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Abstract:  

Amoebiasis is an intestinal disease transmitted by the protist parasite, Entamoeba 

histolytica, following the ingestion of contaminated food and water. In the colon, E. 

histolytica can phagocytose bacteria that are the main components of the microbial flora. 

Most infected individuals are asymptomatic but for unknown reasons, the parasite can 

become virulent and invasive, causes amebic dysentery, and migrates to the liver, where 

they cause hepatocellular damage. For the last few decades, it has become evident that 

E. histolytica virulence is directly linked to its interaction with the gut microbiota. 

Lactobacillus acidophilus is a common inhabitant of healthy human gut and a probiotic that 

present antimicrobial activity against many pathogenic bacteria, fungi and parasites. The 

purpose of this study was to examine the mechanisms behind the innate amebicide 

activity of L.acidophilus. We found that this activity is mediated by hydrogen peroxide 

(H2O2) produced by L. acidophilus. Redox proteomics shows that L. acidophilus triggers the 

oxidation of many essential amebic enzymes like pyruvate:ferredoxin oxidoreductase, 

the lectin Gal/GalNAc and cysteine proteases (CPs). Further, trophozoites of E.histolytica 

cultivated with L.acidophilus show reduced binding to mammalian cells. These results 

support L.acidophilus as a prophylactic candidate against amoebiasis. 
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1. Introduction 

Amebiasis is an enormous global medical problem because of poor sanitary condi-

tions and unsafe hygiene practices existing in many parts of the world. According to the 

World Health Organization, 50 million people in India, Southeast Asia, Africa, and Latin 

America suffer from amebic dysentery and amebiasis causes the death of at least 100,000 

individuals each year. The main mode of transmission of amebiasis is the ingestion of food 

or water that is contaminated with feces containing E. histolytica cysts. After the cyst form 

has been swallowed by the host, excystation occurs in the intestinal lumen, followed by 

colonization of the large intestine by the trophozoites where they continue to divide and 

encyst. Eventually, both trophozoites and cysts are excreted in stools. Only 10% of the 

infected individuals will develop acute intestinal and extra-intestinal diseases. One possi-

ble explanation for this observation is the difference in the gut microbiota between indi-

viduals that may significantly influence the host’s immune response in amebiasis and E. 

histolytica's virulence [1]. Over the last few decades, it has become evident that E. histolyt-

ica's pathogenicity is directly linked to the parasite's interaction with the gut microbiota 

[2], as the parasites are reported to feed on bacteria and cellular debris found in the large 
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intestine [1]. However, such feeding is very selective, where only those bacteria with the 

appropriate recognition molecules are ingested by the parasite [3]. Amebiasis is charac-

terized by acute inflammation of the intestine with release of pro-inflammatory cytokines, 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) from activated cells of 

the host's immune system. ROS and RNS are the major cytotoxic effectors for killing E. 

histolytica and cause oxidation and nitrosylation of amebic proteins, trigger stress re-

sponses, inhibit glycolysis and the activity of some virulence factors [4-7]. Cellular means 

of subverting the toxicity of oxidative stress (OS) are important for the success of infec-

tious diseases. No vaccine against amebiasis currently exists; the drug of choice for treat-

ing amebiasis is metronidazole, which may cause severe side effects such as nausea, vom-

iting, headaches, a metallic or bitter taste in the mouth, and more serious effects such as 

anorexia, ataxia and skin rashes/itching [8,9]. Additionally, some clinical strains of E. his-

tolytica are less sensitive to metronidazole, suggesting the emergence of metronidazole-

resistant strains [10,11].  

Probiotics are live organisms which when administered in adequate amounts confer 

a health benefit to the host [12] [13]. Probiotics and commensal bacteria have been sug-

gested to have some influence on the outcome of protozoan infections [14-16]. As an al-

ternative bio-therapeutic for amoebiasis, there are a number of studies which have been 

conducted, interestingly most of these studies are aimed at the efficiency of the probiotic 

at inhibiting adhesion of the protozoa to the intestinal mucosal surface [17,18]. Recently 

we have shown that Lactobacillus acidophilus is detrimental to E. histolytica [19]. This detri-

mental effect is associated with the transcription by the parasite of genes encoding major 

signaling molecules, such as kinases, regulators of small GTPases and oxidoreductases 

and genes encoding proteins necessary for ribosome structure. It has been suggested that 

the probiotic effect of certain bacteria (such as L. acidophilus) is mediated by the ability to 

produce H2O2 [20] via an NADH-dependent flavin reductase [21] and to maintain a nor-

mal, homeostatic microbiota [21]. In this work, we used redox-proteomics to demonstrate 

that essential E. histolytica proteins like cysteine proteases are oxidized by H2O2 produced 

by L. acidophilus leading to the death of the parasite. Moreover, we found that E.histolytica 

trophozoites incubated with L.acidophilus had reduced binding than control trophozoites 

to mammalian cells. Our data support the use of L. acidophilus as a probiotic against E.his-

tolytica. 

 

2. Materials and Methods 

2.1. E. histolytica and L. acidophilus culture 

E. histolytica trophozoites, the HM-1:IMSS strain (a kind gift of Prof. Samudrala Gourinath, 

Jawaharlal Nehru University, New Delhi, India), were grown and harvested according to 

a previously reported protocol [22]. 

L. acidophilus ATCC4356 strain was cultivated in De Man, Rogosa and Sharpe (MRS) me-

dia (Sigma-Aldrich, Jerusalem, Israel) overnight at 37°C with agitation (200 rpm) on a 

New Brunswick Innova 4300 Incubator Shaker (Marshall Scientific, New Hampshire, 

USA). Heat-killed L. acidophilus was cultivated in MRS media (Sigma-Aldrich, Jerusalem, 

Israel) overnight at 37°C with agitation, followed by autoclaving at 121 °C and 1.05 kg/cm2 

for 15 min. 

 

2.2 Reagents 

Catalase from bovine liver (C9322)) were purchased from Sigma-Aldrich (Jerusalem, 

Israel). 

 

 

2.3 Ferrous oxidation-xylenol orange (FOX) assay 

The amount of H2O2 produced by L. acidophilus was determined by the FOX assay 

according to a previously reported protocol [23]. 
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2.4 Viability of E. histolytica trophozoites  

Trophozoites (~1 × 106/ml) were incubated with L.acidophilus (~1 × 109/ml) in serum-

free Diamond’s TYI S-33 medium for 120 minutes at 37◦C with agitation (200 rpm) in a 

thermoshaker (ALS-MS-100, Hangzhou Allsheng Instrument, China). The viability of 

trophozoites was determined by the eosin dye exclusion method [6]. 

 

2.5. Detection of oxidized proteins (OXs) by resin-assisted capture RAC (OX-RAC) 

The detection of OXs by OX-RAC was performed using a previously described pro-

tocol [6]. A protein was considered to be oxidized when its relative amount in the DTT 

treated lysates was at least two times greater than that in the untreated lysates (p < 0.05 

according to the results of an unpaired t-test). 

 

2.6. In-Gel Proteolysis and MS Analysis 

In-gel proteolysis, MS, and data analysis were performed according to a previously 

reported protocol [6,24]. 

 

2.7. Classification of OXs According to Their Protein Class 

The OXs were classified according to their protein class using PANTHER Classifica-

tion System software (http://www.pantherdb.org/ accessed on 28 July 2021) [25]. 

 

2.8 Measurement of cysteine proteases (CPs) activity 

CPs activity was assayed by using a previously described protocol [26] except that 

DTT was not systematically added to the reaction buffer. 

 

2.9 Adhesion assay. 

The adhesion of E.histolytica trophozoites to HeLa cells (a kind gift from T. Klein-

berger, Faculty of Medicine, Technion) was measured using a previously described pro-

tocol [27]. E. histolytica trophozoites (2 × 105) were incubated with live L. acidophilus (2 × 

108), with heat-killed L. acidophilus (DN) (2 × 108), with paraformaldehyde-fixed L.acidoph-

ilus (PLA) (2 × 108) and with/without catalase (50µg/ml) for 1 hour at 37°C and then trans-

ferred to paraformaldehyde-fixed HeLa cells monolayers for an additional hour of incu-

bation at 37°C.  Trophozoites unattached to HeLa cells monolayers were washed once 

with Phosphate Buffered Saline (PBS) buffer and the trophozoites attached to the HeLa 

cells monolayer were eluted with 500 µl of a solution of cold galactose (1%) in PBS and 

counted.  

3. Results 

3.1 L. acidophilus amebicide activity depends on the formation of H2O2  

The ability of L. acidophilus to produce H2O2 was measured by the FOX assay. We found 

that overnight culture of L. acidophilus cultivated in MRS media with agitation produces 

0.14 ±0.3 mM H2O2. We determined the viability of E. histolytica trophozoites incubated 

with L. acidophilus or with heat-killed L. acidophilus. The viability of E. histolytica tropho-

zoites was not affected when the parasite was incubated with L. acidophilus for 60 min (Fig 

1). However, the viability of E. histolytica trophozoites was significantly decreased by 50% 

when the parasite was incubated with L. acidophilus for 120 min. In contrast, the viability 

of E. histolytica trophozoites incubated with heat-killed L. acidophilus for 120 minutes was 

not impaired (Fig 1). Next, we wanted to establish if the amoebical activity of L. acidophilus 

was dependent on the formation of H2O2. We incubated E. histolytica and L. acidophilus in 

presence of catalase, an enzyme that catalyzes the decomposition of H2O2 to H2O and O2 

[28]. We observed that the amoebicidal activity of L. acidophilus was strongly reduced 

when catalase was added during the incubation of L. acidophilus with the parasite (Fig 1). 

Based on this finding, it strongly suggests that H2O2 produced by L.acidophilus is the pri-

mary cause of parasite death.  
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Figure 1: Viability assay of E. histolytica trophozoites  

E. histolytica trophozoites were incubated with live L. acidophilus (LA) or with heat-killed 

L. acidophilus (DN), with/without catalase (50 µg/ml) for 60 and 120 min at 37°C. The data 

represent two independent experiments performed in triplicate. ***p value< 0.001 by an 

unpaired Student t test. 

3.2 Resin-assisted capture (RAC) of oxidized proteins (OX) coupled to mass spectrom-

etry (OX-RAC) analysis of E. histolytica trophozoites exposed to L. acidophilus 

In order to explore the amebicidal properties of L. acidophilus, we used OX-RAC to meas-

ure the levels of oxidized proteins (OXs) in E. histolytica trophozoites exposed to L. aci-

dophilus. In absence of DTT treatment, OXs are not expected to bind to the thiopropyl resin 

[29].  We observed that the level of OXs in E. histolytica trophozoites exposed to heat-

killed L. acidophilus culture is very low (Fig 2A). These results indicate that heat-killed 

culture of L. acidophilus are not triggering the formation of OXs in E. histolytica trophozo-

ites. In contrast, a strong level of OXs was detected in E. histolytica trophozoites exposed 

to live L. acidophilus culture (Fig 2A). The addition of catalase during the interaction of E. 

histolytica trophozoites with L. acidophilus strongly inhibits completely the formation of 

OXs in the parasite which confirms that the formation of OXs in the parasite is mediated 

by H2O2 produced by L. acidophilus (Fig 2B). These results indicates that the formation of 

OXs is triggered by H2O2 produced by L. acidophilus. 
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                        Figure 2: Detection of OXs by resin-assisted capture (OX-RAC) analysis of E. histolytica  

E. histolytica trophozoites were incubated with live L. acidophilus (LA) or with heat-killed 

L. acidophilus (DN) (Fig 2A), with/without catalase (50 µg/ml) (Fig 2B) for 2 hours at 37°C. 

Total protein lysate was prepared by lysing the trophozoites with 1% Igepal in PBS. The 

oxidized proteins in the cell lysates were subjected to RAC in the presence of 10mM DTT 

(+DTT) or the absence of DTT (−DTT). The protein resolved on a 12% SDS-PAGE and 

stained with silver stain.  

The intensity of the protein bands were quantified by densitometry using Image J software 

[67]. The intensity of the OX-protein bands obtained in presence of DTT in E.histolytica 

trophozoites incubated with live L.acidophilus was arbitrary set to 1. 

Using MS, we identified 997 OXs in E. histolytica trophozoites incubated with L. acidophilus 

(Table S1), which were classified using PANTHER. The most abundant OX families belong 

to metabolite interconversion enzyme (PC00262), such as thioredoxin (EHI_004490), Pro-

tein arginine N-methyltransferase (EHI_158560) or the Galactose-specific adhesin 170kD 

subunit (EHI_042370), protein modifying enzyme (PC00260) such as cysteine proteinase 

CP5 (EHI_168240), serine/threonine-protein phosphatase (EHI_031240) or E3 ubiquitin-

protein ligase (EHI_050540) and protein-binding activity modulator (PC00095) such as 

SERPIN domain-containing protein (EHI_119330), AIG1 family protein (EHI_176700) and 

Rho family GTPase (EHI_070730)  (Fig 3A). Of the OXs in E. histolytica trophozoites incu-

bated with L. acidophilus (Table S2), oxidoreductase (PC00176) and dehydrogenase 

(PC00092), such as glyceraldehyde-3-phosphate dehydrogenase (EHI_008200), 

NAD(FAD)-dependent dehydrogenase (EHI_099700), pyruvate:ferredoxin oxidoreduc-

tase (EHI_051060), vesicle coat protein (PC00235), such as GOLD domain-containing pro-

tein (EHI_023070), beta2-COP (EHI_088220) and coatomer subunit gamma (EHI_040700) 

and protease (PC00190) such as EhCP-a1 (EHI_074180) and EhCP-a4  (EHI_050570) are 

significantly enriched according to the PANTHER statistical overrepresentation test (Fig 

3B). 
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Figure 3. Protein ANalysis THrough Evolutionary Relationships (PANTHER) analysis 

of OXs in E.histolytica incubated with L.acidophilus 

(A) PANTHER sequence classification of the OXs identified in E. histolytica trophozoites 

co-incubated with L. acidophilus.  

(B) PANTHER statistical overrepresentation test of the OXs identified in E. histolytica 

trophozoites incubated with L. acidophilus. 

 

In order to gain information on the consequence of L.acidophilus-mediated-oxidation on the 

activity of proteins that were identified in the OX-RAC analysis, we decided to focus here 

on the CPs. When trophozoites are incubated with live L.acidophilus, CPs activity is 
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strongly inhibited (Fig 4). However, this activity is not inhibited when trophozoites are 

incubated with L. acidophilus in presence of catalase (Fig 4). Addition of DTT in lysates of 

trophozoites incubated with live L.acidophilus partially restored CP activity. Based on these 

results, it could be assumed that the L.acidophilus-mediated-oxidation of CPs' catalytic cys-

teine residues inhibits CPs, while their reduction by DTT restores the activity. Indeed, the 

fact that adding catalase to trophozoites incubated with L. acidophilus prevents the inhibi-

tion of CPs confirms that H2O2 produced by L.acidophilus inhibits the CPs. 

 

Figure 4: CPs activity of E. histolytica trophozoites 

E. histolytica trophozoites were incubated with heat-killed L. acidophilus (DN) or with live 

L. acidophilus (LA), and with/without catalase (50µg/ml) for 2 hours at 37°C. Total protein 

was prepared and CPs activity was measured. One unit of CP activity was defined as the 

number of micromoles of substrate digested per minute per milligram of protein. CP ac-

tivity of E.histolytica trophozoites incubated with heat-killed L. acidophilus (WT + DN) was 

taken as 100% and it corresponds to 0.31 units. The data represent two independent ex-

periment performed in triplicate. *p value<0.05 by an unpaired Student t test. ***p 

value<0.001 by an unpaired Student t test.    

3.3 Adhesion of E.histolytica trophozoites to HeLa cells is impaired by L.acidophilus  

E.histolytica trophozoites' ability to bind to mammalian cells is the initial step of the ame-

bic infectious process [30]. In our experiment, trophozoites incubated with L. acidophilus 

exhibit, reduced binding to HeLa cells compared to trophozoites incubated with heat-

killed L. acidophilus or with paraformaldehyde-fixed L. acidophilus. However, the binding 

activity to HeLa cells of trophozoites incubated with L. acidophilus in presence of catalase 

is comparable to the binding activity of heat-killed L. acidophilus or with paraformalde-

hyde-fixed L. acidophilus (Fig 5). These data strongly suggest that the production of H2O2 

by L.acidophilus inhibits E.histolytica's binding to HeLa cells rather than a competition 

between L.acidophilus and HeLa cells.  
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Figure 5. Binding activity assay of E. histolytica trophozoites 

E. histolytica trophozoites were incubated with live L. acidophilus (LA), with heat-killed L. 

acidophilus (DN), with paraformaldehyde-fixed L.acidophilus (PLA) and with/without cata-

lase (50µg/ml) for 1 hour at 37°C and then transferred to paraformaldehyde-fixed HeLa 

cells monolayers.  Trophozoites attached to HeLa cells monolayers were counted. The 

number of trophozoites incubated with heat-killed L. acidophilus (WT + DN) that were 

bound to HeLa cells monolayer (around 75% of the original population) was taken as 

100%. The data represent two independent experiments performed in duplicate. ****p 

value<0.0001 by an unpaired Student t test. 

 

4. Discussion 

L. acidophilus is commonly found in the gastrointestinal tract of healthy humans.  It 

is widely used as food preservative and as a probiotic. L. acidophilus antimicrobial activity 

is caused by the production of antimicrobial peptides such as such as lactacins B, organic 

acids production such as lactic acids and H2O2 (recently reviewed in [31]) and immune 

induction [32]. Whereas the antibacterial and antifungal activity [33,34] of L. acidophilus 

has been well illustrated, the antiparasitic properties of L. acidophilus has been less studied. 

L. acidophilus in combination with other probiotics is beneficial in the prevention and treat-

ment of Giardia lamblia infection in mice [35], Toxocara canis [36], Trichinella spiralis [37] and 

Cryptosporidium parvum [38]. In a recent work, we have demonstrated that L. acidophilus is 

detrimental to E. histolytica but the amebicide mechanism was unknown [19]. Our work 

suggests that the formation of H2O2 by L. acidophilus directly contributes to the amebicide 

activity of the parasite and the reduction of its cytopathic activity. Numerous OXs identi-

fied in this study play an important role in the parasite's biology, supporting this conclu-

sion. Some of these OXs will be discussed here. 

Important metabolic enzymes are OXs in the parasite exposed to L.acidophilus. 

Among these proteins is the pyruvate:ferredoxin oxidoreductase (EHI_051060), an Fe-S 

enzyme which catalyzes the oxidative decarboxylation of pyruvate [39]. This protein has 

also been identified as an OX in trophozoites exposed to H2O2 [6], metronidazole or 

auranofin [40]. In an oxidatively stressed parasite, pyruvate:ferredoxin oxidoreductase 
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becomes strongly inhibited, resulting in an accumulation of pyruvate, which limits ATP 

production and causes parasite death [41]. Several cysteine residues present within the 

[4Fe-4S] clusters of close to them are carbamidomethylated suggesting that they are oxi-

dized (Table S2). Destabilization of the Fe-S clusters integrity via oxidation of these cyste-

ine residues in the parasite exposed to L.acidophilus will more certainly inactivate the en-

zyme and consequently contribute to the parasite death. 

E. histolytica lacks glutathione, so it relies mainly on thiol for its defense against OS 

[42]. Thioredoxin (TRX) / Thioredoxin reductase (TRXR) also contributes to redox signal-

ing in E.histolytica trophozoites as well as oxidative stress responses [43]). This ubiquitous 

mechanism of defense is present in many parasites including Schistosoma mansoni, Plasmo-

dium falciparum, Giardia lamblia, and Trichomonas vaginalis [43]. TRXs are small redox pro-

teins of around 12kD which act as radical scavengers. In their active site, two cysteine 

residues are involved in the antioxidant system. The oxidation of these cysteine residues 

produces disulfide bonds, which will be reduced by TRXR. The presence of TRXs and TRX 

as OXs in E.histolytica exposed to L.acidophilus strongly suggests that the parasite is ac-

tively responding to H2O2 released by the bacteria.  

The lectin Gal/GalNAc is essential for parasite attachment to mammalian cells and 

therefore, for parasite cytopathic activity [44-46]. We previously demonstrated that oxida-

tion of the carbohydrate-recognizing cysteine rich domain (CRD) of Gal/GalNAc lectin 

renders it inactive [6]. We observed in this study that 170kDa Gal/GalNAc is one of the 

OXs produced in the parasite exposed to L. acidophilus. According to the MS analysis of 

OXs (Table S2), many cysteine residues are carbamidomethylated in the CRD of Gal/Gal-

NAc lectin, which strongly suggests that they were oxidized leading to an impairment of 

the parasite’s ability to bind mammalian cells (this work and [6]).  

CPs are essential for the growth of E.histolytica trophozoites and their inhibition by 

inhibitors of the CPS, such as E64d, causes their death [47]. In this study, we found that 

many CPs including EhCP-a1 (EHI_074180), EhCP-a4 (EHI_050570), EhCP-a5 

(EHI_168240) and EhCP8 (EHI_010850) are oxidized, and that E.histolytica CPs activity are 

inhibited when the parasite is incubated with L.acidophilus. Some of these OXs CPs, such 

as EhCP-A1 and EhCP-A5, are highly expressed in E.histolytica [48] and are involved in 

rosette formation, haemolysis, and erythrocyte digestion [49]. The expression of 

EHI_010850 (EhCP-8) is upregulated when the parasite is incubated in the presence of 

hemoglobin, which suggests CP-8 is involved in iron uptake by the parasite. [50]. The 

mechanisms that lead to oxidants inhibiting CPs have recently been examined [51]. For 

example, inhibition of papain by H2O2 results from the formation of sulfenic acid which 

reacts with adjacent free thiol to form mixed disulfides. Also, H2O2 inhibits cathepsin B by 

targeting the active site residue (Cys25) to form either sulfenic acid or sulfonic acid around 

70% of the time. E.histolytica CPs contain four active-site residues, namely Gln, Cys, His, 

and Asn, the cysteine residue at the active site being present in all E.histolytica CPs [52]. 

According to the MS analysis of OXs (Table S2), this cysteine residue in the active site is 

carbamidomethylated, which strongly suggests that it was oxidized. By itself, this obser-

vation would explain why E.histolytica's CP activity is inhibited by H2O2 produced by L.ac-

idophilus. As opposed to E.histolytica, where H2O2 produced by L.acidophilus appears to 

inhibit CPs activity directly, in Plasmodium parasites, H2O2 mediated inhibition of CPs is 

dependent on the presence of free hemin, which can be released by quinoline drugs [53].  

A functional motility is critical to the survival of E. histolytica in order to both dislodge 

and phagocytose host cells as well as transport virulence factors intracellularly [54]. Rho 

GTPases play a critical role in the regulation of motility and phagocytic activity of E.histo-

lytica [55]. There are several Rho GTPases present in the parasite, and we identified six of 

them (EHI_126310, EHI_013260, EHI_197840, EHI_029020, EHI_129750, EHI_070730) as 

OXs. EhRho1 (EHI_029020) regulates phagocytosis by regulating actin polymerization 

[56]. Numerous studies have shown that ROS regulate Rho GTPases activity [57]. Many 

Rho family GTPases contain at their N-terminal a cysteine-containing motif 

(GXXXXGK[S/T]C) which is located directly adjacent to the phosphoryl-binding loop. Ox-

idation of the cysteine residue in this motif affects the nucleotide binding properties of 
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these Rho GTPases [57]. According to the MS analysis of OXs (Table S2), this cysteine 

residue in the active site is not carbamidomethylated. Instead, we found that cysteine res-

idues located at the C-terminal of these Rho GTPases are carbamidomethylated (Table S2). 

A ubiquitination region is present in the C-terminal region of many Rho GTPases that may 

regulate their stability [58]. In light of this information, it is tempting to speculate that the 

stability of these Rho GTPases is redox-dependent. An example of such regulation occur-

ring in human endothelial cells is described here [59]. 

Inhibitors of serine proteinases (serpins) control a broad range of biological pro-

cesses, including pathogen evasion of the host defense system. Cathepsin G, a pro-inflam-

matory enzyme released by activated neutrophils, is inhibited by serpins [60]. E.histolytica 

expresses a SERPIN that interacts with human neutrophil cathepsin G [61]. In this work, 

we showed that EhSERPIN is one of the OXs present in E.histolytica exposed to L. acidoph-

ilus. Studies have suggested that SERPINs are redox-regulated by oxidation of cysteine 

residues in the reactive site loop of these enzymes or its vicinity [62-64]. The presence of 

carbamidomethylated cysteine residues in the vicinity of the reactive site loop of EhSER-

PIN (Table S2)[61] suggests that EhSERPIN is also redox-regulated. The effect of oxidation 

on EhSERPIN activity has yet to be determined. 

5. Conclusions 

The results of this study show that the production of H2O2 by L. acidophilus causes 

oxidation of vital proteins in E. histolytica and ultimately results in parasite death. In com-

bination with innate immunity [65,66], these promising properties could lead to the pre-

vention and/or complete elimination of E.histolytica infection. However, in-vivo trials are 

necessary to determine whether these probiotics have health benefits on humans. 

 

 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1 
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