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Abstract: This article introduces new method using ANN to control SVC in order to correct the source power factor of low voltage 
network.  Two ANN approaches are investigated to design accurate and fast power factor correction (PFC) controller. First approach 
uses simple ANN (SANNA). Second approach uses cascaded ANN (CANNA). ANN regression, performance and the calculated 
error for both approaches are investigated to select between the two approaches.  CANNA is selected as a better solution and it used 
to build the ANN PFFC controller using database, generated by MATLAB-Simulink, for standard three low voltage levels (240V, 
220V and 110V). Nine test cases are carried out to validate the performance of proposed ANN PFC controller with a network has 
variable loads and low power factor (0.6 approximately). In order to extend the use of the controller to other voltage levels not 
included in the training process of the cascaded ANN, only the SVC is resized. Another nine cases are carried out with the same 
loads using the same ANN controller, as it is, to test its performance with the extended voltage level range (415V, 230V and 120V). 
The results show accurate and fast response in all test cases. 
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1. Introduction 

Active power is the amount of power that is actually usable, and it is known also as Real Power, while reactive power is the part of 
complex power that corresponds to storage and retrieval of energy rather than consumption. Apparent power is the vector sum of 
real power and reactive power. Power factor at the source is the ratio of the delivered real power to the apparent power consumed 
by the total connected load. 
When power source is connected to the network, different loads with different power factor values consume active and reactive 
power from the source. As a result, power factor at the source varies with loading [1]. 
One of the negative consequences of the low power factor is the higher current that will flow through the network. This higher 
current results in a greater voltage drop across the OHTL's and cables, especially if these line are marginally sized and/or very long. 
For loads connected to the same network with constant power such as motors, this voltage drop causes additional increase in the 
current.  This results an energy loss due to heat dissipation from cables and transmission lines. This energy produces exponential 
temperature rise with time in the cable conductor material and insulators.  If the generated temperature rise rate is relatively high 
in such way that the heat dissipation from the cable is less than the heat rise in the insulation, this may cause by time degradation of 
the insulation electrical properties. If the thermal overload cause is not eliminated in a very short time, the cable insulation will 
damage, whish result faults and downtime in the electrical network. Which can be translated into cost, loss of production and 
dissatisfaction to the clients. Therefore, a poor power factor can contribute to equipment instability and failure, as well as 
significantly higher than necessary energy costs since it means that more current is required to perform the same amount of work. 
By optimizing and improving the power factor, power quality is improved, reducing the load on the electricity distribution system. 
[2-6]. 
Another negative consequence of low power factor is on the electrical equipment sizing.  It causes the electrical equipment, such 
as cables, transformers and generators to be selected for larger than their rated values. In another meaning, low power factor reducing 
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the production capacities of the electrical equipment, and limit the capacity of transmission and distribution lines [7,8]. In order to 
get rid of this effect, the power factor needs to be corrected. 
In many countries, the clients are charged not only for their active power consumption, but also for their reactive power demand.  
This extra amount is because of the low power factor. The power factor penalty is an incentive for the customer to pay attention to 
the power factor at their operation and consider installation of power factor correction capacitors rather than pay a penalty. 
From all the above, it is necessary to improve the power factor to improve the power system quality and to reduce the operational 
costs.  An ideal power factor would be 1.0.  In ac network, it is impossible maintaining a perfect power factor of 1.0 without using 
Power Factor Correction (PFC) system.  This can be simply achieved by adding a controlled capacitor banks in parallel to the loads. 
However, there is other more complex methods such as synchronous condensers are also used [9]. But, capacitor PFC modules 
become nowadays an essential building blocks of any industrial AC power distribution network to ensure minimum downtime or 
breakdowns in the machinery [10]. 
Artificial intelligent techniques such fuzzy logic, artificial neural network and generic algorithms are used widely in reactive power 
control and power factor correction for different application such as single phase power factor correction and converters power 
factor [11-14] 
In case the power factor that is needed to be corrected varies with loading, PFC capacitor bank needs to be switched between its 
different stages to achieve the correct amount of positive reactive power from the capacitor that compensates the negative reactive 
power consumed by the load. A special control is required always when design such switching system for capacitor to consider the 
overvoltage transient and to limit the inrush current [15,16].  
The most common structure of Static Var Compensator (SVC), is a parallel combination of controlled reactor and fixed shunt 
capacitor. The thyristor switch assembly in the SVC controls the reactor. The firing angle of the thyristor controls the voltage across 
the inductor and thus the current flowing through the inductor. By this way, the net reactive power draw by the SVC can be controlled, 
and hence the power factor can be smoothly corrected and improved [17-19]. 
Focusing in Artificial Neural Network (ANN) application in power factor correction, ANN is used efficiently with different method 
to design intelligent controllers.  In [20], the paper used fitting ANN algorithm to predict suitable duty cycle is to guide and control 
the DC-DC converter to reduce the phase shift between grid voltage and grid current as possible to have maximum PF which is 
unity PF. The algorithm used 2 input (Grid voltage and Theta) and one output (Duty cycle).  The paper introduced power factor 
controller for specific converter size, and cannot be used, as is, with different converter size. For another controller, the same 
procedure and validation need to be repeated. In [21], the paper used clustering ANN technique to improve the power factor of 
electrical generation. This is approach is an optimizing approach rather than actual reactive power control to improve the power 
factor to unity.  In [22], ANN has been applied to adjust power factor correction automatically. The results obtained indicate that 
the implementation of ANN has a better performance than the conventional method for tackling the problem, has closer value to the 
set point value. However, the results were not satisfactory as in many cases the controller failed tom improve the power factor to a 
point higher than the set point.  In [23], SVC, that is based on ANNs controller, is employed to the proposed case study system in 
order to reduce the computational time of finding the optimum firing angles. The neural control system has three inputs which are 
the 3-phase load reactive power. The output of ANNs is the optimal firing angles that are calculated from GSA algorithm.  

In this article, Cascaded ANN (CANN) is used with SVC to tune the voltage of the reactor, and hence control the total reactive 
power at source, in order to improve the power factor at source for the connected single phase variable load. The article considers 
exactly the same controller unit to be used with different standard low-voltage levels of power source. In section II, the rating of 
electrical load and SVC are introduced. Section III provide the steps that were followed to build the ANN PFC controller. Section 
IV illustrates the ANN PFC controller performance, its test cases and discuss the results. The summary and conclusion are given in 
Section V.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2022                   doi:10.20944/preprints202203.0132.v1

https://doi.org/10.20944/preprints202203.0132.v1


 3 
 

2. Electrical Load, SVC Rating and Generation of Database  

A group of eight inductive loads with different ratings and low power factor of approximately 0.6 are used to model single phase 
circuit powered from LV source. This power factor of 0.6 is practical value for aggregated inductive loads that are connected to low 
voltage distribution circuit [24]. These load are switched on to the power source in sequence in specific time intervals.      

As Power Factor Correction (PFC) usually be required where a system has a power factor of less than 0.9[25], therefore the capacitor 
and the reactor of the SVC that is used to correct the power factor is sized to supply the required reactive power that can correct the 
power factor to unity.  

The circuit configuration is illustrated in Figure 1 and the load rating are listed in Table 1. 

 
Fig. 1: Single phase circuit with SVC  

 

Table 1:  Loading rates 

Interval Loading stage Load Type 
Base 

Voltage 

Active Power 

kW 

Reactive Power 

kVAR 

Power 

Factor 

T0 Load 1 R L Series 240 2.25 3 0.6 

T1 Load  1 + 2 R L Series 240 6.75 9 0.6 

T2 Load 1+2+3 R L Series 240 18 24 0.6 

T3 Load 1+2+3+4 R L Series 240 48.375 62.5 0.6121 

T4 Load 1+2+3+4+5 R L Series 240 78.75 103 0.6074 

T5 Load 1+2+3+4+5+6 R L Series 240 95.625 125.5 0.6061 

T6 Load 1+2+3+4+5+6+7 R L Series 240 105.75 139 0.6055 

T7 Load 1+2+3+4+5+6+7+8 R L Series 240 111.375 146.5 0.6052 
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From the above table, in order to insure power factor equal to one is achieved for all loading stages, the SVC capacitor and reactor 
need to be selected with rating higher than 146.5 kVAR each, calculated at base voltage of 240Volt, in order to compensate the 
maximum reactive power of the load when the firing angle is 180o. The nearest standard rating for the SVC component is 150kVAR. 
This gives approximately 2.3% extra reactive power margin stored in the SVC that may be required to compensate any reactive 
power consumed in short cable.  

3. ANN PFC Design: 

By tuning the firing angle of the thyristor, the voltage across the reactor can be adjusted to control the reactive power delivered from 
SVC. 

Equation (1) and (2) give the general formulas for the r.m.s value of reactor current (ISVC-L) and voltage (VSVC-L) respectively:  

Where: 

ω =2πf radian/second  
α = Firing angle 
β = Extinction angle (cut-off angle) 
θ = tan-1 (l/r) 
l = Load Inductance 
r = Load Resistance 
t = Time 
z = Load impedance.  

Since the conducting angle δ = β-α cannot exceed π, the firing angle α may not be less than θ and the control range of the firing 
angle is π≥α≥θ [26-27] . 

The SVC reactive power at any fining angle can be calculated using Equation (1 and (2), however, iterative method using MATLAB-
Simulink tool can be used as a practical and fast method to determine the relation the reactive power that can be obtained from the 
SVC (from 0-150kVAR) at any firing angle value between 0O and 180O [28- 29].  Fig 2 illustrates the proposed Simulink model 
that will is used to build the required database for the ANN PFC:  
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Figure 2: Simulink Model to obtain the required database for ANN PFC   

From this Simulink model, reactive power (QSVC) that can be obtained from SVC and the voltage across the reactor (VL) can be 

determined for any firing angle (α) value and for any selected source voltage (Vn).  
This model is used to obtain QSVC and  VL  for α from 0-180O for three different standard nominal voltages for source, 240V, 220V 
and 110V as main data base to build the ANN PFC controller. Figure 3 and Figure 4 illustrate the result. 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 3: QSVC for different Voltage levels      Figure 4: VL foe different voltage level   

4. ANN model 

The PFC controller has to compensate accurately the reactive power that required to correct the power factor to preset value. This 
can be achieved by measuring the reactive power at source, and determine the required reactive power that need to be compensated 
to achieve the preset power factor value, then trigger the SVC with the proper firing angle to produce the correct QSVC.  
Regardless the voltage level that can be different than 240V, 220V, and 110V, if the connected load has the same maximum reactive 
power, the proposed ANN PFC control unit needs to be still usable for any other low voltage level. 
In the design of the proposed ANN PFC controller, two input signals are used, source nominal voltage and SVC reactive power 
QSVC, and the output signal (Target) from the ANN controller is the firing angle. In order to achieve the best possible results for 

0 20 40 60 80 100 120 140 160 180

Firing Angle

0

0.2

0.4

0.6

0.8

1

1.2

P
U

 R
ea

ct
iv

e 
P

ow
er

 @
 1

50
kV

A
R

 B
as

e

VAR240

VAR220

VAR110

0 20 40 60 80 100 120 140 160 180

Firing Angle

0

0.2

0.4

0.6

0.8

1

1.2

P
U

 N
om

in
al

 V
ol

ta
ge

  @
 2

40
V

 b
as

e

VL240

VL220

VL110

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2022                   doi:10.20944/preprints202203.0132.v1

https://doi.org/10.20944/preprints202203.0132.v1


 6 
 

ANN training to design the PFC controller, two different approaches were investigated. First approach uses single ANN, however 
the second approach uses two cascaded ANN.    

A. PFC based on Single ANN approach (SANNA):  

In this approach, the database obtained from Figure 3 is used to train the ANN. The structure of ANN includes one hidden layer 
with 20 nodes. The training input matrix includes 2x218091elements. The training output vector includes 218091 elements, test 
input matrix includes 2x21809 and the test output vector include 21809 elements. MATLAB default criteria to terminate the trials 
in the training process is use. Figure 5 illustrate the ANN structure that are used in training the algorithms. Figure 6 shows the 
Regression results and the Performance.  
 
 
 
 
 

 

 

 

 

 

Figure 5: Structure for SANNA 

 

Figure 6: Results for SANNA 

B. PFC based on Cascaded ANN Approach (CANNA): 

0 0.2 0.4 0.6 0.8 1

Target

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 0
.0

00
29

Training: R=0.99979

Data

Fit

Y = T

0 0.2 0.4 0.6 0.8 1

Target

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 0
.0

00
21

Test: R=0.99977

Data

Fit

Y = T

0 0.2 0.4 0.6 0.8 1

Target

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t ~

= 
1*

Ta
rg

et
 +

 0
.0

00
28

All: R=0.99978

Data

Fit

Y = T

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

10 -4

10 -2

10 0

M
ea

n 
S

qu
ar

ed
 E

rr
or

  (
m

se
)

Best Training Performance is 2.5862e-05 at epoch 1000

Train

Test

Best

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2022                   doi:10.20944/preprints202203.0132.v1

https://doi.org/10.20944/preprints202203.0132.v1


 7 
 

Figure 3 gives a relation between QSVC and α for different nominal voltage levels.  Figure 4 gives  a relation between VL and α for 
different nominal voltage levels. Based on these two relation, it is obvious that direct relation between QSVC and VL can be obtained 
using ANN.   
In cascaded approach, the voltage across the reactor (VL) obtained from an intermediate trained ANN that its input signals are QSVC 
and nominal voltage (Vn), and its output signal is the estimated (VL). Then this VL output is used as an additional input to train input 

the next ANN which its input signals are QSVC,Vn and VL, and it output signal is  the firing angle (α). Figure 7 illustrates the 
structure of the cascaded ANN that will be used to build the PFC controller.  

 
Figure 7: Structure of CANNA 

 
To be able to compare the results correctly between SANNA and CANNA, same algorithm with same number of epoch is used, 
Figure 8 and Figure 9 illustrate the Regression results and the Performance results for the intermediate ANN and Main ANN 
respectively.  

 

Figure 8: Results for Intermediate ANN for CANNA 
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Figure 9: Results for Main ANN for CANNA 

 

The performance results indicated in Figure 6, Figure 7 and Figure 8 show that for both Intermediate ANN and Main ANN in 
CANNA, better performance is achieved compared with the performance of SANNA. By Comparing the ANN regression of 
SANNA with the Main ANN of the CANNA, it is shows that for CANNA the regression is better, which indicates that error is less 
comparing with SANNA, considering that Intermediate ANN regression is 1 and it will not contribute in the error value. 
 
Figure 10 and Figure 11 illustrate the errors for SANNA and CANNA. From these two graphs, the results show that the maximum 
error in SANNA is 0.08968 however the maximum error in Cascaded Approach is 0.03653.  
 

 
Figure 10: Error Results for SANNA 
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Figure 11: Error Results for CANNA 

 
From the above results and analysis, it can be concluded that CANNA is better than SANNA, hence it will be selected to be used to 
build the ANN PFC controller.   

5. ANN PFC model and Results 

The ANN PFC controller based on CANNA is connected to the single phase load circuit that illustrated in Figure 1. The complete 
Simulink circuit is illustrated in Figure 12.   

 

Figure 12: Complete Simulink circuit with CANNA PFC 

 

In order to validate the performance of the CANNA PFC controller, two groups of tests are carried out. The first test is to validate the controller 

performance in correcting the power factor to achieve different preset values using the same source voltages that were used in the ANN training 

process. The second test is to verify the capability of using the same controller, as it is, using voltage levels different than the values used in the 

training process.  The chosen voltages for Group 2 test cases covers the standard nominal low voltage values higher and lower to the base voltage 

of Group 1 (240Volt). Table 2 lists the test cases for the First Groups. In this test cases, the SVC rating is kept without change calculated at 240V 

base voltage.   

Table 2: Group 1 test cases 

Group 

No. 

Base Voltage 

(Volt) 

Source Voltage 

(PU) 

SVC  Base 

voltage (Volt) 

SVC Rating 

(kVAR) 

Desired Power 

Factor 
Results Figure 

1 240 1 240 150k 1, 0.95, 0.9  Fig. 13,  Fig. 14, Fig 15 

1 240 220/240 240 150*220/240 1, 0.95, 0.9 Fig. 16, Fig. 17 Fig. 18 

1 240 110/240 240 150*110/240 1, 0.95, 0.9 Fig. 19, Fig. 20 Fig. 21 
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Figure 13: ANN PFC, 240V, Desired PF=1 

 

 

Figure 14: ANN PFC, 240V, Desired PF=0.95 

 

 
Figure 15: ANN PFC, 240V, Desired PF=0.90 
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Figure 16: ANN PFC, 220V, Desired PF=1 

 

 
Figure 17: ANN PFC, 220V, Desired PF=0.95 

 

 
Figure 18: ANN PFC, 220V, Desired PF=0.90 
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Figure 19: ANN PFC, 110V, Desired PF=1 

 

 
Figure 20: ANN PFC, 110V, Desired PF=0.95 

 

 

Figure 21: ANN PFC, 110V, Desired PF=0.90 
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The results of Group 1 test cases show the successful performance for the ANN PFC to adjust precisely the source power factor to 
the preset values. The response of the controller takes short time of approximately 40-ms with very acceptable damping behavior.     
In the second group, in order to fit the result of the trained ANN to the new source voltage levels, each new voltage is used as base 
voltage for SVC and for ANN input, and the ANN PF is used, as it is, Table 3 lists the test cases for the second Groups.  
Table 3: Group 2 test cases 

Group 

No. 

Base Voltage 

(Volt) 

Source Voltage 

(PU) 

SVC  Base 

voltage (Volt) 

SVC Rating 

(kVAR) 

Desired Power 

Factor 
Results Figure 

2 415 1 415 150 1, 0.95, 0.9    Fig.22, Fig.23 Fig. 24 

2 230 1 230 150 1, 0.95, 0.9    Fig. 25, Fig.26 Fig.27  

2 120 1 120 150 1, 0.95, 0.9    Fig. 28, Fig. 29, Fig,30 

 

 

Figure 22: ANN PFC, 415V, Desired PF=1 

 

 
Figure 23: ANN PFC, 415V, Desired PF=0.95 
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Figure 24: ANN PFC, 415V, Desired PF=0.9 

 

Figure 25: ANN PFC, 230V, Desired PF=1 

 

 

Figure 26: ANN PFC, 415V, Desired PF=0.95 
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Figure 27: ANN PFC, 230V, Desired PF=0.90 

 
Figure 28: ANN PFC, 120V, Desired PF=1 
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Figure 29: ANN PFC, 120V, Desired PF=0.95 

 

 
Figure 30: ANN PFC, 120V, Desired PF=0.90 

The test cases for Group 2 show that the ANN PFC function can be extended to different voltage levels to that are used in the 
training process, and still its performance is accurate to correct the source power factor to the desired value up to the maximum 
capacity of the SVC. If the preset power factor requires higher reactive power beyond SVC capacity, the ANN PFC set the thyristor 
firing angle to maximum in order to deliver to the system maximum available reactive power from the SCV capacitor. Figure 21 
and Figure 22 present clearly this case when the required reactive power is higher than the SVC capability.  

6. Conclusion 

The article started with comprehensive survey to discuss the different direction in technology to design PFC controllers. Then the 
paper investigated two new different approaches to design ANN PFC controller that tunes SVC to correct the source power factor 
of single phase circuit. 
The first approach trains a simple ANN (SANNA) using two input signals; nominal voltages (Vn) for three different voltage levels, 
and the related reactive power values (QSVC) generated from SVC at different firing angle values. The output signal from the ANN 
controller is the firing angle (Target). The second approach has used cascaded ANN (CANNA) with same input signal as SANNA. 
In this approach an intermediate ANN is used to predict the SVC reactor voltage, which is utilized as third input to the main ANN 
to determine the required firing angle. The training regression and performance and as well as the calculated error for both 
approaches showed that CANNA is better than SANNA. 
Then, CANNA PFC was used in single phase circuit with variable load at low power factor (approximately 0.6). Nine 9 test case 
were carried out to confirm that the ANN controller performs accurately.  
To use the same controller with its trained algorithm as general PFC controller for different voltage levels not included in the ANN 
training process, the SVC component were resized to fit the base ANN controller (150kV at 240 Volt). This was done by considering 
the new voltage is the base voltage. Another 9 test cases were carried out using the same single phase circuit to validate the operation 
of the ANN PFC controller when it is used in extend range for voltage levels.  
From the 18 test case that were carried out with differ voltages levels and different loading scenarios, the results show that ANN 
PFC controller performance is accurate and fast even with the extended voltage range.   
For future work, the same CANNA may be used as reactive power compensator to stabilize the network voltage profile.  
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