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Abstract: Electroencephalography (EEG) is a brain imaging technique in which electrodes are placed 1

on the scalp. EEG signals are commonly decomposed into frequency bands called delta, theta, alpha, 2

and beta.While these bands have been shown to be useful for characterizing various brain states, 3

their utility as a one-size-fits-all analysis tool remains unclear. We present a two-part data-driven 4

methodology for objectively determining the best EEG bands for a given dataset in this paper. First, 5

a decision tree is used to estimate the optimal frequency band boundaries for reproducing the 6

signal’s power spectrum for a predetermined number of bands. The optimal number of bands is 7

then determined using an Akaike Information Criterion (AIC)-inspired quality score that balances 8

goodness-of-fit with a small band count. Data-driven EEG band discovery may aid in objectively 9

capturing key signal components and uncovering new indices of brain activity. 10

Keywords: Electroencephalography (EEG); EEG Bands; Decision Tree, Machine Learning 11

1. Introduction 12

The electrical activity produced by the brain was discovered by Richard Caton. Hans 13

Berger later demonstrated that this activity could be recorded directly from the scalp [1]. 14

This technique for measuring brain activity is called electroencephalography (EEG). It 15

consists of an array of electrodes placed on the scalp that record fluctuations in electric 16

potential arising from the activity of synchronized neural populations [2,3]. 17

A popular method of analyzing EEG is spectral analysis. This consists of decomposing 18

signals onto a frequency basis (Figure 1) and grouping frequencies into spectral bands (i.e. 19

frequency ranges). Commonly used bands are: delta, theta, alpha, and beta [4]. EEG bands 20

correspond to brain phenomena in specific brain areas and contexts. For example, alpha 21

activity from occipital regions (i.e. visual cortex) in relaxed, awake animals track with eye 22

closures [5]. During sleep, alpha band activity is observed at sleep onset, also called sleep 23

spindles (7 – 14 Hz), and delta waves (1 – 4 Hz) appear in deep sleep stages [5]. 24

Despite the widespread use of established spectral bands (e.g. delta, theta, alpha, and 25

beta), there are two potential concerns with the current approach. First, there is significant 26

variability in band boundaries across studies, as shown in Figure 2. This disagreement 27

may be a result of a variety of factors such as hardware, filtering, and experimental task 28

[6]. Second, ideal band definitions may depend on individual characteristics such as: age, 29

genetics, personality, and task performance [7]. 30

These concerns motivate the use of data-driven approaches for discovery of optimal 31

EEG band boundaries. Such an approach tailors EEG bands to a specific experimental 32

context and population in an automated way. Here, we present a method that makes use of 33

decision trees, a popular machine learning framework. Optimal bands are inferred for an 34

input EEG power spectrum. Through this method, suitable EEG bands can be derived in 35

a flexible yet objective manner, which may provide informative and interpretable indices 36

using EEG. 37
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Figure 1. (Top) Example EEG time series signal. (Bottom) EEG signal’s corresponding frequency
spectrum, where the natural logarithm of the signal’s power spectral density is plotted against
frequency.

Figure 2. Box plot illustrating variability between EEG band boundaries across studies. Boxes
indicate typical frequency range of each band. Whiskers represent smallest and largest band edges
observed across studies. Plot adapted from figure in [6].

2. Methods 38

2.1. Intuition 39

This method generates optimal frequency bands based on an EEG signal’s spectral 40

information. The task is framed as a regression problem, and a decision tree is used to 41

solve it. The final decision tree partitions frequency values into bins which produce the 42

best estimation of the input signal’s log power spectrum. 43

There are two main benefits to using a decision tree in this context. First, due to the 44

structure of decision tree regression, frequency values are grouped into true bins. In other 45

words, frequency values in a discovered band are adjacent, which may not be guaranteed by 46

other regression techniques. Second, is ease-of-use. There are many efficient and ready-to- 47

use implementations of decision tree optimization across many computational frameworks 48

[8–11]. 49
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2.2. Decision Trees 50

Decision trees are a widely-used and intuitive machine learning approach. Typically, 51

they are used to solve prediction problems. That is, identifying a discrete target class 52

(classification) or estimating a continuous target value (regression) from a set of predictor 53

variables [12]. 54

Data can be used to grow decision trees in an optimization process called training. 55

Training requires a training dataset, which consists of predictor variables labeled with 56

target values. A standard strategy for training a decision tree is recursively partitioning 57

data via a greedy search method. The search determines the gain from each splitting option, 58

and then chooses the one that provides the greatest gain [12,13]. Splitting options are the 59

observed predictor variable values in the training dataset. Gain is determined by the split 60

criterion e.g. Gini impurity or mean squared error (MSE). 61

For example, in a regression task, data records are recursively split into two groups 62

such that the weighted average MSE of the target value is minimized from the resulting 63

groups. This splitting procedure can continue until all data partitions are pure, meaning 64

every data record in a given partition corresponds to a single target value. Although 65

this implies decision trees can be perfect estimators, such an approach would result in 66

overfitting. Therefore, the trained decision tree would not perform well on data sufficiently 67

different than the training dataset. 68

One way to combat the overfitting problem is hyperparameter tuning. Hyperpa- 69

rameters are values that constrain the growth of a decision tree. Common decision tree 70

hyperparameters are: maximum number of splits, minimum leaf size, and number of 71

splitting variables. The key result of setting decision tree hyperparameters is to limit the 72

tree’s size, which can help avoid predictions only suitable to the training dataset. In this 73

work, we use decision tree hyperparameters to control the number of discovered frequency 74

bands. 75

2.3. Band Discovery with Decision Trees 76

Optimal EEG frequency bands can be estimated using the decision tree framework. 77

Here, optimal means the frequency groupings that best reproduce an input signal’s log 78

power spectrum for a set number of bands. To achieve this goal, a decision tree is used to 79

solve a regression problem in the usual way. A visual overview of the method is shown in 80

Figure 3. 81

We use a single predictor variable (frequency) to estimate a single target variable 82

(natural logarithm of the power spectral density). The decision tree then splits frequency 83

values into subgroups and assigns each subgroup a single target value estimation. A greedy 84

search of the decision tree parameter space yields frequency splits that best reproduce 85

target values. Thus, through this optimization process we automatically obtain the optimal 86

member-adjacent frequency bands for a predefined band count. 87
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Figure 3. (Left) Visual summary of a decision tree partitioning frequency values based on the natural
logarithm of the power spectral density. (Right) Visualization of decision tree splits of frequency
values with power spectra.

2.4. Quality Score for Band Boundaries 88

Although decision tree optimization can be leveraged to identify optimal EEG fre- 89

quency bands, this method requires the number of bands to be predetermined. Instead of 90

choosing a band count manually, here we describe an objective data-driven strategy. The 91

choice of band count is framed as an optimization problem, where we define an objective 92

that can be optimized with respect to the band count. 93

One choice of objective is the r2 regression score. In this context, the r2 value cor- 94

responds to how well a set of decision tree derived EEG band boundaries reproduce an 95

underlying power spectrum. While the decision tree optimization strategy described pre- 96

viously will ensure band boundaries are optimal for a given number of bands, different 97

choices of band count will correspond to different r2 values. An example of this is shown 98

in Figure 4, where the r2 regression scores of several different choices of band count are 99

plotted for the same dataset. 100

However, the r2 score is a problematic objective choice, since it strictly increases with 101

the number of bands. Therefore, the maximum regression score would correspond to the 102

largest possible number of bands i.e. a frequency “band” for every observed frequency 103

value. One simple solution is to introduce an objective that incorporates both the r2
104

regression score and a penalty for the number of bands. This is the goal of popular measures 105

such as the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) 106

[14]. Taking inspiration from AIC, we construct an empirically derived quality score (QS) 107

to help choose a model that balances the best regression score while limiting the number of 108

bands. 109

AIC is a measure of model quality, where smaller values imply better models [14,15]. 110

It is defined in terms of the maximum value of the likelihood function for the model, L, and 111

the number of parameters in the model, k. 112

AIC = − log L2 + 2k
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Figure 4. r2 regression scores plotted against the number of frequency bands included in the decision
tree model. The data used to derive these bands and r2 values is the artificial data described in Case
Study 1 in Section 3.1. Colored dashed vertical lines highlight large jumps in r2 and are labeled by
the corresponding number of bands.

The quality score (QS) we employ closely resembles AIC with two modifications. 113

First, in lieu of the squared maximum likelihood value, we use the r2 regression score. 114

Since r2 values are between [0, 1], the first term in the QS equation below will be between 115

[0, ∞), however this range is not very large in practice e.g. for r2 ≥ 0.135, the first term 116

is approximately between [0, 2]. Second, we divide the second term by N, where N is 117

the maximum number of bands, or equivalently, the total number of observed frequency 118

values. This ensures the second term in the equation below takes values in the range [0, 2]. 119

QS = − log r2 + 2k/N

QS provides a way to compare EEG band boundaries in way that accounts for both 120

goodness-of-fit and band count. It will typically take values between 0 and 2, where smaller 121

values correspond to better models. By computing the QS for every possible band count, 122

we can choose the best EEG band boundaries as the choice with the smallest QS. 123

Although QS takes inspiration from AIC, a theoretically grounded quantity, it’s deriva- 124

tion is empirical, therefore it may not be most suitable for all applications. Furthermore, 125

there are countless other objective choices to optimize band count. The decision tree method 126

described in Section 2.3 is independent of this band count optimization step, and thus can 127

be enhanced by a variety of choices. 128

2.5. Software Implementation 129

This two-part technique is implemented using the Sci-Kit learn Python library, a popu- 130

lar and free machine learning software [8]. Our code is open-source and publicly available 131

at the GitHub repository: https://github.com/mi3nts/decisiontreeBinning. Although 132

Python is used for our implementation, other statistical software packages can be readily 133

used to implement this method [9–11]. 134

3. Results 135

In the following subsections we explore two case studies which apply this data-driven 136

method for EEG frequency band discovery to an artificial and open-source experimental 137

dataset, respectively. A Python script to reproduce both case studies are freely available at 138

the GitHub repository: https://github.com/mi3nts/decisiontreeBinning. 139
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3.1. Case Study 1: Artificial Data 140

As a first demonstration of the method we produce an artificial EEG power spectrum 141

as shown in Figure 5. The spectrum consists of the characteristic 1/f shape for EEG signals 142

with added white noise. 143

Figure 5. Artificial power spectra for initial demonstration of data-driven method. The spectrum
consists of the characteristic 1/f curve for EEG signals with added white noise.

The results of applying decision tree based band discovery to the artificial power 144

spectrum is depicted in Figure 6 for 5 different choices of band count. In each plot, the true 145

power spectrum is shown as a solid blue line, the decision tree estimated spectrum is plotted 146

as a dashed orange line, and the discovered band boundaries are indicated by dashed 147

vertical red lines. The plots are titled according to the number of bands and r2 (coefficient 148

of determination) regression score. The r2 score indicates how well the discovered bands 149

reproduce the original spectrum. As a comparison, the typical boundaries of the delta, 150

theta, alpha, and beta bands are shown at the bottom of Figure 6 [6]. The r2 score of the 151

standard bands is computed by comparing the average power value within each band with 152

the true values. 153

The greedy search algorithm used in decision tree regression preserves band bound- 154

aries when new bands are added. In Figure 6, for example, 7.3 Hz is a band edge in every 155

case (i.e. from 2 bands to 6 bands). It is interesting to note, the discovered 4 bands case 156

is nearly identical to the typical delta, theta, alpha, and beta band boundaries according 157

to [6]. Thus, it may be that the typical band boundaries are a good representation of this 158

characteristic power spectrum. 159

In Figure 6, as more bands are added, the r2 regression score increases. A diagrammatic 160

representation of this observation is shown in Figure 4, where model regression scores are 161

plotted against the number of bands. Since there are 150 unique frequency values in this 162

first artificial dataset, the maximum number of bands is 150. Colored dashed vertical lines 163

indicate band choices which exhibit a large jump in the r2 score. 164

Since the r2 score strictly increases with the number of bands, using it as an objective 165

from which to choose the band count would always result in a “band" for every observed 166

frequency value. However, the AIC-inspired quality score (QS) defined in Section 2.4 does 167

not suffer from this issue. This is illustrated in Figure 7, which plots QS against the number 168

of bands. A minimum value is observed at 6 bands, implying the best choice of band count 169

for this spectrum is 6. 170
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Figure 6. Band comparisons for artificial power spectrum. The true power spectra are plotted with
solid blue lines, predicted spectra are plotted with dashed orange lines, and band boundaries are
indicated by dashed vertical red lines. The plots are titled according to their number of bands and
R2 regression score. For comparison, typical values of the standard 4 bands (delta, theta, alpha, and
beta) according to [6] are shown at in the bottom plot.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 March 2022                   doi:10.20944/preprints202203.0145.v1

https://doi.org/10.20944/preprints202203.0145.v1


Version March 8, 2022 submitted to Sensors 8 of 12

Figure 7. Empirically derived quality score (QS) plotted against number of bands for case study of
an artificially generated power spectrum. The r2-based fitness term in QS is shown as a dashed blue
line, the band count penalty term is plotted as a dashed orange line, QS is plotted as a green line, and
the minimum QS value is indicated by a yellow star.

The top plot in Figure 8 outlines the discovered bands employing a quality score (QS) 171

minimization strategy. The plot title indicates the number of bands (6), r2 regression score 172

(0.94), and the quality score of the band definitions (0.14). The bottom plot in Figure 8 173

similarly outlines the standard bands, titled with the same metrics. The QS of the standard 174

bands is computed using the QS equation in Section 2.4 with k=4. Although the discovered 175

bands include more parameters, the QS is about half than that for the standard bands, thus 176

it is a better characterization of the underlying spectrum based on this objective. 177

Figure 8. Comparison of discovered and standard bands for case study of an artificially generated
power spectrum. Plots are titled by the number of bands, r2 regression score, and the quality score of
the respective band boundaries. True power spectrum is plotted as a solid blue line. (Top) Discovered
bands using the proposed decision tree method employing a minimum quality score (QS) technique.
Discovered band boundaries are indicated by dashed vertical red lines. (Bottom) Typical standard
band boundaries taken from review by Newsom [6]. Standard band boundaries are indicated by
dashed vertical dark blue lines.

3.2. Case Study 2: Experimental Data 178

We evaluate the band discovery method on experimental data from the PhysioNet 179

dataset: EEG During Mental Arithmetic Tasks [16,17]. EEG data were collected monopolarly 180

using the Neurocom EEG 23-channel system (Ukraine, XAI-MEDICA). The electrodes were 181

placed on the scalp according to the International 10/20 montage. A 30 Hz cut-off frequency 182
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high-pass filter and a 50 Hz power line notch filter were used. The data are artifact-free 183

segments of 60 seconds. In preprocessing, Independent Component Analysis (ICA) was 184

used to eliminate artifacts (eyes, muscles, and cardiac). For this case study, the baseline 185

EEG recording from Subject 00 is used. Occipital electrodes (O1 and O2) are averaged to 186

produce an aggregate occipital EEG signal. 187

Figure 9. (Top) Time series of aggregated occipital EEG signal. (Bottom) Power spectral density
plotted against frequency for aggregated occipital EEG signal plotted from approximately 1 – 30 Hz.

The aggregated occipital time series signal and its corresponding power spectrum are 188

shown in Figure 9. Due to the signal preprocessing scheme used here, the power spectrum 189

does not follow the typical 1/f spectrum. Nevertheless, an alpha rhythm peak is observed. 190

Although this experimental power spectrum is characteristically different than the previous 191

artificial spectrum, the EEG bands discovered by our data-driven will automatically adapt 192

to it. 193

We repeat the two-part strategy from Case Study 1. First, we derive band boundaries 194

using the proposed decision tree strategy for every possible choice of band count (i.e. 2 to 195

60 bands). Second, we use the quality score (QS) to identify the best number of bands. The 196

quality score (QS) is plotted against the number of bands in Figure 10. The minimum QS 197

value occurs for the 6 bands case. 198

Figure 11 compares the bands discovered by applying the proposed band discovery 199

strategy to the experimental data (top plot), the optimal bands from Case Study 1 (middle 200

plot), and the standard EEG band boundaries from [6] (bottom plot). The discovered bands 201

from the experimental data (top plot) outperforms the other band choices, with both a 202

significantly higher r2 score and lower (better) QS. The poor performance of the discovered 203

bands from Case Study 1 highlights the value of tailoring EEG bands to specific datasets. 204

Additionally, the bands discovered from the experimental data isolate spectral features. For 205

example, the peak in power spectral density between 10 and 12 Hz is partitioned into a 206

dedicated band. 207
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Figure 10. Empirically derived quality score (QS) plotted against number of bands for case study of
experimental EEG data. The r2-based fitness term in QS is shown as a dashed blue line, the band
count penalty term is plotted as a dashed orange line, QS is plotted as a green line, and the minimum
QS value is indicated by a yellow star.

Figure 11. Comparison of discovered and standard bands for case study of experimental EEG data.
Plots are titled by the r2 regression score and the quality score of the respective band boundaries. True
power spectrum is plotted as a solid blue line. (Top) Discovered bands using the proposed decision
tree method employing a minimum quality score (QS) technique. Discovered band boundaries are
indicated by dashed vertical red lines. (Middle) Discovered bands derived from artificial power
spectrum in Case Study 1. Discovered band boundaries from Case Study 1 are indicated by dashed
vertical green lines. (Bottom) Typical boundaries of standard bands are taken from review by
Newsom [6]. Standard band boundaries are indicated by dashed vertical dark blue lines.

4. Discussion 208

The proposed method for automated EEG band discovery has two key strengths. 209

First, the method provides a way to determine frequency bands that are representative 210

of the underlying power spectrum while keeping the number of bands to a minimum. 211

Second, the method is readily accessible since it is based on decision tree optimization, 212
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which has many efficient and ready-to-use implementations [8–11]. Additionally, we 213

made our implementation of the technique open-source and publicly available (https: 214

//github.com/mi3nts/decisiontreeBinning). 215

5. Future Works 216

Since the presented approach is agnostic to how the power spectrum is generated, it 217

can readily be applied to other power spectra (e.g. audio signals, hyperspectral imaging). 218

Hyperspectral imaging, for instance, captures images with layers beyond the standard red, 219

green, and blue. This provides a power spectrum for each pixel of a hyperspectral image. 220

Using the proposed band discovery method, interesting spectral features in hyperspectral 221

images can be detected in a self-supervised way. 222

Additionally, this method can be applied to other types of predictor variables. For 223

example, using time as the predictor variable and a time varying quantity (e.g. heart rate) 224

as the target, temporal epochs will be discovered, as opposed to frequency bands. 225

6. Conclusions 226

EEG serves as a window to underlying neural processes. Spectral analysis of EEG ex- 227

amines the oscillations in electric potentials arising from the brain. Despite the widespread 228

use of established delta, theta, alpha, and beta bands for EEG, their boundaries vary widely 229

across studies, which may be a result of variations in experimental details and participant 230

differences. This motivates the use of objective and data-driven approaches to EEG band 231

discovery. 232

In this work, we leveraged the readily available optimization of a decision tree for 233

regression to discover EEG bands most appropriate for a given dataset and predetermined 234

number of bands. The best choice of band count was then determined using an AIC- 235

inspired quality score. We applied the presented method to both artificial and open-source 236

experimental data. Discovered bands isolated spectral features into dedicated bands and 237

outperformed the standard band definitions. Data-driven EEG band discovery may provide 238

new indices of neural activity which can adapt to a variety of experimental and subject 239

characteristics. 240
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EEG Electroencephalography
BIC Bayesian Information Criterion
AIC Akaike Information Criterion
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