water table at a given 

location in the aquifer can be highly non-linear with respect to the input parameters (�� 

and ��) depending on the settings of the problem as shown in the Supplementary Mate-

rial. The non-linear behavior of the solution can represent additional challenges for the 

application of automatic techniques to estimate parameters and for assessing the uncer-

tainty of the model results. 

3. Mathematical analysis 

3.1. Water table 

Considering a homogeneous aquifer with a single material, i.e. single � value, the 

mathematical solution reduces to 

ℎ�(�) = ��� + �� + �     (2) 

where � = −�/�,  � = (ℎ�
� − ℎ�

� − ���)/L and � = ℎ�
�. Thus, different values of re-

charge � and hydraulic conductivity � that result in the same ratio �/� produce the 

exact same value of ℎ(�), i.e. � and � are strongly correlated. We can only estimate either 

� or �, or the combination of both �/�, which sometimes can be used as a surrogate or 

modified parameter for calibration. Therefore, we excluded � from the set of parameters 

that must be estimated. It is also direct from (2) that piezometric head depends in a non-

linear fashion with the input parameters of the problem, � and �.  

Figure 2 shows simulated water table elevations for the homogeneous case (�� =

1.00). The water table has a parabolic shape that is the result of the difference between the 

prescribed head values at both boundaries and recharge that produces the mounding of 

the water table between both rivers. For this case, the magnitude of the maximum mound-

ing due to recharge is proportional to �/� (Haitjema 2006). For �� = 1 ⋅ 10�� mounding 

is limited and all recharged water exits the model domain through the boundary with 

lower prescribed head on the left side, while water also enters the domain through the 

right boundary with higher ℎ. Increasing the recharge rate, while keeping the values of 

hydraulic conductivity, i.e. larger ��, would result in larger mounding. 
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Figure 2. Water table as a function of position between both rivers for two ratios of hydraulic con-

ductivity, �� = ��/��. Dashed red line shows position of interface between materials ��. 

Figure 2 also shows the solution for heterogeneous case (�� = 0.01). Since we assume 

that �� is a couple of orders of magnitude smaller than ��, we observe that the mounding 

effect within material 2 is significantly larger than in material 1, and a flow divide occurs 

within material 2. Then, the only water that enters and exits the domain comes from re-

charge, i.e. the total flow is � = � � [L2/T], which exits through the right and left bound-

aries. 

3.2. Sensitivity analysis: Jacobian matrix 

We numerically compute the Jacobian, �, or sensitivity matrix to quantify the local 

sensitivity of the model, i.e. the magnitude of the changes of the results due to changes in 
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the input parameters. The element of � that corresponds to the result � and input param-

eter �, is defined as 

��� =
��

��
      (3) 

Then, � can be evaluated using a first-order forward finite-difference approximation, 

to obtain  

�({��, ��}|�, x) = �
��

���
,

��

���
�    (4) 

Figure 3 shows normalized values of the components of the sensitivity matrix as 

function of position along the model domain. The fact that the components of � are equal 

to 0 at both boundaries indicates that the results of the model do not change at those po-

sitions independently of the values of the parameters, as it would be expected when ap-

plying prescribed head values at both boundaries. Two interesting results derive from 

this. First, values of head near the boundaries are less sensitive to changes in parameters 

than values located toward the center of the domain. Second, observations of wells located 

near both extremes are less relevant or provide less meaningful information for the calibra-

tion of � than observations collected near the position of the interface between both ma-

terials (Poeter & Hill 1999, Hill 2006, Doherty 2015). This last conclusion has importance 

for real-world models that consider observations measured at tens or hundreds of differ-

ent locations within a model domain. Moreover, if we had to decide where we should 

collect data or drill a new borehole to measure piezometric levels, we would select a loca-

tion near the center between both rivers, since the variability of the results is greatest at 

that location. 
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Figure 3. First component of sensitivity matrix or Jacobian (�) as function of distance between both 

rivers. Dashed red line shows position of interface between materials �� and blue line shows posi-

tion of well with measured head ��. 

It is important to notice the drastic change in the shape of ��� between the homoge-

neous and heterogeneous cases. In the latter, the simulated water table within material 1 

is almost completely independent of the value of ��. Hence, any measurement of piezo-

metric levels taken from a borehole located within material 1 would provide no relevant 

information for the estimation of ��.  

The fact that the components of the sensitivity matrix, �, change with � and with the 

ratio between both values of � in a non-linear fashion, confirms that it only provides a 

measure of the local-sensitivity of the model around a given set of input parameters. This 

information may not be enough to evaluate the overall performance of complex models 

that include non-linear relations between parameters and results and many parameters 

for other material distributions or locations. 

3.3. Calibration: Inverse Problem 

We use the single measurement of ℎ that is available to constrain or condition the 

values of �� and ��, i.e. to calibrate the parameters of the model. Once we have evaluated 

the Jacobian of the model at the position of the well with observed piezometric head ℎ�, 

we can write a Taylor series approximation to get 

ℎ�({�� + Δ��, �� + Δ��}|�, ��) − ℎ�({��, ��}|�, ��) = � ⋅ Δ� + ϵ (5) 

where Δ� = [Δ��, Δ��] and � corresponds to errors of the approximation that can 

be neglected. The last expression corresponds to Newton's method. Assuming that ℎ�
�  

represents the solution of the model for an initial set of variables {��, ��} and ℎ�
�  corre-

sponds to the observed value at the well, we can write  

ℎ�
� − ℎ�

� = � ⋅ Δ�        (6)  

The solution of the linear system provides an expression to compute the magnitude 

of the variation of parameters �� that required so that the results of the model are similar 

to the observed data. From linear algebra, we know that  �  has an inverse only if it is 

square and no singular, i.e. ���(�) ≠ 0. For the general case of rectangular matrices with 

more rows than columns, as happens when there are more observations than independent 

parameters, the solution of (6) can be found by using methods to solve over-determined 

linear systems, e.g. least squares (Strang 2019). When there are more parameters than ob-

servations, there is only a reduced number of parameter combinations that can be 
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estimated (Doherty and Hunt 2010; Doherty 2015). The combination of parameters that 

cannot be uniquely estimated, because they do not have effect on the output of the model, 

correspond to the null-space of � (Aster et al. 2013), i.e. all vectors � such that � ⋅ � = 0 

(Strang 2019). 

To understand what happens when there are more parameters than observations, as 

in this example and in most real world applications, we can rewrite (6) as a system of 

algebraic equations, which for this case contains only one equation, 

Δℎ� = ���Δ�� + ���Δ��      (7) 

where Δℎ� = ℎ�
� − ℎ�

� . Then, given an arbitrary variation of ��, we can compute the 

corresponding variation of �� needed to obtain a model that reproduces the observed 

data, as 

Δ�� =
����������

���
       (8) 

Therefore, for this case we can find infinite solutions to the inverse problem by se-

lecting an arbitrary variation of ��  and computing the corresponding variation of �� 

from the last equation. In summary, this example with 2 parameters and 1 single observa-

tion is equivalent to an algebraic system with 2 unknown variables and a single equation, 

which admits an infinite number of solutions. This is a simple and intuitive demonstration 

of the non-uniqueness of the solution for the parameter estimation problem when there are 

more parameters than observations, as it happens often for groundwater models due to 

the heterogeneity of the parameters that they include, e.g hydraulic conductivity, recharge 

rates, etc.  

An important step after computing the solution of the linear system, is to verify that 

the linear approximation is valid by evaluating the model using the estimated set of pa-

rameters and comparing the result with the observed measurements. In most cases, mod-

els are non-linear, so that differences between observations and the results provided by 

the calibrated model based on the linear approximation are expected. Moreover, in real 

cases, measurement errors affect observations; while simplifications in model structure 

and parameter distribution, referred to as structural errors, influence the results of simu-

lations (Doherty, 2015; Xu et al., 2017). For simplicity, we consider that such errors do not 

affect our synthetic example. 

The set of parameters that fit the observation, i.e.  �∗ = {��, ��}, found by solving (8) 

or by directly applying (6) is computed through an iterative process, since they are based 

on the local linear approximation (5), which is only valid for a small region around the set 

of parameters that are used to evaluate it. We opted to use (8), since it is straightforward 

to implement according to the following steps: 

1. Select an initial set {��
�, ��

�}. 

2. Evaluate model to compute initial result, ℎ�
�  and check if Δℎ� > TOL, where TOL 

is a prescribed tolerance to stop iterations, which should be chosen such that it is compat-

ible with the potential magnitude of measurement errors and the overall precision level 

of the model. If the last condition is true, continue to next step, else stop iterations. 

3. Evaluate components of the Jacobian around the initial parameter set. For this 

model with two parameters, it requires evaluating the model two additional times. 

4. Define a change in ��, Δ��, and apply (8) to calculate a corresponding Δ��. For 

example, ΔK� can be specified as a fixed percentage of the current value of ��. 

5. Calculate new values  �� = ��
� + Δ�� and  �� = ��

� + Δ��. 

6. Check if new values are within ranges defined during the conceptual model stage. 

If they are not, stop iterating and report failure to find a satisfactory solution. Then, only 

a limited number of initial parameters may result in a satisfactory solution. In practice, 

this can result in a large computational overhead due to attempting to solve many cases 

that end up in failure. 

7. Evaluate model for �� and �� to compute ℎ� and check residual versus toler-

ance. If residual is still too big, set last parameter values as initial set and go back to Step 

1. 
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We applied the previous algorithm to estimate combinations of �� and �� that fits 

the observed head ℎ�. The true or target value �∗ for this synthetic example is known, 

since we use it to generate the observed head ℎ�. We used as initial guesses random com-

binations of both variables generated assuming a uniform distribution of ln(�) within 

the specified ranges of � for each material. Figure 4 shows the initial and estimated com-

binations of parameters for the homogeneous and heterogeneous cases. While the initial 

sets cover the full range of each parameter, the ones that result in satisfactory combination 

of parameters define a much smaller region that coincides with an almost straight line 

defined by (8), which passes through the target or true parameter set. For the heterogene-

ous case, the estimated parameters define an almost vertical rectangular region in the 

plane �� − ��, which indicates that the simulated piezometric head at the well is much 

less sensitive to the value of �� than to the value of ��. This is a consequence of: i) the 

location of the well with observed data within material 1, and ii) the ratio between �� 

considered for the heterogeneous case (lower ��). It also agrees with the estimation of the 

local sensitivity of the model shown in Figure 3. Figure 4 also shows the initial sets of 

parameters for which the iterative process finished with a solution that satisfied the con-

vergence criteria fixed at 1.5% of the observed head ℎ�. Note that for the heterogeneous 

case only 130 out of 500 initial sets of parameters resulted in satisfactory results.  
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Figure 4. Combinations of �� and �� assuming two different ratios, ��=1.00, 0.01; for randomly 

selected values within specified range (blue dots) and after parameter estimation (red squares). 

Green dots show initial parameter values for the cases for which convergence criteria was satisfied. 

As for most iterative algorithms, the convergence rate and the estimated solution de-

pend on: i) the initial set of parameters, ii) the tolerance or threshold value defined as 

criterion to stop the iterative process, TOL; and iii) the size of the potential range defined 

for each parameter during the conceptual model stage, since larger ranges would poten-

tially result in more iterations. Therefore, finding acceptable solutions for the parameter 

estimation problem by using this type of algorithms involves a trade-off between the tol-

erance criteria that is set and the amount of computational effort that considered accepta-

ble. More relaxed criteria result in more parameter combinations that fit the observed 

data, but at the cost of larger residuals. This trade-off is important to consider for reducing 

the uncertainty of the calibrated model results, as we will show next.  

Figure 5 shows normalized residuals of piezometric head for the observation well 

versus normalized randomly generated values of �� and ��. For the homogeneous case, 

there is a wide range of values of �� and �� (from the minimum value to almost 60% of 

the maximum value) that can result in simulated head at the well that is similar to the 

observed value. However, for the heterogeneous case (�� = 0.01) the range of potential 

values of �� that result in a simulated value similar to the observed one is much reduced, 

while the range for �� covers the full potential range of values considered as part of the 

conceptual model. For the heterogeneous case, the relation between residuals and �� is 

well represented by a single decreasing line from low to high values of ��. 
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Figure 5. Normalized residual at position of observation well versus normalized values of hydraulic 

conductivity for randomly generated parameter sets. Red cross indicates values for the adopted 

virtual reality site. 

Previous studies have found that introducing a few estimates of groundwater flows 

as additional observations can reduce the number of solutions for the inverse problem 

(Hunt et al. 2020). Figure 6 shows computed left and right outflows from the model con-

sidering only calibrated parameter sets for �� = 0.01. For a large number of estimated 

parameter sets, the water table includes a water divide within material 2 as shown in Fig-

ure 2, so that water can flow to the left or the right depending on the location. Thus, the 
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sum of both outflows (right and left) is equal to the total recharge. For other cases, when 

the total flow is larger than the total recharge, water can also enter the domain through 

the right boundary, thus it can only flow from right to left at any given location of the 

domain. This means that groundwater flow at some locations can even have different di-

rection between calibrated models. Figure 6 shows that all calibrated parameter sets result 

in outflows through the left boundary that vary between ±20% of the total recharge. This 

means that for this particular example, any flow estimation that could be useful to dis-

criminate between different calibrated parameter sets should have a level of confidence 

higher than 20% of the total flow, which is seldom achievable in real world projects. This 

could be a major limitation for the use of flow estimations to constrain the solution of the 

inverse problem for highly parameterized models, since groundwater flows cannot be 

measured except in very few cases and only with large margins of error. 

 

Figure 6. Outflows through left and right boundaries divided by total recharge for calibrated pa-

rameter sets for the heterogeneous aquifer, �� = 0.01. 

Note that for this simple problem, the algorithm requires up to five iterations to find 

an acceptable solution, and that each iteration requires evaluating the sensitivity matrix, 

which means running the model �� + 1  times. In addition, only 25 % of the initial 

guesses provided solutions that were considered acceptable according to the set tolerance, 

which was relatively relaxed for this demonstration. Then, many iterations and computa-

tions did not produce a satisfactory solution. The method that we used is very basic and 

it does not incorporate some relatively easy improvements that have demonstrated to ac-

celerate convergence, such as using transformed variables or using a modified Newton 

method by including an acceleration factor as in the Levenberg-Marquardt method im-

plemented in software platforms for parameter estimation (Poeter 1999, Doherty & Hunt 

2010). However, these findings point to the importance of using good initial guesses, and 
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that the computational cost of applying this type of algorithms can grow very quickly 

with the number of parameters and the number of initial sets considered. 

Sometimes the problem of finding suitable parameter values expressed in (5) is recast 

into an optimization problem that aims to reduce the value of an objective function to 

assess the goodness of fit between observed and simulated variables. This is, in most cases, 

equivalent to making the residuals in the left side of (5) close to zero (Doherty 2015). The 

main advantages of this formulation is that using an objective function allows assigning 

different weights for the residuals of observed variables at different locations and, also, 

introducing additional penalty terms to further force the calibrated model. For example, 

penalty terms can be included to enforce estimated flow discharges, or to force the cali-

brated parameters to be close to preferred values assigned during the conceptual model 

stage. Nevertheless, the problems discussed previously such as non-uniqueness of the so-

lution and dependency on the convergence criteria still apply. 

3.4. Uncertainty analysis 

There are three main sources of uncertainty that can affect model results, which we 

review next.  

a. Uncertainty due to parameter distribution: 

We use the model to evaluate the water table for different random combinations of 

�� and �� that are within the ranges defined as part of the conceptual model, which is a 

form of global sensitivity analysis. Figure 7 shows simulated water table for 500 different 

combinations of �� and �� generated using a uniform distribution of ln(�) within the 

specified ranges. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0240.v1

https://doi.org/10.20944/preprints202203.0240.v1


 

 

 

Figure 7. Water table for different combinations of randomly generated values of �� and ��. Thick 

black line shows the water table for the combination of parameters that represents the virtual reality 

site. Dashed red line shows position of interface between materials �� and blue line shows position 

of well with measured head �� . Note: ��  corresponds to ratio between both scales ��  and �� , 

thus for �� = 1.0, ��/�� ranges between [0.01, 100.0]. 

For the homogeneous aquifer case (�� = 1.00), the simulated water table differs from 

the true solution by up to 15% of the prescribed head at the left boundary, ℎ�; however 

the difference increases up to more than 100% for �� = 0.01 (heterogeneous aquifer).  

Those few cases represent extreme situations that are the result of less likely combination 

of parameters, however, since all values of � are within the specified ranges, it is not 

possible to discard any of them without additional information. Furthermore, the varia-

bility between the different realizations is higher at the center of the simulated domain for 

the homogeneous case, while it is maximum at around the middle point of the area occu-

pied by material 2 (lowest �) in the heterogeneous case. The magnitude of the variability 

of the simulated water table provides an indication of the prior uncertainty of the model 

results, which is only constrained by soft-knowledge before calibration. Despite the ad-

vantages and the valuable information that this type of analysis provides, it is seldom 

performed in practice, because it may still be excessively time consuming for models with 

hundredths or thousands of parameters, which require several hours or days to complete 

(Hunt et al. 2021).  

b. Uncertainty due to parameter estimation: 

By including additional information about observed measurements, we can decrease 

the uncertainty of the model results at least at the locations where data is available. Since 

we created a synthetic base scenario or virtual reality by evaluating the model for a given 

set of parameters to generate the observed value of head at ��, we can also compare the 

results of the model at other locations between both rivers. Figure 8 shows the simulated 

water table considering only sets of calibrated parameters, i.e. the ones that result in a 

simulated ℎ� similar to the observed value. A small tolerance criteria or threshold limit, 

TOL, set during the parameter estimation stage, results in a better match between simu-

lated and observed ℎ�, while adopting a larger limit for the tolerance results in the oppo-

site: larger differences between simulated and observed ℎ�, together with more combi-

nations of parameters that satisfy the converge criteria. Therefore, the tolerance threshold 

must be selected with care considering a trade-off between the need for reducing uncer-

tainty of the model results and the computational cost.  
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Figure 8. Simulated piezometric head ℎ∗ using estimated parameters �∗. Thick black line shows 

the water table for the combination of parameters that represents the virtual reality site. Dashed red 

line shows position of interface between materials �� and blue line shows position of well with 

measured head ��. Note: �� corresponds to ratio between both scales of hydraulic conductivity, 

�� and ��, thus for �� = 1.0, ��/�� ranges between [0.01, 100.0]. 

Figure 8 shows that the selection of the convergence criteria must also consider the 

possibility that for some problems, even restrictive convergence criteria used to evaluate 

the difference between simulated and observed values at a few locations (e.g. at the well 

in this case) may not imply a significant reduction of the uncertainty of the model results 

at other locations. It is also immediate from Figure 8 that all simulations satisfy the con-

vergence criteria imposed at the well, but that depending on the ratio between the hy-

draulic conductivity of both materials ��, the difference between the results of the model 

and the adopted virtual reality case can be quite large at other locations. Figure 8 also 

shows in a simple way that the non-uniqueness of the parameter estimation problem is 

equivalent to having a large number of alternative parameter sets that reproduce the ob-

served data with similar precision and thus, are equally likely to be correct. A consequence 

of this is that, ideally, every calibrated model should be reported with at least a few sets 

of parameters that are equally likeable in the sense that they reproduce observations. A 

null-space Monte Carlo approach, which reuses some of the results computed as part of 

the solution of the inverse problem, can be an economical and practical way to produce 

multiple alternative sets of parameters that explain observations (Doherty 2015). 

To quantify uncertainty, it is customary to identify the range of possible outcomes 

and the probability associated to intervals of those ranges. Histograms as the ones shown 

in Figures 9 and 10 summarize well this type of information. Figures 9 and 10 show results 

for the heterogeneous aquifer (�� = 0.01), while similar results for the homogeneous aq-

uifer are included in the Supplementary Material. Figure 9 shows the probability of 
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simulated heads at the well ℎ� versus the normalized simulated value ℎ/ℎ�. We used 

5000 initial different parameter sets to obtain reasonable accurate estimations of the prob-

abilities. In a Bayesian framework, the resulting simulated heads compound the prior 

probability distribution of the variable (Doherty 2015). This particular set of initial guesses 

resulted in only 1216 sets of estimated parameters that matched the observed ℎ�. The 

piezometric head values simulated considering only the estimated parameter sets de-

scribe the posterior probability distribution. Additional analysis considering different sets 

of randomly generated initial parameter sets demonstrated that this number of realiza-

tions provided probabilities that are significant and are consistent between different 

groups of random parameter sets. 
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Figure 9. Uncertainty of predicted piezometric head at the well position �� using randomly gener-

ated sets of parameters �� and ��  and after parameter estimation. 

When randomly generated sets of parameters are used to compute the probabilities, 

the range of potential outcomes of the model is relatively large (about 20% of the true 

value), but most of the simulations produce values that are close to the true value, i.e. 

values of ℎ/ℎ� near 1 have highest probability. The shape of the probability distribution 

depends on the model features (see computed probabilities for the homogenous aquifer 

included in Supplemental Material), but also on the sampling strategy used to define the 

input parameter sets. For this example, the true parameter set, i.e. the one that defines the 

adopted virtual reality, was selected as centered within the ranges, hence the probability 

is higher for values of ℎ similar to the true values. If we consider only calibrated sets, 

then the range of potential outcomes of the model for ℎ� decreases to less than 4%. Even 

though the estimated set of parameters results in a reduction of the uncertainty of the 

model results around the single location with information, ��, the uncertainty of the re-

sults for other locations may not be much reduced. For example, Figure 10 shows the 

probability of the simulated head at approximately the middle point of the area occupied 

by material 2 (�� = 0.8�). The range of potential values of ℎ computed for �� is similar 

for the random and estimated parameter sets, however the probability of each interval is 

slightly different. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2022                   doi:10.20944/preprints202203.0240.v1

https://doi.org/10.20944/preprints202203.0240.v1


 

 

 

 

Figure 10. Uncertainty of predicted piezometric head at position �� = 0.8 � using randomly gener-

ated sets of parameters �� and �� and after parameter estimation. 

c. Uncertainty due to forcing variables:  

The standard procedure to quantify this uncertainty is similar to the one used to 

quantify the uncertainty of the model due to estimated parameters: generate many equally 

likeable or probable series of forcing parameters, e.g. recharge series for this example, and 

use them to run the model and collect its results to generate probability distributions of 

the possible outcomes. Then, this analysis also requires defining possible ranges for forc-

ing variables and selecting mathematical models to generate plausible time series. The rest 

of the analysis is similar to the one described previously (Figures 9 and 10). Some forcing 

variables, e.g. boundary conditions, can sometimes be considered as part of the model 
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parameters as part of the uncertainty analysis. However, it is better to keep them separate 

from the real parameters of the model that must be estimated, because, in general, the 

uncertainty related to their values have different origin and magnitude. 

4. Conclusion  

The fact that for practical applications, models always include more parameters than 

available observations, leads to an inverse problem that has multiple solutions. Automatic 

parameter estimation methods make explicit the existence of these multiple solutions and 

facilitate to find them. Thereby, they help to explore the potential variability of the model 

results that is coherent or supported by collected observations. We demonstrated through 

a synthetic example inspired by a real-world setting, that adding estimates of groundwa-

ter flow as previously proposed (Hunt et al. 2020) to reduce the number of potential solu-

tions for the inverse problem, may be rather difficult and/or ineffective. Hence, it may be 

a better strategy to accept that the calibration of numerical models that include a large 

number of parameters will always lead to a large number of multiple solutions. 

It is likely that the full quantification of the uncertainty associated to groundwater 

models will remain reserved for limited applications for some time due to the computa-

tional effort needed. The computational effort for models that include hundreds or even 

thousands of parameters may be prohibitively expensive even with the computational 

resources available today. Meanwhile, calibrated models used to make forecasts should 

at least include a sensitivity analysis that attempts to bound its potential results and help 

identifying the parameters that have greatest importance. Although this may be simple 

for linear models with few parameters, it may still be rather difficult for non-linear models 

that depend on multiple parameters with wide ranges of potential values, as is the case of 

most groundwater models. Alternatively, linear uncertainty quantification, which re-

quires little additional computational effort, can provide results that are informative in 

some cases, but must be analyzed considering their limitations (Doherty 2015, White 

2020). 
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