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Abstract: The robust control of high precision electromechanical systems, such as micropositioners, is 
challenging in terms of the inherent high nonlinearity, the sensitivity to external interference, and 
the complexity of accurate identification of the model p arameters. To cope with these problems, 
this work investigates a disturbance observer-based deep reinforcement learning control strategy 
to realize high robustness and precise tracking performance. Reinforcement learning has shown 
great potential as optimal control scheme, however, its application in micropositioning systems is 
still rare. Therefore, embedded with the integral differential compensator (ID), deep deterministic 
policy gradient (DDPG) is utilized in this work with the ability to not only decrease the state error 
but also improves the transient response speed. In addition, an adaptive sliding mode disturbance 
observer (ASMDO) is proposed to further eliminate the collective effect caused by the lumped 
disturbances. The sterling performance is revealed with intensive tracking simulation experiments 
and demonstrates the improvement in the accuracy and response time of the controller.

Keywords: micropositioners; reinforcement learning; disturbance observer; deep deterministic 
policy gradient

1. Introduction

Micropositioning technologies based on smart materials in precision industries have
gained much attention for numerous potential applications in optical steering, micro-
assembly, nano-inscribing, cell manipulation [1–4], etc. One of the greatest challenge in this
research field is the uncertainties produced by various factors like dynamic model, environ-
mental temperature, sensors performance and the actuators’ nonlinear characteristics [5]
[6], which make the control of micropositioning system a demanding problem.

To address the uncertain problem, different kinds of control approach have been devel-
oped, such as PID control method, backstepping controller [7], sliding mode control (SMC)
approach [8] and neural network based controller [9]. In addition, many researchers have
integrated these control strategies to further improve the control performance. Combined
with backstepping strategy, Fei proposed an adaptive fuzzy sliding mode controller in [10].
Based on backstepping technique and neural networks, Chen developed an event-triggered
adaptive control scheme with prescribed performance [11]. Liu combined a membrane
structure genetic algorithm (MSGA) method with adaptive inverse neuro-control to iden-
tify the parameters of micropositioning system [12]. Nevertheless, the performance and
robustness of such model-based control strategies are still limited by the precision of the
dynamics model. On the other hand, a sophisticated system model frequently leads to a
complex control strategy. Although most of control strategies have considered the factors
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of uncertainties and disturbances, the system is still problematic to achieve precise and
comprehensive process.

As the rapid development in artificial intelligence in recent years have roundly im-
pacted the traditional control field, learning-based and data-driven approaches, especially
reinforcement learning (RL) and neural networks, have become a promising research tropic.
Different from traditional control strategies that need to make assumption on dynamics
model [13] [14], reinforcement learning can directly learn the policy by interacting with
the system. Back in 2005, Adda presented a reinforcement learning algorithm for learning
control of stochastic micromanipulation systems [15]. Li et al. designed a State-Action-
Reward-State-Action (SARSA) method using linear function approximation to generate
an optimal path by controlling the choice of the micropositioner [16]. However, the re-
inforcement learning algorithms such as Q-learning [17] and SARSA [18] utilized in the
aforementioned works are unable to deal with complex dynamics problems, especially
the continuous state action space problem. With the spectacular improvement enjoyed
by deep reinforcement learning (DRL), primarily driven by deep neural networks (DNN)
[19], the DRL algorithms, such as deep Q network (DQN) [20], policy gradient (PG) [21],
deterministic policy gradient (DPG) [22] and deep deterministic policy gradient (DDPG)
[23] with the ability to approximate the value function, have played an important role in
continuous control tasks.

Latifi introduced a model-free Neural Fitted Q Iteration control method for microma-
nipulation devices, in this work, the DNN is adopted to represent Q-value function [24].
Leinen introduced the concept of experience playback in DQN and approximate value func-
tion of neural network into SARSA algorithm for control of a scanning probe microscope
[25]. Both simulation and real experimental results have shown that their proposed RL
algorithm based on the neural network could achieve better performance than traditional
control methods to some extent. However, due to the collective effects of disturbances
generated from non-linear systems and deviations in value functions [23,26,27], the RL
control method could induce significant inaccuracies in the tracking control tasks [28]. To
improve the anti-distur-
bance capability and control accuracy, disturbance rejection control [29], time-delay estima-
tion based control [30], disturbance observer based controllers [31][32] have been proposed
successively. To deal with this issue, a deep reinforcement learning controller integrated
with an adaptive sliding mode disturbance observer (ASMDO) is developed in this work.
To cope with an apparent state error occurred in trajectory tracking tasks of DRL [33–35],
which is induced by the imprecise estimation of the action value function. The DDPG with
integral differential compensator (DDPG-ID) is developed for decreasing the state error.

In this study, deep reinforcement learning is leveraged into a novel optimal control
scheme for complex systems. An anti-disturbance, stable and precise control strategy is
proposed for trajectory tracking task of micropositioner system. The contribution of this
work are presented as follows:

(1) A DDPG-ID algorithm based on deep reinforcement learning is introduced as a
basic micropositioner system motion controller, which avoided the limitation of traditional
control strategies to the accuracy and comprehensiveness of the dynamic model;

(2) To eliminate the collective effect caused by the lumped disturbances from the mi- 
cropositioner system and inaccurate estimation of the value function in deep reinforcement
learning, an adaptive sliding mode disturbance observer (ASMDO) is proposed;

(3) An integral differential compensator is introduced in DDPG-ID to compensate
the feedback state of the system, which improves the accuracy and response time of
the controller, and further improves the robustness of the controller subject to external
disturbances.

The letter is structured as follows. Sect. 2 presents the system description of the
micropositioner. In Sect. 3, we develop a deep reinforcement learning control method
combined with ASMDO and compensator, and parameters of the DNNs are illustrated.
Then, simulation parameters and tracking results are given in Sect. 4. To further evaluate the
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performance of the proposed control strategy in the micropositioner, tracking experiments
are conducted in Sect. 5. Lastly, conclusion remarks are driven in Sect. 6.

2. System Description

Platform
Beam
flexure

EMA Working air gap

(a) The front view of micropositioner.

EMA

Screw

(b) The end view of micropositioner.

Base
Armature

(c) The vertical view of micropositioner.

Figure 1. The diagrammatic model of EMA actuated micropositioner.

The basic structure of micropositioner is shown in Fig. 1, which consists a base, a
platform and a kinematic device. The kinematic device is composed with an armature,
an electromagnetic actuator and a chain mechanism driven by electromagnetic actuator.
As shown in Fig. 1, there are mutual-perpendicular compliant chains actuated by the
electron-magnetic actuator (EMA) in the structure. The movement of the chain mechanism
is in accordance with the working air gap y. The EMA generates the magnetic force Tm,
which can be approximated as:

Tm = k
(

Ic

y + p

)2
(1)

where k and p are constant parameters related to the electronmagnetic actuator, Ic is the
excitation current and y is the working air gap between the armature and the EMA. Then,
the electrical model of the system can be given as:

Vi = RIc +
d
dt
(HIc) (2)

where Vi is the input voltage from the EMA, R is the resistance of the coil and H denotes
the coil inductance which can be given as:

H = H1 +
pH0

y + p
(3)

where H1 is the coil inductance while the air gap is infinite, and H0 is the incremental
inductance when the gap is zero. The motion equation for the micropositioner can be
expressed as:

d2y
m 

dt2 = ι(α0 − y) − Tm (4)

where ι is the stiffness along the motion direction in the system, and α0 is the initial air gap. 
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According to the equations (1)-(4) ,define x1 = y , x2 = ẏ , x3 = Ic as the state variables
and the control input u = Vi. Then the dynamics model of the electromagnetic actuator can
be written as: 

ẋ1 = x2

ẋ2 = ι
m (α0 − x1)− k

m

(
x3

x1+p

)2

ẋ3 = 1
H

(
−Rx3 +

H0 px2x3

(x1+p)2 + u
) (5)

Define the variables z1 = x1 , z2 = x2 , z3 = ι
m (α0 − x1)− k

m

(
x3

x1+p

)2
,then we have


ż1 = z2
ż2 = z3
ż3 = f (x) + g(x)u

(6)

where f (x) = − ιx2
m +

2kx2
3

m(x1+p)2

(
H(x1+p)−pH0

H(x1+p)2 x2 +
R
H

)
, g(x) = − 2kx3

Hm(x1+p)2 , and z1 is the

system output.
In realistic engineering application, there always exist some uncertainties of the system,

then the system equations (6) can be rewritten as:{
żi = zi+1, i = 1, 2
ż3 = f0(x) + g0(x)u + (∆ f (x) + ∆g(x)u) + d

(7)

where f0(x) and g0(x) denote the nominal part of the micropositioner system and ∆ f (x),  

∆g(x) denote the uncertainties of the modeling system; d denotes the external disturbances.  

Then define D = (∆ f (x) + ∆g(x)u) + d, we have {
żi = zi+1, i = 1, 2
ż3 = f0(x) + g0(x)u + D

(8)

where D is the lumped system disturbances. The following assumption is exploited [36]:
Assumption 1: The lumped interference D is bounded and its upper bound is less than

a fixed parameter β1 and the derivative of D is unknown but bounded.
Remark 1: Assumption 1 is reasonable since all micropositioner platforms are accurately

designed and parameter identified, and all disturbances are remained in a controllable
domain.

3. Approach

In this section, the adaptive sliding mode disturbance observer (ASMDO) is introduced
based on the dynamics of the micropositioner. Then the DDPG-ID control method and
pseudocode are given.

3.1. Design of Adaptive Sliding Mode Disturbance Observer

To develop the ASMDO, a virtual dynamic is firstly designed as{
η̇i = ηi+1, i = 1, 2
η̇3 = f (z) + g(z)u + D̂ + ρ

(9)

where ηi, i = 1, 2, 3 are auxiliary variables, D̂ is the estimation of lumped disturbances, ρ  

denotes the sliding mode term which will be introduced afterwards. 
Define a sliding variable S = σ3 + k2σ2 + k1σ1, where σi = xi − ηi, i = 1, 2, 3, k1 and k2 are 

positive design parameters. Then the sliding mode term ρ is designed as

ρ = λ1S + k2σ3 + k1σ2 + λ2sgn(S) (10)

where λ1, λ2 are positive design parameters with λ2 ≥ β1.
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(a) Observing result based on the ASMDO.
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(b) Observing error based on the ASMDO.

Figure 2. Observation result of ASMDO with d1.
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(b) Observing error based on the ASMDO.

Figure 3. Observation result of ASMDO with d2.

Choosing an unknown constant β2 to present the upper bound of Ḋ, the ASMDO is
proposed as:

˙̂D = k(ẋ3 − f0(z)− g0(z)u− D̂) + (β̂2 + λ3)sgn(ρ) (11)

where k and λ3 are positive design parameters and β̂2 is defined as the estimation of β2

given by ˙̂β2 = −δ0 β̂2 + ∥ρ∥, with δ0 is a small positive number.
Then the output D̂ of the ASMDO is used as a compensation of the control input to

eliminate the uncertainties generated by the system and external disturbances.
Remark 2: Choosing V1 = 1

2 S2 and V2 = 1
2 (D̃2 + β̃2

2), where D̃ = D− D̂, β̃2 = β2 − β̂2
as two Lyapunov function, derivative V1 and V2 with respect to time, it is easy to prove that
both S and D̃ will exponentially converge to the equilibrium point, so the proof process
will not be repeated.

Two kinds of periodic external disturbances are added to verify the practicability of the
proposed ASMDO with d1 = 0.1 sin(2πt) + 0.1 sin(0.5πt + π

3 ), d2 = 0.1 + 0.1 sin(0.5πt +
π
3 ), based on the micropositoner model proposed in [36]. The effectiveness of the observer
is presented as observation results in Fig. 2 and Fig. 3, obviously, the ASMDO can be used
as interference compensation.
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3.2. Design of DDPG-ID Algorithm for Micropositioner

The goal of Reinforcement Learning is to obtain a policy for the agent that could
maximizes the cumulative reward through interactions with the environment. The environ-
ment is usually formalized as a Makov Decision Process (MDP) described by a four-tuple
(S, A, P, R), where S, A, P and R represent state space of environment, set of actions, state
transition probability function and reward function separately. At each time step t, the
agent in current state st ∈ S take action at ∈ A from policy π(at|st), then agent acquires
a reward rt ← R(st, at) and enters the next state st+1 according to the state transition
probability function P(st+1|st, at). Based on the Markov property, the Bellman equation of
action-value function Qπ(st, at) which is used for calculating the future expected reward
can be given as:

Micropositioner simulation
training environment

online policy network

ை ௧
ఓ

target policy network

୘ ௝ାଵ
ఓᇲ

online Q network

ை ௝ ௝
ொ

target Q network
𝑄்

ᇱ (𝑠௝ାଵ, 𝜋୘(𝑠௝ାଵ), 𝑤ொᇲ
)

optimizer

optimizer

noise

update: 𝑤ఓ

Q gradient

gradient

Soft update

update: 𝑤ொ

policy gradient

save: 𝑠௧, 𝑎௧, 𝑟௧, 𝑠௧ାଵ

actor

critic

𝑎௧

𝜋ை 𝑠௧

𝑎 = 𝜋ை 𝑠௝

Soft update

𝜋୘ 𝑠௝ାଵ

𝑟௝ + 𝛾𝑄்
ᇱ

𝑀 ∗ 𝑠௝, 𝑎௝, 𝑟௝, 𝑠௝ାଵ
experience

replay buffer Ψ

Compensator

𝑠௧, 𝑟௧, 𝑠௧ାଵ

𝑦௘
௧

ASMDO
𝐷෡௧

Figure 4. The Structure diagram of DDPG-ID algorithm.

Qπ(st, at) = Eπ(rt + γQπ(st+1, at+1)) (12)

where γ ∈ [0, 1] denotes the discount factor.
In trajectory tracking control task of micropositioner, state st is sate array about the air

gap y of micropositioner at time t. Action at is the voltage u applied by the controller to
micropositioner. As shown in Fig. 4, DDPG is one of Actor-Critic algorithms which has
actor and critic. The actor is responsible for generating actions and interacting with the
environment, and critic evaluates the performance of the actor and guide the action in the
next state.

The action-value function and policy approximation are parameterized by DNN to
solve the continuous states and actions problem in micropositioner with Q(st, at, wQ)

.
=

Qπ(st, at), πwµ(at|st)
.
= π(at|st), where wQ and wµ are the parameters of neural networks

in action-value function and policy function. Under the prerequisite of using the neural
network approximation representation policy function, the neural network gradient update
method is used to seek the optimal policy π.

DDPG-ID uses deterministic policy π(st, wµ) rather than traditional stochastic policy
πwµ(at|st), where the output of policy is the action at with highest probability to current
state st, π(st, wµ) = at. The policy gradient is given as

∇wµ J(π) =Es∼ρπ[∇wµ π(s, wµ)∇aQ(s, a, wQ)
]

(13)
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where J(π) = Eπ [∑t
T
=1 γ

(t−1)rt] is the expectation of discount accumulative rewards, T 
denotes the final time of a whole process, ρπ is the distribution of state following the
deterministic policy. Value function Q(st, at, wQ) is updated by calculating time temporal-
difference error (TD-error) ,which can be defined as

eTD = rt + γQ(st+1, π(st+1)) − Q(st, at) (14)

where eTD is the TD-error, rt + γQ(st+1, π(st+1)) represents the TD target value. By mini- 
mizing the TD-error, the parameters are updated backwards through the neural network
gradient.

To avoid the convergence problem of single network caused by correlation between TD
target value and current value [37], A target Q network Q′T(st+1, a′t+1, wQ′) is introduced
to calculate network portion of TD target value and an online Q network QO(st, at, wQ)
is used to calculate current value in critic. Both these two DNN have the same structure.
The actor also has an online policy network πO(st, wµ) to generate current action and a
target policy network πT(st, wµ′) to provide the target action a′t+1. wµ′ and wQ′ separately
represent the parameters of target policy and target Q networks.

In order to improve the stability and efficiency during RL training, experience replay  

technology is utilized in this work which saves transition experience (st, at, rt,  st+1) into the 
experience replay buffer Ψ at each interaction with the environment for  subsequent 
updates. In each training time t, a minibatch of M transitions (sj, aj, rj, sj+1) from the 
experience replay buffer are extracted to calculate the gradients and update neural networks. 

An integral differential compensator is developed in deep reinforcement learning 
structure to improve the accuracy and responsiveness of tracking tasks in this work, which
is shown in Fig. 4. Integral portion of the state is utilized to increase the control input con-
tinuously which would eventually reduce tracking error. The differential part is integrated
to reduce the system oscillation and accelerates stability. The proposed compensator is 
designed as follows:

st
ID = yt

e + α
t

∑
n=1

yt
e + β

(
yt

e − yt−1
e

)
(15)

where st
ID represents the compensator error at time t, yt

e =
√(

yt
d − ŷt

)2, yt
d represents the

desired trajectory at time t, ŷt is the measured air gap at time t and yt
e is the error between

them. α is the integral gain and β is the differential gain.
Then the sate st at time t can be described as :

st =
[
st

ID ŷt ˙̂yt yt
d ẏt

d
]T (16)

where ˙̂yt and ẏt
d represent the derivatives of ŷt and yt

d.
The reward rt function designed is to measure the tracking error:

rt =


−4 , yt

e > 0.005
+5 , 0.003 < yt

e ⩽ 0.005
+10 , 0.001 < yt

e ⩽ 0.003
+18 , yt

e ⩽ 0.001

(17)

As shown in Fig. 5, the adaptive sliding mode disturbance observer (ASMDO) is
embedded in DDPG-ID between actor and micropositioner system environment. Action at
with the environment is expressed as

at = πO(st, wµ) + D̂t +Nt (18)

where wµ is the parameters of online policy network πO, D̂ t is the estimation of the  

micropositioner system at time t, and Nt is Gaussian noise for action exploration. 
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Figure 5. System signal flow chart.

3.2.1. Critic Update

After selecting M transitions (sj, aj, rj, sj+1) samples from experience replay buffer Ψ,
the Q value is calculated. The online Q network is responsible for calculating the current Q
value which is shown as follows:

QO(sj, aj, wQ) = wQϕ(sj, aj) (19)

where ϕ(sj, aj) represents the input of online Q network which is an eigenvector consisting
of state sj and action aj.

The target Q network Q′T is defined as:

Q′T(sj+1,πT(sj+1,wµ′),wQ′)=wQ′ϕ(sj+1,πT(sj+1,wµ′)) (20)

where ϕ(sj+1, πT(sj+1, wµ′)) is the input of target Q network which is a eigenvector consist-
ing state sj+1 and target policy network output πT(sj+1, wµ′).

For target policy network πT , the equation is:

πT(sj+1, wµ′) = wµ′ sj+1 (21)

Then rewritten the target Q value QT as:

QT = rj + γQ′T(sj+1, πT(sj+1, wµ′), wQ′) (22)

where rj is the reward from the selected samples.
Since M transitions (sj, aj, rj, sj+1) are sampled from experience buffer Ψ, the loss

function of the update critic is shown in Equation (23).

L
(

wQ
)
=

1
M

M

∑
j=1

(
QT −QO

(
sj, aj, wQ

))2
(23)

( )
where L wQ is the loss value of critic.  

In order to smooth the target network update process, the soft update is applied  

without copying parameters periodically as: 

wQ′ ← τwQ + (1− τ)wQ′ (24)

where τ is the update factor, usually a small constant.
The diagram of Q network is shown in Fig. 6, which is a parallel neural network. The

Q network includes both state and action portions, and the output value of Q network
is based on state and action. The state portion of the neural network consists of a state
input layer, three full connection layers, and two relu layers clamped between the three
full connection layers. The neural network of the action portion is consisted with an action
input layer and a full connection layer. The output layers of the above two portions are
combined entering the neural network of the common part, which contains a relu layer and
one output layer. The parameters of each layer in Q network are shown in Table 1.
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ActionFC1
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…
…

Action
Input
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Critic
Output

STATE

Figure 6. The diagram of Q network.

Table 1. Q network parameters.

Network Layer Name Number of Nodes
StateLayer 5

CriticStateFC1 120
CriticStateFC2 60
CriticStateFC3 60
ActionInput 1

CriticActionFC1 60
addLayer 2

CriticOutput 1

Table 2. Policy network parameters.

Network Layer Name Number of Nodes
StateLayer 5
ActorFC1 30

ActorOutput 1

3.2.2. Actor Update

The output of online policy network is

πO = wµsj (25)

On account of using deterministic policy, the calculation of the policy gradient has no
integrals of action a, but the derivatives of value function QO with respect to action a in
comparison with stochastic policy. The gradient formula can be rewritten as follows:

∇wµ J ≈ 1
M

M

∑
j
(∇aj QO(sj, aj, wQ)∇wµ πO

(
sj, wµ

)
) (26)

where the weights wµ are updated with the gradient back-propagation method. The target  

policy network is also updated with soft update pattern as following: 

wµ′ ← τwµ + (1− τ)wµ′ (27)

where τ is the update factor, usually a small constant.

State
InputLayer

ActorFC1

ACTION

tanh

ActorOutput

…

STATE

Figure 7. The diagram of policy network.
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Fig. 7 shows the diagram of policy network in this paper, which contains a state input  

layer, a full connection layer, a tanh layer, and an output layer. The parameters of each 
layer in policy network are shown in Table 2.

The DDPG-ID algorithm pseudocode can be shown as:

Algorithm 1 DDPG-ID Algorithm.

1: Randomly initialize online Q network with weights wQ

2: Randomly initialize online policy network with weights wµ

3: Initialize the target Q network by wQ′ ← wQ

4: Initialize the target policy network by wµ′ ← wµ

5: Initialize the experience replay buffer Ψ
6: Load the simplified micropositioner dynamic model
7: for episode=1, MaxEpisode do
8: Initialize a noise process N for exploration
9: Initialize adaptive sliding mode disturbance observer

10: Initialize integral differential compensator
11: Randomly initialize micropositioner states
12: Receive initial observation state s1
13: for step=1, T do
14: Select action at = πO(st) + D̂t +Nt
15: Use at to run micropositioner system model
16: Process errors with integral differential compensator
17: Receive reward rt and new state st+1
18: Store transition (st, at, rt, st+1) in replay buffer Ψ
19: Randomly sample a minibatch of M transitions (sj, aj, rj, sj+1) from Ψ

20: Set QT = rj + γQ′T(sj+1, πT(sj+1, wµ′), wQ′)

21: Minimize loss: L(wQ)= 1
M∑M

j=1(QT −QO(sj,aj,wQ))2 to update online Q network
22: Use the sampled policy gradient to update online policy network:

∇wµ J= 1
M ∑M

j (∇ajQO(sj, aj, wQ)∇wµ πO
(
sj, wµ

)
)

23: Update the target networks:
wQ′ ← τwQ + (1− τ)wQ′ , wµ′ ← τwµ + (1− τ)wµ′

24: end for
25: end for

4. Simulation Results

In this section, three distinct desired trajectories are designed for thoroughly evaluating
the performances of proposed deep reinforcement learning control strategy in positioning
and tracking simulation experiments. An traditional DDPG algorithm and a well-tuned PID
strategy are taken in experiments for comparison. The dynamics model of micropositioner
is given in Section II, and its basic system model parameters are from our previous research
[36], which is shown in Table 3.

The DDPG algorithm is defined in same neural network structure and training param-
eters as DDPG-ID in this paper. The training parameters of the DDPG-ID and DDPG are
shown in Table 4.
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Table 3. Parameters of the micropositioner model.

Notation Value Unit
L1 13.21 H
L0 0.67 H
a 1.11× 10−5 m
R 43.66 Ω
c 8.83× 10−5 Nm2 A−2

k 1.803× 10N5 Nm−1

m 0.0272 Kg

Table 4. Training parameters of DDPG-ID and
DDPG.

Hyperparameters Value
Learning rate for actor φ1 0.001
Learning rate for critic φ2 0.001

Discount factor γ 0.99
Initial exploration ε 1

Experience replay buffer size ψ 100000
Minibatch size M 64

Max episode ϖ 1500
Soft update factor τ 0.05

Max exploration steps T 250 (25s)
Time step Ts 0.01s

Intergal gain α 0.01
Differential gain β 0.001

The first desired trajectory designed for tracking control simulation is a waved signal.  

According to the initial conditions, the parametric equation of the waved trajectory is  

defined as: 

yd(t) = 0.985− 0.015sin(
πt
4
− π

2
) (28)
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(a) The training rewards generated by DDPG-ID.
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(b) The training rewards generated by DDPG.

Figure 8. The training rewards of two RL schemes.

The training process of both DDPG-ID and DDPG are run on the same model with
stochastic initialized micropositioner states. During the training evaluation, a larger episode
reward indicates a more accurate and lower error control policy. It is shown in Fig. 8 that
DDPG-ID reaches the maximum reward score with fewer episodes compared to DDPG,
which reveals that DDPG-ID algorithm converge faster than DDPG algorithm. Comparing
Fig. 8 (a) with Fig. 8 (b), the average reward of DDPG-ID training process is larger than
DDPG’s average reward in stable state, which further indicates that policy learned by
DDPG-ID algorithm has better performance. The trained algorithms are employed for
tracking control of micropositioner system simulation experiments.

The tracking results of the waved trajectory is shown in Fig. 9. In terms of tracking
accuracy, the trained DDPG-ID controller has a better performance comparing with DDPG
and PID, which has smaller state error and smoother tracking trajectory. The tracking error
of the DDPG-ID algorithm ranges from −8 ∗ 10−4 to 9 ∗ 10−4mm which is almost about
a half of DDPG policy. In the interim, the DDPG controller has a lesser tracking error
than PID. A huge oscillation has been induced by the PID controller which will affect the
hardware to a certain extent in the actual operation process. The unnormal huge oscillation
input signal always much larger than normal control input signal which is range from 0
to 11V. Based on the characteristics of reinforcement learning, it is hard for a well-trained
policy to generate such a shock signal.
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Figure 9. Tracking results comparison of the waved trajectory.
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Figure 10. Tracking results comparison of the periodic trajectory.

Another tracking results of a periodic trajectory is illustrated in Fig. 10. The parametric
equation of the periodic trajectory is defined as

yd(t)=0.981− 0.015sin(
πt
4
− π

2
) + 0.008sin(

πt
2
− π

16
). (29)
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Can be seen in these figures, the tracking error of DDPG-ID in periodic trajectory is still  

less than the others, which ranges from −1.6 ∗ 10−4 to 9 ∗ 10−4mm. Similar to the previous 
waved trajectory, the control input based on DDPG has shown better performance in terms 
of oscillations. 
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Figure 11. Tracking results comparison of the step trajectory.

To further demonstrate the universality of the DDPG-ID policy, a periodic step trajec- 
tory is also utilized for comparison. The step signal with a period of 8s is designed as the
desired trajectory which is shown in Fig. 11 (a). The well-tuned PID contorller is also tested
in this step trajectory simulation. Since intense oscillations emerge, the results of PID show
extremely worse performance are not shown in this paper.

According to Fig. 11, the tracking result of DDPG-ID algorithm remains stable with
the tracking error bounded in −2 ∗ 10−4 to 9 ∗ 10−4mm which is still as a half of DDPG’s
performance. Due to the characteristic of the step signal, the state error will become
tremendous during the step transition. Errors of DDPG-ID and DDPG are observed
dropping quickly after step transition. As to the control inputs, the value of DDPG still
fluctuates considerably when the state converges stable.

Based on the simulation results, the control policy of DDPG-ID has triumphantly dealt
with collective effect caused by disturbance and inaccurate estimation of deep reinforcement
learning comparing to DDPG. The compare results also have demonstrate excellent control
performance of the policy learned by DDPG-ID algorithm.

5. Experimental Results
               To further verify the performances of the proposed DDPG-ID algorithm, trajectory  

tracking experiments are carried out. Two desired trajectories are designed and employed.  

The speed, acceleration and direction of these designed trajectories vary with time, which  

makes the experiments results more trustworthy. In each test, the EMA in micropositioner 

is regulated for tracking the desired path of working air gap.                 

                         As shown in Fig. 12, it used a laser displacement sensor to detect the motion states.  

Then DDPG-ID algorithm was administered through a SimLab board transplanted with 
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Micropositioner
dynamics model
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Micropositioner control
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Figure 12. The schematic diagram of experiment system.

Matlab-Simulink. The EMA controls the movement of the chain mechanism by executing  

the control signal which is from the analog output port of SimLab board. The analog input  

port of SIMLAB board is connected with the signal output from the laser displacement  

sensor. 
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Figure 13. Tracking results of the waved trajectory.

Fig. 13 shows the tracking experiment results of the waved trajectory. It reaches the
starting point on a straight track with a speed of 5.6µm/s. At time 5s, it begins to track
the desired waved trajectory in three periods, and the waved trajectory can be described
as yd(t) = 28 + 25sin(πt

10 + π
2 ). The tracking error fluctuates within ±1.5µm which are

demonstrated in Fig. 13(b). Except for several particular points of time, the tracking errors
could range in ±1µm.
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Figure 14. Tracking results comparison of the step trajectory.

Another periodic trajectory tracking experiments are also executed. As shown in
Fig. 14, the desired periodic trajectory starts at time 5s, and it is defined as yd(t) =
35− 25sin( πt

7.5 −
2π
3 )− 5sin(πt

15 + π
6 ). The tracking error of the periodic trajectory is still

range in ±1.5µm.
The experimental results show that the proposed DDPG-ID algorithm is able to closely

track above two trajectories. Compared with the simulation results, the tracking error does
not increase significantly, and it can be maintained between −1µm and +1µm.
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6. Conclusion

In this article, a composite controller is developed based on an adaptive sliding mode
disturbance observer and a deep reinforcement learning control scheme. A deep deter-
ministic policy gradient is utilized to obtain the optimal control performance. To improve
the tracking accuracy and transient response time, an integral differential compensator is
applied during the learning process in the Actor-Critic framework. An adaptive sliding
mode disturbance observer is developed to further retrenching the influence of modeling
uncertainty, external disturbances and the effect of inaccurate value function. In compari-
son with the existing DDPG and the most commonly used PID controller, the trajectory
tracking results has successfully indicated the satisfactory performances and the precision
of the control policy based on the DDPG-ID algorithm in the simulation. The experimental
results also indicate high-accuracy and strong anti-interference capability of the proposed
deep reinforcement learning control scheme.
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