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Abstract: As the policies and regulations currently in place concentrate on environmental protection
and greenhouse gas reduction, we are steadily witnessing a shift in the transportation industry
towards electromobility. There are, though, several issues that need to be addressed to encourage
the adoption of EVs at a larger scale. To this end, we propose a solution capable of addressing
multiple EV charging scheduling issues, such as congestion management, scheduling a charging
station in advance, and allowing EV drivers to plan optimized long trips using their EVs. The smart
charging scheduling system we propose considers a variety of factors such as battery charge level,
trip distance, nearby charging stations, other appointments, and average speed. Given the scarcity
of data sets required to train the Reinforcement Learning algorithms, the novelty of the
recommended solution lies in the scenario simulator, which generates the labelled datasets needed
to train the algorithm. Based on the generated scenarios, we created and trained a neural network
that uses a history of previous situations to identify the optimal charging station and time interval
for recharging. The results are promising and for future work we are planning to train the DQN
model using real-world data.

Keywords: Smart scheduling, Smart Reservations, Reinforcement Learning, Electric vehicle
charging, Electric Vehicle Charging Management platform, DQN Reinforcement Learning
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1. Introduction

The last few decades have been marked by rapid technological advances that have resulted in
significant positive changes in daily life, but as well in an increase of pollution levels. To address the
issue of pollution associated with the transportation industry, extensive technological research and
development has been carried out in order to pave the way for electromobility worldwide.

As pointed out in Electric Vehicles for Smarter Cities: The Future of Energy and Mobility issued
by the World Economic Forum in January 2018 [1], to prevent congestion and pollution in the urban
areas that have already been and will continue to be reshaped by demographic shifts, it is required
to implement radical sustainable and secure mobility and energy solutions. The authors underline
the fact the charging infrastructure deployment should be based on an anticipation of the long-term
mobility transformation. Moreover, they consider that ensuring a reduction of range anxiety and
developing smart charging technologies are key elements in the EV market approach, as they would
contribute to the adoption of electro-mobility.

Wang et al [2] emphasize the need of a scheduling approach to bridge the gap between EV
charging needs and charging station supplies, as well as to deliver a favorable user experience that
will stimulate EV adoption. Franke et all [3] have analyzed the psychological barriers in adopting
electric mobility, interfering with purchase intentions, focusing on EV range.
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In this context, we propose a solution that comes to address precisely the aspects mentioned
above, reducing range anxiety among EV owners by ensuring a smart scheduling of electric vehicles
charging using reinforcement learning. To this end, we have structured the present paper into 9
chapters. Following the introduction, the second chapter constitutes a brief overview of the current
state of the art concerning the use of Reinforcement Learning techniques in the EV charging area.
After having presented the work methodology, we went on to provide a detailed description of data
collection processes and simulations, provided by the scenario generator, in section 5. We have dived
deeper into the issue in chapter 6, where we illustrated the algorithm workflow and then presented
the case study of Smart EVC, explaining the charging station recommendation system workflow.
Subsequently, we analysed the results of the experiments performed based on the scenarios
generated by the simulator.

2. State of the art

To address congestion management, Rigas et all [8] analyze the issue from both the perspective
of the EV users and of the charging points, suggesting that congestion at the charging stations could
be avoided by directing EVs towards various charging points and by distributing charging points’
location along the routes. The authors studied artificial intelligence techniques for establishing
energy-efficient routing, as well as for selecting charge points, analysing, at the same time, the
possibility to integrate EVs into the smart grid.

Tuchnitz et al. [17] propose a flexible and scalable charging strategy for EVs, using a
Reinforcement Learning algorithm to establish a smart system for the coordination of an EV fleet
charging process. Unlike optimization-based strategies, the proposed system does not require
variables such as arrival and departure time and electricity consumption in advance.

Ruzmetov et al. [18] identifies the lack of certainty of EV drivers to have an available charging
point once they reach the charging station on their route as one of the major drawbacks in adopting
electromobility. The authors introduce a platform meant to ensure a constant cooperation between
the different involved entities: the energy suppliers, the charging stations and the EVs and EV users,
proposing an optimization of the EVs’ scheduling and allocation to the charging stations. The
destination set by the drivers, as well as the battery level are taken into account when proposing a
charging station ensuring that this does not divert them from the route.

Qin and Zhang [19] conducted a theoretical study that enabled them to create a distributed
scheduling protocol meant to reduce the waiting time consisting of both the queuing time and the
actual charging time, during a trip, along a highway. The reservations made by EV drivers for their
next charging and the reservation adjustments are based on the minimum waiting time
communicated by the charging stations, which periodically update this information, so as to enable
drivers to make the optimal selection, in terms of waiting time.

Weerdt et al. [20], too, propose a solution to address the issue of congestions at the charging
stations and long queuing times, in the form of an Intention Aware Routing System (IARS), which
enables vehicles to reduce their travel time by taking into account the intentions of other vehicles. A
central system is fed with probabilistic information about the intentions of vehicles in terms of
estimated time of arrival at the charging station and therefore, it can predict overcrowding and
associated waiting times.

Furthermore, to address the needs of EV owners, while at the same time avoiding charging
station congestions and power grid overload, Lui et al. [21] have conducted extensive research and
proposed a reinforcement learning-based method for scheduling EV charging operations. To this end,
the authors created a framework to enable communication between the charging stations and the
EVs, and then determined a dynamic travel time model, as well as the EV charging navigation model.
To further optimize the charging stations located in the area, they used reinforcement learning to
enhance the charging scheduling model.

Shahriar et al [22] provide a comprehensive overview of the application of various machine
learning technologies to analyse and predict EV charging behaviour, identifying the lack of publicly
available datasets necessary for the training of ML models as one of the major drawbacks in the field.
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The authors also underline that available data is rather irrelevant, as it is specific to certain
geographical areas, with trafficand EV users’ behaviour particularities that cannot be applied in other
locations.

Mnih et al [23] explore recent breakthroughs in deep neural network training to create a deep
Q-network that makes use of end-to-end RL to “learn successful policies directly from high-
dimensional inputs”. The authors claim that using DQN, they managed to create a first Al agent
capable of achieving mastery in a wide variety of difficult tasks. This research, along with its
predecessor Playing Atari with Deep Reinforcement Learning [24] could be considered the
cornerstone of DQN, demonstrating that in complex RL contexts, a convolutional neural network
trained with the Q-learning algorithm is able learn control policies from raw video data.

Among the techniques that enable DQN to overcome unstable learning, Experience Replay has
a significant impact, as it stores experiences such as state transitions, actions, and rewards, which
constitute required data for Q-learning, and it creates mini-batches for updating the neural networks.
Learning speed is increased and the reuse of past transition prevents cataclysmic forgetting. [25]

In their paper entitled Deep Reinforcement Learning Based Optimal Route and Charging Station
Selection, Lee et al. [26] propose an algorithm designed to return the best possible route and charging
stations, reducing the overall travel time, taking into account the dynamic character of traffic
conditions, as well as unpredictable future charging requests. To determine the best policy for the
selection of an EV charging station a well-trained Deep Q Network (DQN) has been used. The authors
point out that due to dimensionality, it is difficult to use Q-learning with the lookup table method for
large-scale problems in real-world scenarios. They used DON to approximate the optimal action-
value function. To contribute to the fuel efficiency of plug-in hybrid EVs, Chen et all [27] propose a
stochastic model predictive control strategy for energy management, based on Reinforcement
Learning. Furthermore, the authors employ the Q-learning algorithm to set a RL controller used in
the optimization process.

In this context, the purpose of this paper is to propose a solution capable of addressing multiple
issues related to EV charging scheduling, such as congestion management, scheduling a charging
station in advance, and enabling EV drivers to plan optimized long trips using EVs.

The novelty consists of the smart charging scheduling system that takes into account multiple
parameters such as battery charge level, trip distance, available charging stations nearby, other
appointments and the average speed. Furthermore, given the lack of data sets necessary to train the
Machine Learning / Reinforcement Learning algorithms, the novelty of the proposed solution also
resides in the scenario simulator that generates labelled datasets required to train the algorithm.

3. Methodology

The present article proposes to illustrate the technical details for the implementation of the DQN
Reinforcement Learning algorithm (deep Q-networks) for the smart reservation of a charging point
for an electric vehicle, as it has been developed within the framework of the Smart EVC project.

4. Asillustrated in the diagram below, the methodology employed while conducting the current
study has as a starting point the parameters generated by the scenario simulator we had to create to
compensate for the lack of relevant publicly available datasets. The datasets are required to train the
neural network of the DON model. The simulator feeds the algorithm with the data associated to a
specific situation, based on which the algorithm makes a decision. The scenario generator runs the
simulation according to this decision and subsequently, the algorithm is assigned a reward
associated with the scenario, informing the algorithm of the correctness of its decision. Given the
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rewards it has received in each situation, the network is then trained to make better decisions in the
future.

Parameters Output

DaN User
Feedback

Figure 1 — Study Methodology

The smart scheduling of charging points for electric vehicles represents an issue that involves
random variables. Given that it is difficult to create a dataset with the optimal solution for every
potential situation, it cannot be addressed through Supervised Learning. For this reason, we have
focused on a different class of Machine Learning algorithms, namely Reinforcement Learning.

The main goal of Reinforcement Learning algorithms is to identify the optimal solution to a
problem, to maximize the reward function, in the long term. The RL agents learn by continuously
interacting with the environment and observing the rewards in all circumstances. As we deal with
an infinite number of possible situations, it is not possible to create a table to store the best solution
associated with every situation. This challenge led us to the DQN algorithm, an RL algorithm using
a function to decide the optimal solution in any situation. The DQN algorithm uses a neural network
to decide upon the optimal solution.

5. Data Collection and Simulations

The DQN algorithm was written in Python based on the article entitled Human-level Control
Trough Deep Reinforcement Learning, published in 2015 [23].

The neural network was written using the Keras module from the TensorFlow library. To begin
with, we opted for a simple neural architecture, which can be extended later, following the
experiments. Because training this type of network requires extensive time resources, the neural
network model is automatically saved and then loaded during the next iteration.

The Neural Network architecture of the DQN model consists of the following layers: a 7-neurons
input layer, a hidden layer with 16 neurons and the output layer with one neuron. The model is
compiled using the Adam optimizer and the Huber loss. The neural network's weights are saved
after each 100 iterations and the last checkpoint is loaded when we restart the app.

For training purposes, we needed a history of the situations encountered thus far, as well as
rewards associated with each decision made by the algorithm. To keep track of all scenarios, we
created the ReplayMemory class that allows us to store new scenarios.

The Replay Memory class stores two lists: the first one stores the scenarios without the reward
and the second one saves the scenarios with their associated reward, assigned after the simulation of
that scenario. When it receives the reward for a specific scenario, it is then moved from the first list
to the second one, to avoid storing the same data in two locations. The training is performed only on
scenarios from the second list, as we can't train the DQN model on data without results.

The Deepmind paper [23] suggests a maximum replay length of 1000000. We reached the
conclusion that this causes memory issues, and therefore we used a maximum length of 10000. When
the Replay Memory exceeds the 10000 scenarios limit, the oldest items in the list are removed.

When the DQN algorithm makes a decision, the simulator's generated situations are stored. The
simulator then runs based on the algorithm's previous decisions and assigns a reward. This reward
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is automatically associated with the respective scenario, yielding a data set that can be used to train
the neural network.

The DQN model has 2 types of decision-making processes:

- Exploration - In this phase the decision-making process is mostly random, so that the model
can explore more and discover what results are yielded by different decisions. This enables the agent
to improve its knowledge about each action, which is usually beneficial in the long-term. In the
beginning, the agent uses this random decision-making process and slowly it starts to gradually
exploit its knowledge. By the time it reaches the 10000th iteration, this exploration process probability
reaches its lowest point, where it stays for the rest of the training time.

- Exploitation - In this phase the agent is exploiting its knowledge and opts for the greedy
approach to get the most reward.

The neural network of the DQN algorithm is trained after every n decisions, n representing a
hyperparameter of the DQN class. The consulted paper recommends starting a training session after
every four algorithm decisions, which is the value used in the current implementation. The training
of the neural network is performed based on 32 situations randomly selected from the replay
memory.

Below, we have provided the steps involved in training the DQN model's neural network:

1. Create a list of 32 random indices from 0 to the length of the Replay Memory.

2. Get a list of samples from the Replay Memory based on the indices list created at step 1.

3. Split the sample in state and reward lists.

4.  Train the neural network for 1 epoch using the state and reward lists as input.

To enable communication with the scenario generator, a Python server has been implemented,
using the FastApi library. The Endpoint recommending the charging station receives as body
parameters information related to the current situation and returns the station’s ID and the time slot
of the recommended reservation.

The "recommend_charging_station" endpoint is the main piece that connects the scenario
generator with the DQN model. This endpoint expects as input the total distance of the trip, the
battery capacity, current level of the battery and a list of charging stations, each charging station with
its own id, charging power and reservations. As for its output, it returns the id of the recommended
charging station and the start and end points of the interval recommended for reservation.

When a request is made, the received data is processed so that it can be fed to the neural network.
The processed data is then used to make a prediction for the charging station best suited to the current
scenario. Before returning the data, it is processed again to create the interval of time recommended.

The scenario generator simulator is written in JavaScript using the PixiJS library. An essential
component of this simulator is the vehicle’s controller, this class being the main element that
generates new scenarios and assesses the rewards assigned following a decision.

The Car controller class has multiple properties such as the car's speed, the current battery level,
the battery capacity, and the consumption per KM. It also has a method that decides its next
destination and it controls the direction it should take at each frame.

There are two other important classes employed by the scenario simulator. The first one defines
the id, position and charging power of a charging station and the second one keeps track of all
reservations with their charging station id and interval.

For the purposes of the current study, we have created an administration interface that enables
us to create charging stations randomly positioned, as well as vehicles that start their journey from a
random place and have a random destination. To this end, the simulator has created three
interconnected cities, to allow for the simulation of the scenarios. The simulator communicates with
the Python server through the Axios library.

The simulator’s interface is presented in Figure 1, below:
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Figure 2 — Simulator Interface

6. Reinforcement Learning Model

We have provided below a diagram summarizing the DQN algorithm workflow, along the
scenario simulator.

Scenario
simulator APl Gateway DQN Model
v J
% L p
o
wy
Data Replay
preprecessing Memory

Figure 3 — DQN Algorithm Workflow

1. A new situation is generated by the simulator.

2. The simulator calls the charging station recommendation endpoint, feeding the information
associated with the generated scenario.

3. The FastApi server calls an input data processing method, to map the data in the format
required by the DQN algorithm.

4. The FastApi server calls the training method of the DQN algorithm with the processed data.

5. The DON algorithm makes a decision according to the current learning level or, with a
certain probability, makes a random decision.

6. The DQN algorithm stores the current scenario in ReplayMemory.

7. If there are enough entries in the ReplayMemory, a training dataset is generated, which is
then used to train the neural network of the DQN algorithm.

8. The DQN algorithm returns the decision to the FastApi server.
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9. The FastApi server maps the data in a format required by the simulator and sends it as a
response to the request initiated by the scenario generator.

10. The scenario with the charging point reservation is simulated using data from the FastApi
server.

11. The value of the reward is established based on the simulation (a number between 0 and
100).

12. The reward is sent to the FastApi server, along with the scenario’s ID.

13. Through the FastApi server, the reward reaches the ReplayMemory and the scenario in
question is updated.

7. Case Study

The research activities described in the present paper have been carried out within the
framework of the Smart EVC project, which aimed to create an intelligent charging station
management platform based on Blockchain and Artificial Intelligence allowing for user — charging
station interactions. Among other things, the mobile app is designed to enable users to plan a trip, a
feature that is especially useful for longer routes.

The "Plan a Trip" feature has the role of scheduling the reservation of charging stations along a
route. The user can reserve the charging station recommended by the ML model or can choose other
ones along the way.

When the user creates a new trip, the app prompts them to enter some relevant information (Fig.
4.b), which is critical for the DQN model's accuracy and is related to the battery status and the vehicle
type. This should be enough to assess the maximum battery capacity and the power consumption.

The history of the user's trips (Fig. 4.a) provides data on previous trips that can be used as a
training set to further refine the current model or training a new model from scratch.

< Back Trips < Back Trips < Back Trips
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My Trips p sren
Q@ Lidl Cost
: o 10 Decembrie 2020 0
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Figure 4- Smart EVC — Plan a trip section

As illustrated in the architecture in Figure 5, the charging stations selection system works as
follows:
= The user sets up the starting and destination points for the trip in the mobile app, along
with information about the vehicle and the battery status.
* The mobile app will call a Back-End endpoint with the data the user entered in the app.
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* The Back-End will get from database all the charging stations relevant for the data
provided by the user and call the ML recommendation endpoint with the data received
from database.

= The DQN model will predict the charging stations and the specific reservation time best
suited for the data it gets from Back-End and sends them back as a response.

* The Back-End will send the response to the mobile app with the charging stations
recommended by the DQN model.

* The mobile app will display the recommended charging stations to the user, with the
option to create a reservation for the specified charging stations (Fig. 4.c)

Client Apps
M:bile : Machine Learning
App : Service

Back-End = .. ‘

<:: Microservices

DQN Model in
training

Microsoft Azure
Database

Figure 5 — Architecture of the trained module

8. Results and discussions

So far, we have performed several experiments based on the scenarios generated by the
simulator.

In these experiments we used a DQN with a simple neural network (a single hidden layer of 16
neurons). For this model we used the Adam optimizer with a learning rate of 1e-3 and the Huber loss
for a more stable training. The first 10000 scenarios were epsilon-greedy, meaning that the model
took more random decisions to explore the environment. After the first 10000 scenarios, the
probability of taking a random decision is set at 0.1, so most of the time we exploit what the model
learned so far.

Every scenario is saved in the Replay Memory and after the simulation is run for that specific
scenario, the Replay Memory is updated with a specific reward. The scenarios saved in the Replay
Memory are then used to further train the DQN model. The training is performed after every 4
scenarios with minibatches of size 32. The scenarios used for training are drawn at random from the
Replay Memory.
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Figure 6 - Plot of the mean running reward

We chose as the evaluation metric the mean running reward over the last 1000 scenarios. Fig. 6
shows a plot of the mean running reward in the exploration period. We can see that the model's
accuracy registers a steady growth in this period.

As a testing set, we used 2000 scenarios generated by the scenario simulator, where the DQN
model only predicted the action to take, based on the previous training. In over 80% of the situations,
the model predicted the correct charging station and the appropriate time slot. The plot below shows
the mean running reward for the testing set.
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Figure 7 - Plot of the mean reward on the testing set

9. Conclusions and limitations

We have developed and trained a neural network that uses a history of the situations
encountered thus far to identify the optimal charging station and time interval for recharging.
Rewards are assigned to each decision made by the algorithm. In lack of available datasets, a
simulator that generates training data has been implemented, creating new scenarios.

Because the training data is generated by a simulator, it rarely resembles real-world data. If the
DON algorithm encounters situations that differ significantly from the scenarios in the training data
sets, it may make incorrect decisions. The considerable training time of the neural network constitutes
yet another constraint, as it needs to go through multiple situations and iterations to reach an optimal
solution. Furthermore, the training time is extended because every scenario must be simulated before
the algorithm is assigned a reward.
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10. Future research directions

Going further, we are planning to train the DQN model using real-world data. This data can be
retrieved from Google Maps through its Directions API. We can set up some fake charging stations
to use as reference, but these charging stations will use some real-world restrictions, such as being
located within the boundaries of a city and (arguably) dispersed across the entire map.

With this setup we can simulate scenarios with real-world distances, traffic, and car parameters.
The model will then be trained using these scenarios and further refined when we start testing on
real vehicles and charging stations. Training the DQN model this way will save us from having to
train it from scratch with real data. We consider this a big win as training an algorithm from scratch
implies a multitude of time-consuming scenarios.
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