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Abstract: Stage of cancer is a discrete ordinal response that indicates aggressiveness of disease and
is often used by physicians to determine the type and intensity of treatment to be administered.
For example, the FIGO stage in cervical cancer is based on the size and depth of the tumor as well
as the level of spread. It may be of clinical relevance to identify molecular features from high-
throughput genomic assays that are associated with stage of cervical cancer, to elucidate pathways
related to tumor aggressiveness, identify improved molecular features that may be useful for staging,
and identify therapeutic targets. High-throughput RNA-Seq data and corresponding clinical data
(including stage) for cervical cancer patients has been made available through The Cancer Genome
Atlas Project (TCGA). We recently described penalized Bayesian ordinal response models that can be
used for variable selection for over-parameterized datasets such as the TCGA-CESC dataset. Herein,
we describe our ordinalbayes R package, available from the Comprehensive R Archive Network
(CRAN), which is capable of fitting cumulative logit models when the outcome is ordinal and the
number of predictors exceeds the sample size, P > N, such as for TCGA data. We demonstrate use
of this package through application to TCGA cervical cancer dataset. Our ordinalbayes package
can be used to fit models to high-dimensional dataset and effectively performs variable selection.
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1. Introduction

Despite the advent of HPV vaccinations and effective screening programs, globally,
cervical cancer is the fourth most common cancer among women [1]. The estimated
number of new cases in 2020 is 604,127 with 341,831 deaths [2]. Stage of cervical cancer, as
outlined in the International Federation of Gynecology and Obstetrics (FIGO) guidelines,
is based on physical examination, endoscopic procedures, and imaging. Specifically,
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models were developed for the linear [11-14] and logistic [15-17] regression settings. We
also recently described penalized Bayesian models for the ordinal response setting [18]
and demonstrated that our penalized Bayesian cumulative logit model has improved
variable selection performance when compared to penalized frequentist cumulative logit
models [19].

Herein we describe our ordinalbayes R package that can be used for fitting penalized
Bayesian cumulative logit models. The ordinalbayes function can be used to fit LASSO,
normal spike-and-slab, double exponential spike-and-slab, and regression-based variable
inclusion indicator Bayesian models. Variable selection can be performed using Bayes
factor or using the posterior distributions of the variable inclusion indicators directly. In
the following sections, we describe our implementation and describe the syntax required
for each of our Bayesian models. We then illustrate the functions in the ordinalbayes R
package using a dataset where we were interested in identifying transcripts important to
predicting FIGO stage in cervical cancer patients using high-throughput gene expression
data.

2. Materials and Methods
2.1. ordinalbayes Models and Syntax

The primary function for model fitting in the ordinalbayes package is ordinalbayes.
The function arguments are

function (formula, data, x = NULL, subset, center = TRUE, scale = TRUE,
a=0.1, b =0.1, model = "regressvi", gamma.ind = "fixed",
pi.fixed = 0.05, c.gamma = NULL, d.gamma = NULL, alpha.var = 10,
sigma2.0 = NULL, sigma2.1 = NULL, coerce.var=10, lambda0 = NULL,
adaptSteps = 5000, burnInSteps = 5000, nChains = 3, numSavedSteps = 9999,
thinSteps = 3, parallel = TRUE, seed = NULL, quiet = FALSE)

This function accepts a model formula that specifies the ordinal outcome on the left-
hand side of the equation and any unpenalized predictor variable(s) from the phenotypic
dataset on the right-hand side of the ~ equation; if no unpenalized predictor variables are
included, the model formula includes 1 (the intercept) on the right-hand side of the equation.
Unpenalized predictors are those that we want to coerce into the model (e.g., age) so that
no penalty is applied. When unpenalized predictors are included (or coerced) into the
model, the user can specify the variance associated with those model parameters (default
coerce.var=10). When analyzing data processed using the DESeq2 Bioconductor package,
the genomic feature object is of class DESeqTransform which is a SummarizedExperiment,
and therefore the phenotypic data are accessed using the colData extractor function. When
analyzing data processed using packages that structure the genomic feature object as a
Biobase ExpressionSet, the phenotypic data are accessed using pData extractor function.
Therefore, in the ordinalbayes call, data should ideally be colData or pData calls to the
genomic feature object, though a data.frame name can be passed. Note that when passing
a data.frame to data that is not connected to the penalized variables (x), the user needs
to carefully verify that the observations in the data.frame are appropriate aligned to the
genomic feature data in x. For SummarizedExperiment objects, the user should pass to x
the genomic feature data (e.g., expression of genes from high-throughput assays) to be
penalized in the fitted model, which can be accessed using the assay extractor function.
For ExpressionSet objects, the genomic features to be penalized can be accessed using the
exprs extractor function. The user can also pass a matrix to x, however, the user needs
to carefully verify that the observations in the x matrix are appropriately aligned to the
phenotypic data. Note that the number of rows in both data and x should be the same,
such that the transpose of assay or exprs should be supplied to x. The user can subset
the data set prior to model fitting, for example, subset=(race=="white"). By default the
genomic features are centered (center=TRUE) and scaled (scale=TRUE).
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Selected parameters are initialized prior to updating through MCMC. For one chain,
the k — 1 ordinal thresholds, ay, are initialized to the logit of the cumulative class probabili-
ties, which is equivalent to the estimated k — 1 thresholds in an intercept-only model

n k .
& = log Li-1 Zmil yik/n
1= Yy Yik/n

For chains beyond this first one, initial values for the aj terms are sampled from a Normal(0,
0.5) distribution and sorted to impose the a; < - - < a;_1 order restriction. Within the
MCMC, the oy terms are sampled from a Normal(0, Uﬁk) and users can adjust the variance by
specifying alpha.var (default 10 such that the precision is 0.10). All penalized coefficients
(Bj forj=1,...,P) are initialized to zero.

Other relevant parameters common to all model types include: nChains, the number
of parallel chains for the model (default 3); adaptSteps, the number of iterations for
adaptation (default 5000); burnInSteps, the number of iterations of the Markov chain to
run (default 5000); numSavedSteps, the number of saved steps per chain (default 9999); and
thinSteps, the thinning interval for monitors (default 3). Provided the user will be running
the model on a machine with multiple processors, computational speed can be improved by
running the chains in parallel, by specifying parallel = TRUE. When parallel = TRUE,
runjags executes the MCMC sampling using nChains parallel processors. To ensure the
user can obtain reproducible results, seed accepts an integer and is used to set the random
seed. Output from JAGS can be suppressed by specifying quiet = TRUE. The user can fit
one of four available Bayesian models. A list of the parameters the user can set for all four
models is provided in Table Al. Next, each of the four models is described along with the
relevant arguments that must be specified by the user. A list of the parameters the user
needs to set for each specific model is provided in Table A2.

2.1.1. Regression-Based Variable Inclusion Indicator Ordinal Model

By default the model that is fit is the regression-based variable inclusion indicator
Bayesian model, specified by model="regressvi". This model takes the form

lo |:P7’(YZ‘ < k|xi)

p
& Pr(Y; > k|xi)] - 7121 Py, fork =12 K=l

,Bj|)\ ~DE(0,1/A), forj=1,..,p

A ~ Gamma(a, b)

ap ~ Normal(O,(fDZ(k), <ty <..<ag_q, for k=1,2,..,K—1
Yj ~ Bernoulli(nj), forj=1,..,p

T =tormj ~ Beta(c,d), forj=1,..p

and assumes the penalized coefficients are from a Laplace (or double exponential) distribu-
tion with parameter A and that A is from a Gamma distribution with parameters a and b.
Based on our extensive simulations [19], model performance is not affected by choices of a
and b so we provide defaults of 0.1 for both. The variable inclusion indicator 7y; is assumed
to follow a Bernoulli distribution with parameter 7;. The user can select to use a fixed
constant prior for 77; = 1,..., P by specifying both gamma.ind="fixed" and specifying
some constant in the (0, 1) interval for pi.fixed (default is 0.05). Alternatively, a random
prior for 71 is acheived by specifying both gamma. ind="random" and parameter values for
the Beta distribution c.gamma and d. gamma. If unpenalized coefficients are included in the
model, their coefficients are { ~ Normal(0, 02,,,..)-

2.1.2. LASSO Ordinal Model

The LASSO Bayesian ordinal model can be fit by specifying model="lasso". This
model assumes the penalized coefficients f; for j = 1,..., P are from independent Laplace
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(or double exponential) distributions with parameter A and that A is from a Gamma
distribution with parameters a and b.

1 [Pf(Yi < k|x;)

|4
gl ———+—| =0ar — ix;;, fork=1,2,..,K—1
& P}’(Yi > k|xl-)] k ]; ‘B] gl

,Bj|)\ ~DE(0,1/A), forj=1,..,p
A ~ Gamma(a, b)
ap ~ Normal(O,UD%k), <ty <..<ag_q, for k=1,2,..,K—1
As previously mentioned, model performance is not affected by choices of a and b so we

provide defaults of 0.1 for both. If unpenalized coefficients are included in the model, their
coefficients are { ~ Normal(0, 02 ,,..)-

2.1.3. Normal Spike-and-Slab Ordinal Model

The normal spike-and-slab Bayesian ordinal model can be fit by specifying
model="normalss". This model is given by

o L S

4
=0 — x;, fork=1,2,..,K—1
8 Pr(Y; > kx| ~ ™ ;ﬁﬂw ork=12,.,

Bilvi ~ (1 =) x Normal(0, 63) + 7; % Normal (0, 0?), forj=1,..,p
oy ~ Normal(O,U,,%k), <oy <..<wag_1, for k=1,2,..,K—-1

vj ~ Bernoulli(nj), forj=1,..,p

T =tormj ~ Beta(c,d), forj=1,..p.

When fitting this model the user is required to specify the variance for the spike (¢3) by
setting sigma2.0 to a small positive value (e.g., 0.01) and variance for the slab (¢7) by
setting sigma2.1 to a large positive value (e.g., 10). As with the regression-based variable
inclusion indicator Bayesian model, the variable inclusion indicator 1; is assumed to follow
a Bernoulli distribution with parameter 77;. The user can select to use a fixed constant
prior for j = 1,..., P by specifying both gamma.ind="fixed" and specifying some constant
in the (0, 1) interval for pi.fixed (default is 0.05). Alternatively, a random prior for 7;
is acheived by specifying both gamma.ind="random" and parameter values for the Beta
distribution c.gamma and d.gamma. If unpenalized coefficients are included in the model,
their coefficients are { ~ Normal(0, 02, )-

2.1.4. Double Exponential Spike-and-Slab Ordinal Model

The double exponential spike-and-slab ordinal model can be fit by specifying model="dess"
and is given by

o PV(YZ' < k|xi)
8\ Pr(Y; > k|x,)
,B]'Mr Yj~ (1- 'yj) x DE(0,1/A¢) + 7j X DE(0,1/A), forj=1,..,p

A ~ Gamma(a, b)
K ~ Normal(O,U,fk), g < ap <..<ag_q, for k=1,2,..,K—1

P
=ap— ) Bjxi, fork=1,2,..,K-1
=

7vj ~ Bernoulli(r;), forj=1,..p
T =tormj ~ Beta(c,d), forj=1,..p
When fitting this model the user is required to specify the parameter for the spike (Aq)

using lambdaO while the slab is taken to be a double exponential distribution with pa-
rameter A where that A is from a Gamma distribution with parameters a and b. As
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with the regression-based variable inclusion indicator and Normal spike-and-slab mod-
els, the variable inclusion indicator Vi is assumed to follow a Bernoulli distribution with
parameter 77;. The user can select to use a fixed constant prior for j = 1,..., P by spec-
ifying both gamma.ind="fixed" and specifying some constant in the (0, 1) interval for
pi.fixed (default is 0.05). Alternatively, a random prior for 7; is acheived by specify-
ing both gamma.ind="random" and parameter values for the Beta distribution c.gamma
and d.gamma. If unpenalized coefficients are included in the model, their coefficients are
g~ Normal(O, Uczoerce)'

2.1.5. Other Package Functions

The ordinalbayes function yields an object of class ordinalbayes. Generic functions
have been specifically tailored to extract meaningful results from the resulting MCMC chain.
The print function returns several summaries from the MCMC output for each parameter
monitored including: the 95th lower confidence limit for the highest posterior density
(HPD) credible interval (Lower95), the median value (Median), the 95th upper confidence
limit for the HPD credible interval (Upper95), the mean value (Mean), the sample standard
deviation (SD), the mode of the variable (Mode), the Monte Carlo standard error (MCerr,)
percent of SD due to MCMC (MC%o0fSD), effective sample size (SSeff), autocorrelation
at a lag of 30 (AC.30), and the potential scale reduction factor (psrf). The plot function
provides a trace of the sampled output and optionally the density estimate for each variable
in the chain. This function additionally adds the appropriate beta and gamma labels for
each penalized variable name.

When identifying important genomic features, the regression-based variable inclusion
indicator, normal spike-and-slab, and double exponential spike-and-slab Bayesian ordinal
models all incorporate a variable inclusion indicator, Y in the model. Variable selection
can be based on whether the posterior mean of -y; exceeds a pre-specified threshold. Alter-
natively, we can use Bayes factor to test the hypotheses Hy; : 7; = 0 versus H,; : 7; = 1,
where the null hypothesis is rejected for feature j if Bayes factor exceeds a pre-specified
threshold. For the LASSO, normal spike-and-slab, and double exponential spike-and-slab
Bayesian ordinal models, Bayes factor can be used to test an interval null hypothesis
Hy; : |Bj| < e versus Hy; : |B)| > €, where € is a small positive value that is close to 0. For
the regression-based variable inclusion indicator Bayesian ordinal model, Bayes factor
can be used to test Hy; : |7;B8;| < eversus Hy; : |7;Bj| > €. Note that for the Bayesian
LASSO, no variable inclusion indicators are incorporated so variable selection can only
be performed using Bayes Factor for . The summary function requires an ordinalbayes
object and the user can specify epsilon (default 0.1) for testing the null hypothesis that
Hy; : |Bj| < e. The output from summary is a list containing the following components:
alphamatrix, the MCMC output for the threshold parameters; betamatrix, the MCMC
output for the penalized parameters; zetamatrix, The MCMC output for the unpenal-
ized parameters (if included); gammamatrix, the MCMC output for the variable inclusion
parameters (not available when model = "lasso"); gammamean, the posterior mean of the
variable inclusion indicators (not available when model = "lasso"); gamma.BayesFactor,
Bayes factor for the variable inclusion indicators (not available when model = "lasso");
Beta.BayesFactor, Bayes factor for the penalized parameters; and lambdamatrix, the
MCMC output for the penalty parameter (not available when model="normalss"). The
coef function also accepts an ordinalbayes object and returns a function (default is
method=mean) of the posterior distribution of the penalized parameter estimates and vari-
able inclusion indicators.

The predict function acccepts an ordinalbayes object and optionally allows to user
to specify new data for unpenalized predictors and the penalized predictors, by invoking
neww = and newx =, respectively. If neww and newx are not supplied, the original data
are used for prediction. The model.select parameter allows the user to obtain model
predictions through one of three different methods. When model.select = "average"
(default), the mean coefficient values over the MCMC chain are used to estimate fitted
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probabilities; the predicted class is that attaining the maximum fitted probability. When
model.select = "median", the median coefficient values over the MCMC chain are used
to estimate fitted probabilities; the predicted class is that attaining the maximum fitted
probability. When model.select = "max.predicted.class", each step in the chain is
used to calculate fitted probabilities and the class, then the final predicted class is taken
as that class that is most frequently predicted. The function fitted is synonymous with
predict.

2.2. Analysis of Cervical Cancer Dataset

We downloaded the transcript-level HTSeq count data for the 309 subjects from the
The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adeno-
carcinoma (TCGA-CESC) project [22] having transcriptome profiling performed using the
TCGADbiolinks Bioconductor package [21]. We then restricted attention to the 253 cervical
cancer subjects with a primary diagnosis of squamous cell carcinoma. Subsequently, we
removed one subject whose sample was FFPE preserved, one subject with metastatic dis-
ease, two subjects who contributed only solid normal tissue, and seven subjects lacking
FIGO stage. This left 242 subjects is Stage I (N = 124), Il (N = 61), and III-IV (N = 57).
Using the DESeq2 Bioconductor package [20], we performed differential expression analysis
using stage as the independent predictor in the negative binomial model. We then applied
the regularized log transformation to robustly transform the count data to a log, scale to
stabilize the variance, and then filtered the resulting dataset to retain transcripts having a
mean expression > 0.5 and FDR< 0.10 from the stage I versus stages III/IV contrast.

We fit a regression-based variable inclusion indicator Bayesian ordinal model using a
Beta(0.01, 0.19) hyperprior for the 7; using the runjags package to run three parallel chains
with 5,000 burn-in, 5,000 tuning steps, and thinned to keep every third step in the sampling
process to reduce auto-correlation in our posterior samples, and kept 9,999 saved steps
per chain. Convergence was assessed using Gelman and Rubin’s potential scale reduction
factor (PSRF).

3. Results

There were 1,137 transcripts that were differentially expressed at a Benjamini-Hochberg
FDR< 0.05 and 2,009 transcripts that were differentially expressed at a Benjamini-Hochberg
FDR< 0.10 when examining the contrast between stage I and stages III/IV. These 2,009
transcripts were retained for Bayesian modeling. Forty transcripts had a Bayes factor > 4
when testing H; : |v;B;| < 0.1 versus Hy; : |y;B;| > 0.1. Forty-one transcripts had a Bayes
factor > 5 when testing Hy; : y; = 0 versus H,; : 7; = 1 (Table 1). Notably, the features
were the same with exception that Bayes factor testing 7; = 0 additionally identified
ENSG00000115548 (Gene symbol KDM3A).
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Table 1. Transcripts significant from the regression-based variable inclusion indicator Bayesian

ordinal model when testing Hy; : y; = 0 versus Hy; : y; = 1 using Bayes Factor and a threshold

of 4. Annotation information obtained from https://www.ncbi.nlm.nih.gov/gene, https:/ /www.

genecards.org, and https:/ /Incipedia.org.

Ensemble ID Gene symbol Chr o4
ENSG00000076344 RGS11 16 0.179
ENSG00000077274 CAPN6 X 0.264
ENSG00000101888 NXT2 X 019
ENSG00000115548 KDM3A 2 0174
ENSG00000122884 P4HA1 10 0.186
ENSG00000125430 HS3ST3B1 17 0.286
ENSG00000131370 SH3BP5 3 0175
ENSG00000135443 KRT85 12 0334
ENSG00000136457 CHAD 17 0179
ENSG00000138398 PPIG 2 0240
ENSG00000150636 CCDC102B 18 0.281
ENSG00000161277 THAPS 19 0283
ENSG00000163510 CweC22 2 0301
ENSG00000164485 IL22RA2 6 0.19
ENSG00000164651 SP8 7 0231
ENSG00000166091 CMTM>5 14 0215
ENSG00000166342 NETO1 18 0.197
ENSG00000171121 KCNMB3 3 0186
ENSG00000177173  Pseudogene, parent NAP1L4P1 1 0.258
ENSG00000180229 HERC2P3 15 0.196
ENSG00000188817 SNTN 3 0236
ENSG00000197360 ZNF98 19 0214
ENSG00000203601 LINC00970 1 0316
ENSG00000225449 RAB6C-AS1 2 0235
ENSG00000230201  Pseudogene, parent ATP6VOCP1 17  0.286
ENSG00000233996  Pseudogene, parent KDM3AP1 2 0.248
ENSG00000236138 DUX4L26 3 0247
ENSG00000236819 LINC01563 17 0311
ENSG00000250602 Inc-ALDH7A1-1 5 0246
ENSG00000253923 Pseudogene, parent HSPE1 8 0.302
ENSG00000256980 KHDCIL 6 0207
ENSG00000259083 Inc-TRAPPC6B-1 14 0.263
ENSG00000259134 LINC00924 15 0352
ENSG00000260484 Inc-OPRK1-2 8 0263
ENSG00000263612 Inc-ZNF517-4 8 0228
ENSG00000264049 MIR4737 17 0.266
ENSG00000264954 PRR29-AS1 17 0221
ENSG00000265579 Inc-CBLN2-1 18 0.227
ENSG00000271711 Pseudogene, parent SAP30 3 0.264
ENSG00000272071 Inc-PAPD7-2 5 0279
ENSG00000276517 Lnc-TTC27-9 2 0221

Many genes listed in Table 1 are relevant to cervical cancer, related cancers of the
female reproductive system, or cancer in general. For example, in a tissue-based study,
CAPN6 was not detected in normal cervical squamous epithelium but its expression was ob-
served in low-grade and increased further in high-grade squamous cervical intraepithelial
lesions [23]. KDM3A is an epigenetic regulator that has been found to be highly expressed
in cervical cancer tissues and involved in cervical cancer progression [24]. P4AHAT was
included in a five-gene signature to predict cervical cancer prognosis [25]. A previous
study suggested that CMTMb5 is a tumor suppressor that is frequently methylated and thus
loses function in cancer [26], including cervical cancer [27]. RAB6C has been shown to
be aberrantly methylated in cervical cancer compared to normal tissues [28]. ALDH7A1
was among 30 genes that demonstrated a dose-response pattern with NNK, a tobacco
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carcinogen, in cervical cancer samples [29], implicating tobacco may be a causative factor
in cervical cancer development in addition to HPV infection.

Other genes, while not yet described in cervical cancer, have been found to be prog-
nostic in ovarian cancer (RGS11 [30], CHAD and CBLN2 [31], NETO1 [32], HSPE1 [33], and
BIRC6 which Lnc-TTC27-9 is intronic to [34]). Expression of SH3BP5 is reduced in ovarian
cancer samples compared to normal tissue and that silencing of Sab protein expression
may lead to chemo-resistance [35]. Expression of SNTN has high discriminatory power to
differentiate between normal tissue, serous borderline ovarian tumors, and serous ovarian
carcinoma [36]. IL22RA2 is highly expressed in various tissues including those in the female
reproductive system [37]. With respect to genes associated with other cancers, NXT2 was
among 12 genes used to define prognostic risk groups in melanoma [38]. A review article
described that aberrant expression of HS3ST3B1 is observed in many cancers and the
authors posited that HS35T3B1 may act as a tumor-promoting enzyme [39]. Expression of
KRT85 was found to be associated with overall survival in subjects with colon cancer [40].

When using the fitted model using the 2,009 transcripts only 16.9% of subjects were
misclassified, with all misclassifications in Stage II. However, when fitting a parsimonious
model including only the 41 transcripts in Table 1, the misclassification rate decreased to
11.6%.

4. Discussion

The ordinalbayes package is capable of fitting penalized ordinal Bayesian cumulative
logit models to high-dimensional datasets. The package includes methods for monitoring
the mixing of chains (plot) and convergence (print). It also includes a summary function
that permits the user to estimate Bayes factor for testing an interval null hypothesis for
pB;j and for testing the null that 7y; = 0, to assist the user with variable selection. The coef
function uses the posterior distribution to return summary estimates of the penalized f;
and the 7; indicators. The predict (or equivalently, fitted) can be used to obtain the
estimated class probabilities as well as the predicted class for each observation.

When applied to The Cancer Genome Atlas cervical cancer dataset, predictive perfor-
mance was excellent. When restricting attention to only the 41 transcripts having Bayes
Factor > 4, predictive performance yielded an overall misclassification error 11.6%, though
misclassification error increased from 0% for Stage I and III/ VI in the full model to 3.2%
and 14.0%, respectively, in the reduced model. Interestingly, transcripts that were identified
have known associations with cervical cancer, cancers of the female reproductive system,
and other cancer in general. The syntax we used to analyze this dataset appears in the
Appendix.
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MDPI Multidisciplinary Digital Publishing Institute
FIGO International Federation of Gynecology and Obstetrics
TCGA  The Cancer Genome Atlas Project

CRAN  Comprehensive R Archive Network

HPV Human Papilloma Virus

LASSO  Least Absolute Shrinkage and Selection Operator
MCMC  Markov Chain Monte Carlo

DE Double exponential

PSRF potential scale reduction factor

HTSeq  Hign-throughput sequencing

FFPE Formalin-Fixed Paraffin-Embedded

FDR False discovery rate

Appendix A
Appendix A.1

The data used in this example are stored in the finalSet object. Because this object
was derived using the DESeq2 BioConductor package, we load it first. Please note that due
to the use of the default parameters for the number of saved steps per chain (9,999) and the
large size of this dataset, the model took 3.2 days to run on a 13 inch MacBook Pro with
four cores and 16GB RAM. For those interested in running examples using this package, a
smaller version of these data, reducedSet which includes the 41 transcripts, may be used
instead. Alternatively, parameters relating to the number of steps can be reduced.

The regression-based variable inclusion model with random prior to 7t was fit after
loading the ordinalbayes R using the syntax:

library("DESeq2")

library("ordinalbayes")

data(finalSet)

fitted.regressvi.random<-ordinalbayes(Stage™1, data=colData(finalSet),
x=t (assay(finalSet)), model="regressvi",
gamma.ind="random", c.gamma=0.01, d.gamma=0.19, seed=26)

You can evaluate various aspects of the MCMC results of the ordinalbayes object by
issuing the print command.

print(fitted.regressvi.random)

including the psrf to assess model convergence. Please note that to foster reproducibility
of our output, we set the random seed. Subsequent runs using different seeds will produce
different results due to the random nature of the MCMC sampling.

To summarize the fitted model object,

summary .model.fit<-summary(fitted.regressvi.random)

To identify which transcripts had a Bayes factor > 4 when testing Hy; : [;8;| < 0.1 versus Hy; :
")/],3]| > 0.1,

names (which (summary.model.fit$Beta.BayesFactor>4))

Similarly, to identify which transcripts had a Bayes factor > 4 when testing Hy; : 7; =
Oversus Hyj:vj =1,

names (which (summary.model.fit$gamma.BayesFactor>4))
To obtain the ¥ estimates we used the following code:

coefficients<-coef (fitted.regressvi.random)
coefficients$gamma [which(summary.model.fit$gamma.BayesFactor>4)]

To obtain model predictions,
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phat<-predict(fitted.regressvi.random)
table(phat$class, colData(finalSet)$Stage)

1 2 3
1124 28 O
2 0 20 O
3 0 13 57

To determine the adequacy of a more parsimonious model, we then restricted attention
to 41 transcripts having gamma .BayesFactor>4. The reducedSet object is provided in the
ordinalbayes package though due to the random nature of the MCMC sampling, the
number of transcripts having Bayes Factor for o could differ so we demonstrate how we
derived our object.

reducedSet<-finalSet [which(summary.model.fit$gamma.BayesFactor>4),]
fitted.regressvi.reduced<-ordinalbayes(Stage™1, data=colData(reducedSet),
x=t (assay(reducedSet)), model="regressvi",
gamma.ind="random", c.gamma=100, d.gamma=1, seed=26)

Because we were using gamma.ind="random", we changed the parameter values for the
variable inclusion indicator hyperprior to c.gamma=100, d.gamma=1 ensure virtually all
transcripts would be included in each model. If fitting a model using gamma . ind="fixed",
the hyperprior pi.fixed=0.99 would accomplish the same thing. This smaller model only
took 9.1 minutes to complete.

phat.reduced<-predict(fitted.regressvi.reduced)
table(phat.reduced$class, colData(reducedSet)$Stage)

1 2 3
1120 9 1
2 4 45 7
3 0 7 49

This more parsimonious model that included 41 transcripts had a misclassification rate
of 11.6%. The class-specific misclassification rates [Stage I (3.2%), Stage II (26.2%), Stage
II/1IV (14.0%)] may indicate that smaller classes are more difficult to predict .

Table Al. ordinalbayes parameters available for all models.

Parameter Description and default values

Variance for oy in the MCMC chain (default 10)
Variance associated with any unpenalized predictors in the MCMC chain
(default 10)

alpha.var
coerce.var

adaptSteps Number of iterations for adaptation (default 5,000)

burnInSteps Number of iterations of the Markov chain to run (default 5,000)
nChains Number of parallel chains to run (default 3)

numSavedSteps Number of saved steps for each chain (default 9,999)

thinSteps The thinning interval for monitors (default 3)

parallel Run the MCMC on multiple processors (default TRUE)

model Specify which penalized ordinal model to fit (default regressvi)
center If TRUE (default), center the variables to be penalized in the model
scale If TRUE (default), scale the variables to be penalized in the model
seed An integer value for the random seed to ensure reproducibility
quiet If TRUE, suppress output of JAGS (or rjags) when updating models (de-

fault FALSE)
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Table A2. ordinalbayes parameters for each penalized ordinal Bayesian model.

model Parameters in ordinalbayes call to Description
specify
lasso a, b The penalty parameter

A ~Gamma(a, b) (default a =
0.1, b = 0.1)

normalss sigma2.0 The variance for the spike (set to
some small positive value, e.g. 0.01)
sigma2.1 The variance for the slab (set to some
large positive value, e.g. 10)
gamma.ind="fixed", pi.fixed Use a constant prior for 71; of
pi.fixed (default 0.05)
gamma.ind="random", c.gamma, Use a random prior for
d.gamma us ~Beta(c.gamma, d.gamma),

for example, c.gamma = 0.01,
d.gamma = 0.19.

dess a, b The penalty parameter
A ~Gamma(a, b) (default a =
0.1, b =0.1)

lambda0 The parameter value for the spike,
e.g. lambda0 = 20

gamma.ind="fixed", pi.fixed Use a constant prior for 7; of
pi.fixed (default 0.05)

gamma . ind="random", c.gamma, Use a random prior for

d.gamma us ~Beta(c.gamma, d.gamma),

for example, c.gamma = 0.01,
d.gamma = 0.19.

regressvi a, b The penalty parameter
A ~Gamma(a, b) (default a =
0.1, b = 0.1)

gamma.ind="fixed", pi.fixed Use a constant prior for 71; of
pi.fixed (default 0.05)

gamma.ind="random", c.gamma, Use a random prior for

d.gamma 7T ~Beta(c.gamma, d.gamma),

for example, c.gamma = 0.01,
d.gamma = 0.19.
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