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Abstract: As the policies and regulations currently in place concentrate on environmental protection 

and greenhouse gas reduction, we are steadily witnessing a shift in the transportation industry 

towards electromobility. There are, though, several issues that need to be addressed to encourage 

the adoption of EVs at a larger scale. To this end, we propose a solution capable of addressing 

multiple EV charging scheduling issues, such as congestion management, scheduling a charging 

station in advance, and allowing EV drivers to plan optimized long trips using their EVs. The smart 

charging scheduling system we propose considers a variety of factors such as battery charge level, 

trip distance, nearby charging stations, other appointments, and average speed. Given the scarcity 

of data sets required to train the Reinforcement Learning algorithms, the novelty of the 

recommended solution lies in the scenario simulator, which generates the labelled datasets needed 

to train the algorithm. Based on the generated scenarios, we created and trained a neural network 

that uses a history of previous situations to identify the optimal charging station and time interval 

for recharging. The results are promising and for future work we are planning to train the DQN 

model using real-world data. 

Keywords: Smart scheduling, Smart Reservations, Reinforcement Learning, Electric vehicle 

charging, Electric Vehicle Charging Management platform, DQN Reinforcement Learning 
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1. Introduction 

The last few decades have been marked by rapid technological advances that have resulted in 

significant positive changes in daily life, but as well in an increase of pollution levels. To address the 

issue of pollution associated with the transportation industry, extensive technological research and 

development has been carried out in order to pave the way for electromobility worldwide. 

As pointed out in Electric Vehicles for Smarter Cities: The Future of Energy and Mobility issued 

by the World Economic Forum in January 2018 [1], to prevent congestion and pollution in the urban 

areas that have already been and will continue to be reshaped by demographic shifts, it is required 

to implement radical sustainable and secure mobility and energy solutions. The authors underline 

the fact the charging infrastructure deployment should be based on an anticipation of the long-term 

mobility transformation. Moreover, they consider that ensuring a reduction of range anxiety and 

developing smart charging technologies are key elements in the EV market approach, as they would 

contribute to the adoption of electro-mobility. 

Wang et al [2] emphasize the need of a scheduling approach to bridge the gap between EV 

charging needs and charging station supplies, as well as to deliver a favorable user experience that 

will stimulate EV adoption. Franke et all [3] have analyzed the psychological barriers in adopting 

electric mobility, interfering with purchase intentions, focusing on EV range.  
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In this context, we propose a solution that comes to address precisely the aspects mentioned 

above, reducing range anxiety among EV owners by ensuring a smart scheduling of electric vehicles 

charging using reinforcement learning. To this end, we have structured the present paper into 9 

chapters. Following the introduction, the second chapter constitutes a brief overview of the current 

state of the art concerning the use of Reinforcement Learning techniques in the EV charging area. 

After having presented the work methodology, we went on to provide a detailed description of data 

collection processes and simulations, provided by the scenario generator, in section 5. We have dived 

deeper into the issue in chapter 6, where we illustrated the algorithm workflow and then presented 

the case study of Smart EVC, explaining the charging station recommendation system workflow. 

Subsequently, we analysed the results of the experiments performed based on the scenarios 

generated by the simulator. 

2. State of the art 

To address congestion management, Rigas et all [8] analyze the issue from both the perspective 

of the EV users and of the charging points, suggesting that congestion at the charging stations could 

be avoided by directing EVs towards various charging points and by distributing charging points’ 

location along the routes. The authors studied artificial intelligence techniques for establishing 

energy-efficient routing, as well as for selecting charge points, analysing, at the same time, the 

possibility to integrate EVs into the smart grid.  

Tuchnitz et al. [17] propose a flexible and scalable charging strategy for EVs, using a 

Reinforcement Learning algorithm to establish a smart system for the coordination of an EV fleet 

charging process. Unlike optimization-based strategies, the proposed system does not require 

variables such as arrival and departure time and electricity consumption in advance. 

Ruzmetov et al. [18] identifies the lack of certainty of EV drivers to have an available charging 

point once they reach the charging station on their route as one of the major drawbacks in adopting 

electromobility. The authors introduce a platform meant to ensure a constant cooperation between 

the different involved entities: the energy suppliers, the charging stations and the EVs and EV users, 

proposing an optimization of the EVs’ scheduling and allocation to the charging stations. The 

destination set by the drivers, as well as the battery level are taken into account when proposing a 

charging station ensuring that this does not divert them from the route. 

Qin and Zhang [19] conducted a theoretical study that enabled them to create a distributed 

scheduling protocol meant to reduce the waiting time consisting of both the queuing time and the 

actual charging time, during a trip, along a highway. The reservations made by EV drivers for their 

next charging and the reservation adjustments are based on the minimum waiting time 

communicated by the charging stations, which periodically update this information, so as to enable 

drivers to make the optimal selection, in terms of waiting time.   

Weerdt et al. [20], too, propose a solution to address the issue of congestions at the charging 

stations and long queuing times, in the form of an Intention Aware Routing System (IARS), which 

enables vehicles to reduce their travel time by taking into account the intentions of other vehicles. A 

central system is fed with probabilistic information about the intentions of vehicles in terms of 

estimated time of arrival at the charging station and therefore, it can predict overcrowding and 

associated waiting times. 

Furthermore, to address the needs of EV owners, while at the same time avoiding charging 

station congestions and power grid overload, Lui et al. [21] have conducted extensive research and 

proposed a reinforcement learning-based method for scheduling EV charging operations. To this end, 

the authors created a framework to enable communication between the charging stations and the 

EVs, and then determined a dynamic travel time model, as well as the EV charging navigation model. 

To further optimize the charging stations located in the area, they used reinforcement learning to 

enhance the charging scheduling model.   

Shahriar et al [22] provide a comprehensive overview of the application of various machine 

learning technologies to analyse and predict EV charging behaviour, identifying the lack of publicly 

available datasets necessary for the training of ML models as one of the major drawbacks in the field. 
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The authors also underline that available data is rather irrelevant, as it is specific to certain 

geographical areas, with traffic and EV users’ behaviour particularities that cannot be applied in other 

locations.  

Mnih et al [23] explore recent breakthroughs in deep neural network training to create a deep 

Q-network that makes use of end-to-end RL to “learn successful policies directly from high-

dimensional inputs”. The authors claim that using DQN, they managed to create a first AI agent 

capable of achieving mastery in a wide variety of difficult tasks. This research, along with its 

predecessor Playing Atari with Deep Reinforcement Learning [24] could be considered the 

cornerstone of DQN, demonstrating that in complex RL contexts, a convolutional neural network 

trained with the Q-learning algorithm is able learn control policies from raw video data.  

Among the techniques that enable DQN to overcome unstable learning, Experience Replay has 

a significant impact, as it stores experiences such as state transitions, actions, and rewards, which 

constitute required data for Q-learning, and it creates mini-batches for updating the neural networks. 

Learning speed is increased and the reuse of past transition prevents cataclysmic forgetting. [25] 

In their paper entitled Deep Reinforcement Learning Based Optimal Route and Charging Station 

Selection, Lee et al. [26] propose an algorithm designed to return the best possible route and charging 

stations, reducing the overall travel time, taking into account the dynamic character of traffic 

conditions, as well as unpredictable future charging requests. To determine the best policy for the 

selection of an EV charging station a well-trained Deep Q Network (DQN) has been used. The authors 

point out that due to dimensionality, it is difficult to use Q-learning with the lookup table method for 

large-scale problems in real-world scenarios. They used DQN to approximate the optimal action-

value function. To contribute to the fuel efficiency of plug-in hybrid EVs, Chen et all [27] propose a 

stochastic model predictive control strategy for energy management, based on Reinforcement 

Learning. Furthermore, the authors employ the Q-learning algorithm to set a RL controller used in 

the optimization process.  

In this context, the purpose of this paper is to propose a solution capable of addressing multiple 

issues related to EV charging scheduling, such as congestion management, scheduling a charging 

station in advance, and enabling EV drivers to plan optimized long trips using EVs. 

The novelty consists of the smart charging scheduling system that takes into account multiple 

parameters such as battery charge level, trip distance, available charging stations nearby, other 

appointments and the average speed. Furthermore, given the lack of data sets necessary to train the 

Machine Learning / Reinforcement Learning algorithms, the novelty of the proposed solution also 

resides in the scenario simulator that generates labelled datasets required to train the algorithm.   

3. Methodology 

The present article proposes to illustrate the technical details for the implementation of the DQN 

Reinforcement Learning algorithm (deep Q-networks) for the smart reservation of a charging point 

for an electric vehicle, as it has been developed within the framework of the Smart EVC project.  

4. As illustrated in the diagram below, the methodology employed while conducting the current 

study has as a starting point the parameters generated by the scenario simulator we had to create to 

compensate for the lack of relevant publicly available datasets. The datasets are required to train the 

neural network of the DQN model. The simulator feeds the algorithm with the data associated to a 

specific situation, based on which the algorithm makes a decision. The scenario generator runs the 

simulation according to this decision and subsequently, the algorithm is assigned a reward 

associated with the scenario, informing the algorithm of the correctness of its decision. Given the 
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rewards it has received in each situation, the network is then trained to make better decisions in the 

future. 

 
Figure 1 – Study Methodology 

The smart scheduling of charging points for electric vehicles represents an issue that involves 

random variables. Given that it is difficult to create a dataset with the optimal solution for every 

potential situation, it cannot be addressed through Supervised Learning.  For this reason, we have 

focused on a different class of Machine Learning algorithms, namely Reinforcement Learning. 

The main goal of Reinforcement Learning algorithms is to identify the optimal solution to a 

problem, to maximize the reward function, in the long term.  The RL agents learn by continuously 

interacting with the environment and observing the rewards in all circumstances. As we deal with 

an infinite number of possible situations, it is not possible to create a table to store the best solution 

associated with every situation. This challenge led us to the DQN algorithm, an RL algorithm using 

a function to decide the optimal solution in any situation. The DQN algorithm uses a neural network 

to decide upon the optimal solution. 

5. Data Collection and Simulations 

The DQN algorithm was written in Python based on the article entitled Human-level Control 

Trough Deep Reinforcement Learning, published in 2015 [23].  

The neural network was written using the Keras module from the TensorFlow library. To begin 

with, we opted for a simple neural architecture, which can be extended later, following the 

experiments. Because training this type of network requires extensive time resources, the neural 

network model is automatically saved and then loaded during the next iteration.   

The Neural Network architecture of the DQN model consists of the following layers: a 7-neurons 

input layer, a hidden layer with 16 neurons and the output layer with one neuron. The model is 

compiled using the Adam optimizer and the Huber loss. The neural network's weights are saved 

after each 100 iterations and the last checkpoint is loaded when we restart the app. 

For training purposes, we needed a history of the situations encountered thus far, as well as 

rewards associated with each decision made by the algorithm. To keep track of all scenarios, we 

created the ReplayMemory class that allows us to store new scenarios. 

The Replay Memory class stores two lists: the first one stores the scenarios without the reward 

and the second one saves the scenarios with their associated reward, assigned after the simulation of 

that scenario. When it receives the reward for a specific scenario, it is then moved from the first list 

to the second one, to avoid storing the same data in two locations. The training is performed only on 

scenarios from the second list, as we can't train the DQN model on data without results. 

The Deepmind paper [23] suggests a maximum replay length of 1000000. We reached the 

conclusion that this causes memory issues, and therefore we used a maximum length of 10000. When 

the Replay Memory exceeds the 10000 scenarios limit, the oldest items in the list are removed. 

When the DQN algorithm makes a decision, the simulator's generated situations are stored. The 

simulator then runs based on the algorithm's previous decisions and assigns a reward. This reward 
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is automatically associated with the respective scenario, yielding a data set that can be used to train 

the neural network.  

The DQN model has 2 types of decision-making processes: 

- Exploration - In this phase the decision-making process is mostly random, so that the model 

can explore more and discover what results are yielded by different decisions. This enables the agent 

to improve its knowledge about each action, which is usually beneficial in the long-term. In the 

beginning, the agent uses this random decision-making process and slowly it starts to gradually 

exploit its knowledge. By the time it reaches the 10000th iteration, this exploration process probability 

reaches its lowest point, where it stays for the rest of the training time. 

- Exploitation - In this phase the agent is exploiting its knowledge and opts for the greedy 

approach to get the most reward. 

The neural network of the DQN algorithm is trained after every n decisions, n representing a 

hyperparameter of the DQN class. The consulted paper recommends starting a training session after 

every four algorithm decisions, which is the value used in the current implementation. The training 

of the neural network is performed based on 32 situations randomly selected from the replay 

memory.  

Below, we have provided the steps involved in training the DQN model's neural network: 

1. Create a list of 32 random indices from 0 to the length of the Replay Memory. 

2. Get a list of samples from the Replay Memory based on the indices list created at step 1. 

3. Split the sample in state and reward lists. 

4. Train the neural network for 1 epoch using the state and reward lists as input. 

To enable communication with the scenario generator, a Python server has been implemented, 

using the FastApi library. The Endpoint recommending the charging station receives as body 

parameters information related to the current situation and returns the station’s ID and the time slot 

of the recommended reservation.   

The "recommend_charging_station" endpoint is the main piece that connects the scenario 

generator with the DQN model. This endpoint expects as input the total distance of the trip, the 

battery capacity, current level of the battery and a list of charging stations, each charging station with 

its own id, charging power and reservations. As for its output, it returns the id of the recommended 

charging station and the start and end points of the interval recommended for reservation. 

When a request is made, the received data is processed so that it can be fed to the neural network. 

The processed data is then used to make a prediction for the charging station best suited to the current 

scenario. Before returning the data, it is processed again to create the interval of time recommended. 

The scenario generator simulator is written in JavaScript using the PixiJS library. An essential 

component of this simulator is the vehicle’s controller, this class being the main element that 

generates new scenarios and assesses the rewards assigned following a decision.  

The Car controller class has multiple properties such as the car's speed, the current battery level, 

the battery capacity, and the consumption per KM. It also has a method that decides its next 

destination and it controls the direction it should take at each frame. 

There are two other important classes employed by the scenario simulator. The first one defines 

the id, position and charging power of a charging station and the second one keeps track of all 

reservations with their charging station id and interval. 

For the purposes of the current study, we have created an administration interface that enables 

us to create charging stations randomly positioned, as well as vehicles that start their journey from a 

random place and have a random destination. To this end, the simulator has created three 

interconnected cities, to allow for the simulation of the scenarios. The simulator communicates with 

the Python server through the Axios library.  

The simulator’s interface is presented in Figure 1, below: 
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Figure 2 – Simulator Interface 

6. Reinforcement Learning Model  

We have provided below a diagram summarizing the DQN algorithm workflow, along the 

scenario simulator.  

 

Figure 3 – DQN Algorithm Workflow 

1. A new situation is generated by the simulator. 

2. The simulator calls the charging station recommendation endpoint, feeding the information 

associated with the generated scenario.  

3. The FastApi server calls an input data processing method, to map the data in the format 

required by the DQN algorithm.  

4. The FastApi server calls the training method of the DQN algorithm with the processed data.  

5. The DQN algorithm makes a decision according to the current learning level or, with a 

certain probability, makes a random decision.  

6. The DQN algorithm stores the current scenario in ReplayMemory. 

7. If there are enough entries in the ReplayMemory, a training dataset is generated, which is 

then used to train the neural network of the DQN algorithm. 

8. The DQN algorithm returns the decision to the FastApi server.  
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9. The FastApi server maps the data in a format required by the simulator and sends it as a 

response to the request initiated by the scenario generator.  

10. The scenario with the charging point reservation is simulated using data from the FastApi 

server. 

11. The value of the reward is established based on the simulation (a number between 0 and 

100).  

12. The reward is sent to the FastApi server, along with the scenario’s ID.   

13. Through the FastApi server, the reward reaches the ReplayMemory and the scenario in 

question is updated. 

7. Case Study 

The research activities described in the present paper have been carried out within the 

framework of the Smart EVC project, which aimed to create an intelligent charging station 

management platform based on Blockchain and Artificial Intelligence allowing for user – charging 

station interactions. Among other things, the mobile app is designed to enable users to plan a trip, a 

feature that is especially useful for longer routes.  

The "Plan a Trip" feature has the role of scheduling the reservation of charging stations along a 

route. The user can reserve the charging station recommended by the ML model or can choose other 

ones along the way. 

When the user creates a new trip, the app prompts them to enter some relevant information (Fig. 

4.b), which is critical for the DQN model's accuracy and is related to the battery status and the vehicle 

type. This should be enough to assess the maximum battery capacity and the power consumption. 

The history of the user's trips (Fig. 4.a) provides data on previous trips that can be used as a 

training set to further refine the current model or training a new model from scratch. 

 

Figure 4- Smart EVC – Plan a trip section 

As illustrated in the architecture in Figure 5, the charging stations selection system works as 

follows: 

▪ The user sets up the starting and destination points for the trip in the mobile app, along 

with information about the vehicle and the battery status. 

▪ The mobile app will call a Back-End endpoint with the data the user entered in the app. 
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▪ The Back-End will get from database all the charging stations relevant for the data 

provided by the user and call the ML recommendation endpoint with the data received 

from database. 

▪ The DQN model will predict the charging stations and the specific reservation time best 

suited for the data it gets from Back-End and sends them back as a response. 

▪ The Back-End will send the response to the mobile app with the charging stations 

recommended by the DQN model. 

▪ The mobile app will display the recommended charging stations to the user, with the 

option to create a reservation for the specified charging stations (Fig. 4.c) 

 
Figure 5 – Architecture of the trained module 

8. Results and discussions 

So far, we have performed several experiments based on the scenarios generated by the 

simulator. 

In these experiments we used a DQN with a simple neural network (a single hidden layer of 16 

neurons). For this model we used the Adam optimizer with a learning rate of 1e-3 and the Huber loss 

for a more stable training. The first 10000 scenarios were epsilon-greedy, meaning that the model 

took more random decisions to explore the environment. After the first 10000 scenarios, the 

probability of taking a random decision is set at 0.1, so most of the time we exploit what the model 

learned so far. 

Every scenario is saved in the Replay Memory and after the simulation is run for that specific 

scenario, the Replay Memory is updated with a specific reward. The scenarios saved in the Replay 

Memory are then used to further train the DQN model. The training is performed after every 4 

scenarios with minibatches of size 32. The scenarios used for training are drawn at random from the 

Replay Memory. 
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Figure 6 - Plot of the mean running reward 

We chose as the evaluation metric the mean running reward over the last 1000 scenarios. Fig. 6 

shows a plot of the mean running reward in the exploration period. We can see that the model's 

accuracy registers a steady growth in this period. 

As a testing set, we used 2000 scenarios generated by the scenario simulator, where the DQN 

model only predicted the action to take, based on the previous training. In over 80% of the situations, 

the model predicted the correct charging station and the appropriate time slot. The plot below shows 

the mean running reward for the testing set. 

 
Figure 7 - Plot of the mean reward on the testing set 

9. Conclusions and limitations  

We have developed and trained a neural network that uses a history of the situations 

encountered thus far to identify the optimal charging station and time interval for recharging. 

Rewards are assigned to each decision made by the algorithm. In lack of available datasets, a 

simulator that generates training data has been implemented, creating new scenarios. 

Because the training data is generated by a simulator, it rarely resembles real-world data. If the 

DQN algorithm encounters situations that differ significantly from the scenarios in the training data 

sets, it may make incorrect decisions. The considerable training time of the neural network constitutes 

yet another constraint, as it needs to go through multiple situations and iterations to reach an optimal 

solution. Furthermore, the training time is extended because every scenario must be simulated before 

the algorithm is assigned a reward.     
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10. Future research directions 

Going further, we are planning to train the DQN model using real-world data. This data can be 

retrieved from Google Maps through its Directions API. We can set up some fake charging stations 

to use as reference, but these charging stations will use some real-world restrictions, such as being 

located within the boundaries of a city and (arguably) dispersed across the entire map. 

With this setup we can simulate scenarios with real-world distances, traffic, and car parameters. 

The model will then be trained using these scenarios and further refined when we start testing on 

real vehicles and charging stations. Training the DQN model this way will save us from having to 

train it from scratch with real data. We consider this a big win as training an algorithm from scratch 

implies a multitude of time-consuming scenarios. 
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