
Type of the Paper (Article, Review, Communication, etc.)

Effects of inoculation with lactic acid bacteria on the preservation of *Nannochloropsis gaditana* biomass in wet anaerobic storage and its impact on biomass quality

Oluwatosin Oginni ¹, Bradley Wahlen ^{1,*}, Lynn Wendt ¹, Michelle Walton ¹, Thomas Dempster ², and Henri Gerken ²

- 1 Energy & Environment Science & Technology, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States; oluwatosin.oginni@inl.gov
- 2 Energy & Environment Science & Technology, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States; bradley.wahlen@inl.gov
- 3 Energy & Environment Science & Technology, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States; lynn.wendt@inl.gov
- 4 Energy & Environment Science & Technology, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States; [michelle.walton@inl.gov](mailto: michelle.walton@inl.gov)
- 5 Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, Arizona 85212, United States; thomas.dempster@asu.edu
- 6 Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, Arizona 85212, United States; henri.gerken@asu.edu

* Correspondence: bradley.wahlen@inl.gov

Abstract: Wet anaerobic storage of algal biomass is a promising preservation approach which can ensure continuous supply of these feedstocks to biorefineries year-round. An effective solution to preservation must ensure minimal dry matter loss and change in biochemical composition during storage. Therefore, the objective of this study was to investigate the preservation of *Nannochloropsis gaditana* biomass through wet anaerobic storage and its impact on biomass quality. Prior to storage, alga sample was inoculated with two different strains of lactic acid bacteria and thereafter stored for 30 and 180 days. Each inoculant limited dry matter loss to <10% (dry basis) after the storage durations. Final pH values (4.3 - 4.8) indicate that the biomass samples were properly ensiled, achieving the acidic conditions necessary for preservation. Compositional analysis of the biomass after storage showed a reduction in carbohydrate content, a relative increase in lipid content, and no significant change to the protein fraction. Glucose and galactose were the prevalent sugar monomers. The low dry matter loss and minimal compositional change indicates that wet anaerobic storage is an effective means of preserving algal biomass, ensuring a constant supply of algal biomass feedstock to a biorefinery.

Keywords: Algae, wet anaerobic storage, dry matter loss, organic acid, lactic acid bacteria

1. Introduction

Algal biomass is a versatile, viable, and sustainable biomass feedstock. This is due to its high biomass productivity, biochemical composition, ability to be cultivated on marginal lands, and utilization of non-potable water resources and carbon dioxide emitted from fossil fuel-based power plants [1-3]. Its biochemical composition (comprising of carbohydrate, protein, and lipid) has made it a suitable feedstock for conversion into a wide range of biofuels and bioproducts. For example, Shakya et al. [4] reported that the hydrothermal liquefaction (at a temperature of 320 °C) of two *Nannochloropsis* species with high lipid contents (49 - 55 wt.%) resulted in high bio-oil yield of 57 - 66%. Alternatively, innovative processing schemes, such as combined algal processing and parallel algal processing, have been developed to produce multiple bioproducts from each of the algae biochemical

macromolecules to make full use of the algal biomass in order to achieve cost parity with petroleum [5-7].

Like other biomass feedstocks, there is a time difference between algal biomass harvesting and conversion to biofuel and bioproducts, therefore necessitating proper handling after harvesting to ensure the maximum amount of biomass is utilized for conversion. Since algal biomass is a biological material with high moisture content, ineffective storage can lead to significant degradation and changes in its biochemical composition. Microbial degradation of algal biomass can start immediately after harvest resulting in dry matter loss of ~20% within a week of harvest [8]. Wendt et al. [9] reported dry matter losses of 36.8% and 44% (dry basis) for *Scenedesmus obliquus* algae strain (post-centrifugation solid concentration of 20%) stored aerobically and anaerobically at room temperature, respectively for 30 days.

Davis et al. [10] stressed the importance of algal biomass preservation and biochemical composition in light of its economic implication on the minimum fuel selling price (MFSP). The authors estimated that by storing a portion of algal biomass produced in the summer, MFSP of *Scenedesmus* algae derived biofuel can be reduced by 4 - 6%. Also, the authors highlighted the importance of biochemical composition, estimating that production of biofuels from high-lipid *Scenedesmus* biomass will reduce the MFSP by 14% compared to fuel obtained from high-carbohydrate *Scenedesmus* biomass due to the higher fuel yield of the former (141 gallons of gasoline equivalent (GGE)/ton compared to 116 GGE/ton). This implies that preservation of biomass composition will be a critical success factor of any storage operation.

Despite the potential of large-scale algae growth to serve as an alternative source of fuels and chemicals, seasonal variation in productivity and variability in biochemical composition pose significant economic challenges to the optimization of biorefinery conversion capacities. Wendt et al. [9] explained that even though cultivation and production of algal biomass occurs throughout the year across various geographical locations, seasonal decrease in temperature and solar irradiation negatively impact growth rate and yield, preventing constant conversion throughput. To mitigate the seasonal variation in algal biomass productivity and ensure continuous feedstock supply to the biorefinery while maintaining dry matter stability and minimal change in biochemical composition, various preservation techniques such as drying, freezing, pasteurization, blending, and wet anaerobic storage have been explored and reported in literature [1, 8, 9, 11].

Many approaches to mitigating variability have challenges that prevent their full-scale adoption. Drying is utilized in many industries to stabilize high moisture materials. However, drying algal biomass is considered economically unviable because of the high capital and operational costs, which can be equivalent to approximately 75% of the total cost of algal biomass harvesting [12]. Pereira et al. [13] investigated the blending algae biomass with spent coffee grounds as a way to ensure a constant feedstock supply, increasing the amount of spent coffee grounds when algae productivity decreases. Although effective for locations where spent coffee grounds resources are proximal to algae cultivation and processing facilities, such an approach may not be practical for every location. Additionally, the inclusion of a second feedstock with a different composition at variable ratios could introduce unwelcome complexity to the conversion process.

Wet anaerobic storage of algal biomass functions by the same principles as ensiling does in the preservation of forage for livestock feed [14, 15] and has shown potential to effectively preserve algae's biochemical composition and reduce dry matter loss. Wendt et al. [15] investigated wet anaerobic storage of *Scenedesmus acutus* in a 100 mL and 500 mL storage reactors for 30 days and reported dry matter loss of 8.8% and 3.5% for the 100 mL scale and 500 mL scale storage, respectively. Similarly, the authors reported a dry matter

loss of 7% for an algae/corn stover blend which were anaerobically stored for 30 days [9]. The low dry matter loss was attributed to microbial conversion of corn stover soluble sugars to organic acids. Lactic acid bacteria are considered to be very important in this process. They undergo homolactic (lactic acid only) or heterolactic (acetic and lactic acids) fermentation of algal sugars to produce organic acids. The reduced pH along with the presence of the organic acids limits the microbial activities of mold, yeast, and clostridia associated with biomass degradation [1, 14].

The effectiveness of wet anaerobic storage in preserving biochemical composition and dry matter content of algal biomass can be fully evaluated when this storage approach is utilized for various algae strains and the results are consistent. Previous work by the authors have focused on wet anaerobic storage of freshwater algae strains (*S. obliquus*, *S. acutus*), algae blended with yard waste and corn stover [1, 2, 15, 16]. However, this study is investigating the wet anaerobic storage of a saline algae strain and the results from this study will contribute to the development of a holistic understanding of the effectiveness of wet anaerobic storage in preserving algal biomass feedstocks. Therefore, the aim of this study is to investigate the preservation of *Nannochloropsis gaditana* biomass through short term (30 days) and long term (180 days) storage durations, the impact of storage on biochemical composition and whether preservation could be enhanced through inoculation with lactic acid bacteria.

2. Materials and Methods

2.1 Materials

Nannochloropsis gaditana algae strain used in this study was cultivated in a containment greenhouse at the Arizona Center for Algae Technology and Innovation (AzCATI, Mesa AZ) during the months of March and April of 2018. A 110 L vertical flat panel photobioreactor with a 2-inch light path using natural lighting (natural diurnal light/dark periods) was used in culturing the algal biomass. The culture medium used in the photobioreactor was BG-11 medium, adjusted to 35 g/L salt using oceanic sea salt. The culture was grown over a 4-week period and harvested when culture density reached 3 g/L. The algal biomass was dewatered at 1800 x g through Lavin 20-1160 V Centrifuges (AML Industries, Inc., Warren, OH, United States) with a flow rate of approximately 2 L/min. Dewatered algae (35.3% post-centrifugation solid concentration) were placed into Ziploc® bags, stored in a cooler on ice, and shipped overnight to Idaho National Laboratory, Idaho Falls, Idaho, USA.

Lactobacillus buchneri (B-1837) and *Tetragenococcus halophilus* (B-4244) were obtained from the Agricultural Research Service Culture Collection (NRRL) as freeze-dried cultures. *L. buchneri* was revived in De Man, Rogosa, and Sharpe (MRS) broth and frozen at -80 °C in 20% glycerol MRS media. *T. halophilus* was revived in MRS media supplemented with 5% NaCl and preserved as a frozen stock in MRS-5% NaCl-20% glycerol.

2.2 Wet anaerobic storage

Storage experiments were performed in 125 mL reactors. Algal biomass was stored for 30 and 180 days in triplicate for each treatment condition and storage duration. For the untreated algal biomass, storage was initiated by filling the reactor ¾ full to permit material expansion. The reactors were sealed with airtight lids fitted with a through-lid bulkhead tube adapter and a ball valve (P/N B-43S4, Swagelok, Solon, OH). After sealing, the reactors were connected to a pump to evacuate air trapped in the reactors and filled with nitrogen gas to establish an anaerobic atmosphere. Gas collection bags were thereafter fitted to the ball valve with C-flex Ultra tubing (Masterflex, Cole-Parmer, Vernon Hills, IL).

For all the treatment conditions, inoculants were added to an aliquot of biomass and mixed thoroughly prior to storing in the reactors as described for the untreated biomass. For inoculant treated biomass, 200 μ L of 1 – 2-day(s) cultures were added to the algal biomass at the following optical densities at 600 nm: *L. buchneri*, OD 600 = 2.25, *T. halophilus*, OD 600 = 0.46. Tryptone (7 mg tryptone/g wet biomass) was added to each inoculated experiment to serve as source of amino acids to support the growth of lactic acid bacteria. Lactic acid bacteria are fastidious microorganisms and rely on an external source for some amino acids. The inclusion of tryptone was to ensure sufficient amino acids for growth. Inclusion of tryptone would not be economical at scale and any amino acids needed by lactic acid bacteria would have to come from the algae biomass.

The moisture contents of initial and stored materials were determined gravimetrically by drying representative samples at 105 °C until reaching a constant weight. The mass of the algal biomass samples before and after storage were measured and dry matter loss was estimated as percentage of the initial materials using equation (1).

$$\text{Dry matter loss (\%)} = (\text{Wi} - \text{Wf})/\text{Wi} \times 100 \quad (1)$$

Where Wi and Wf are the initial biomass dry weight (g) before storage and final biomass dry weight (g) after storage.

2.3 Compositional analysis

The NREL Laboratory Analytical Procedure for determination of total carbohydrates in algal biomass was followed in analyzing the carbohydrate compositions of fresh and stored algae samples.[17] Briefly, samples were incubated with 72% (w/w) sulfuric acid for 1 h at 30 °C with frequent vortexing. Samples were thereafter diluted to 4% acid (w/w) and autoclaved for 1 h at 121°C. Cooled samples were thereafter neutralized with calcium carbonate and filtered with a 0.2 μ m syringe filter into two separate vials prior to high-performance liquid chromatography (HPLC) analysis.

The HPLC detector was calibrated using a five-component carbohydrate standard at 5 different levels (p/n 13528, Absolute Standards Inc., Hamden, CT) and validated with a five-component check standard (p/n S-16632-R5, Accustandard, Inc., New Haven, CT). Each sample was injected twice into the HPLC, and the analyte peaks from each sample were quantified using standards with matching retention times.

Similarly, NREL Laboratory Analytical Procedure for determination of total lipids as fatty acid methyl ester by in situ transesterification was followed in analyzing the FAME lipid contents of the biomass samples.[18] Prior to the analysis, the biomass samples were lyophilized and ground by mortar and pestle. Protein contents of the biomass samples were estimated by multiplying the elemental nitrogen content by a conversion factor of 4.78 [19].

2.4 Organic acid determination

Organic acids present in the algae samples were determined by HPLC analysis. Prior to the analysis, the organic acids were extracted from the samples by adding refrigerated nano-pure water to wet algal biomass at a ratio of 10 ml (water) to 1g (wet biomass) in 50 mL tube. Samples were vortexed and equilibrated overnight, and thereafter an aliquot was removed and filtered through a 0.2 μ m syringe filter and acidified with 150 μ L volume of 4N H₂SO₄.

Each extract was analyzed in duplicate using HPLC with a refractive index detector (1200 series, Agilent, Santa Clara, CA). Individual organic acid was separated using an Aminex

HPX 87H ion exclusion column (P/N 125-0140, Bio-Rad, Hercules, CA). Refractive index detector was calibrated with a ten-component organic acid standard (P/N 95917, Absolute Standards Inc., Hamden, CT) at five different levels. Sample analyte peaks with retention times matching a standard compound were identified and were quantified using the calibration curve for the matching compound.

2.5 Energy, proximate, and ultimate analysis

Higher heating values of the algae samples were measured using an isoperibolic bomb calorimetric system (LECO AC600, St. Joseph, MI) following the ASTM D5865/D5865M-19 [20]. Samples were combusted in a combustion vessel under 450 psi of UHP O₂.

Prior to the proximate and ultimate analysis, the algae samples were freeze-dried and then ground into fine particles with a mortar and pestle. Proximate compositions of the algae samples were determined using a thermogravimetric analyzer (TGA 701 LECO, St. Joseph, MI, USA) following a standard protocol (ASTM D7582-15) [21]. ASTM standards D5373-10 [22] and ASTM D4239-10 [23] were followed in analyzing the elemental compositions of the samples using a LECO TruSpec CHNS add-on module (St. Joseph, MI, USA). Oxygen was determined by difference.

2.6 Statistical analysis

A two-way ANOVA test was conducted on the experimental data using SAS JMP Pro software to test the impact of treatments and storage durations as well as the interaction effects between the two factors at a significant level of $p < 0.05$. Tukey HSD test was used for the comparison of means and the results were reported in average \pm standard deviation.

3. Results

3.1 Storage performance

Lactic acid bacteria (LAB) are non-aerobic, aerotolerant bacteria that efficiently ferment a variety of sugars to produce primarily lactic acid. Lactic acid bacteria can be further grouped according to their metabolism. Those that exclusively produce lactic acid are homofermenters and those that produce both lactic and acetic acids are termed heterofermenters. The organic acids produced by LAB are inhibitory toward other bacteria, such as Clostridia, which has led to their use industrially to preserve food, feed, and forage. To evaluate how LAB inoculation would affect algae preservation, *N. gaditana* biomass was inoculated separately with a homofermentative (*Tetragenococcus halophilus*) strain and a heterofermentative strain (*Lactobacillus buchneri*). *T. halophilus* has the added benefit of being a halotolerant strain that would be less likely to be negatively affected by the salt content of *N. gaditana* biomass.

N. gaditana biomass was stored anaerobically for 30 and 180 days without treatment and after inoculation with either *L. buchneri* or *T. halophilus*. The storage performance data can be found in Table 1. *Lactobacillus buchneri* treated biomass had the lowest dry matter loss of 4.5% (d.b.), which was significantly lower ($p < 0.05$) than the dry matter loss for the untreated and *T. halophilus* treated biomass samples after the 30 days of storage. The lower dry matter loss recorded for *L. buchneri* treated biomass in comparison to the *T. halophilus* treated biomass, is an indication that the heterofermentative metabolism of *L. buchneri* was more effective at limiting microbial degradation.

There was no significant difference ($p < 0.05$) in the dry matter loss recorded for all the algae samples which were anaerobically stored for 180 days, and losses increased only moderately from 30 days. If the same rate of material loss in the first 30 days had continued in the next 150 days, losses of 27% could be expected in the *L. buchneri* inoculated biomass. This decreasing rate of degradation has been previously observed in ensiling of forage crops, where most of the dry matter loss occurs within the first days and weeks of

storage [24]. Although inoculation with *L. buchneri* was beneficial for short duration storage, this advantage disappeared with long-term storage, with biomass experiencing the same level of preservation regardless of treatment. This includes the no treatment control, where the stability achieved indicates that sufficient lactic acid bacteria were already present within the algae biomass. This is further supported by the composition of organic acids produced in storage, which will be discussed later. Achieving stabilizing conditions without requiring specialized inoculants will simplify the process of preserving algae biomass at industrial scales.

Dry matter loss is a key performance indicator for evaluating the preservation performance of wet anaerobic storage. While the dry matter loss values after 180 days of storage were significantly higher ($p < 0.05$) than after 30, they did remain less than 10% (d.b.) of the initial biomass, which was an initial objective of the study. Preventing losses from exceeding 10% can be attributed to lactic acid fermentation of soluble sugars to lactic acid and other organic acids [1, 14].

Table 1: Stability of *Nannochloropsis gaditana* after 30 and 180 days wet anaerobic storage

Treatment	Storage duration (days)	Dry matter loss (% dry basis)	pH	Organic acid (% dry basis)
Untreated		6.2 ^a ± 1.1	4.34 ^c ± 0.10	9.8 ^{ab} ± 0.7
<i>Tetragenococcus halophilus</i>	30	6.5 ^a ± 0.3	4.60 ^b ± 0.03	9.8 ^{ab} ± 0.4
<i>Lactobacillus buchneri</i>		4.5 ^b ± 0.2	4.76 ^a ± 0.01	8.3 ^b ± 0.3
Untreated		9.3 ^a ± 0.8	4.29 ^b ± 0.16	14.0 ^b ± 0.4
<i>Tetragenococcus halophilus</i>	180	8.8 ^a ± 0.5	4.29 ^b ± 0.10	16.7 ^a ± 1.3
<i>Lactobacillus buchneri</i>		7.1 ^a ± 1.6	4.77 ^a ± 0.12	13.2 ^b ± 1.0

Values in each column with the same superscript are not significantly different ($p < 0.05$)

The final pH of an ensiled material is dependent on the concentrations of individual organic acids. For example, lactic acid has a pKa of 3.8 and therefore ensiled material containing predominantly homofermentative LAB would be expected to have a lower pH than similar biomass containing primarily heterofermentative LAB due to acetic acid's higher pKa of 4.8. The final pH values of all the stored algae samples were 4.29 - 4.77. At both storage durations, the biomass with the higher pH had been inoculated with *L. buchneri*, a heterofermentative organism. This outcome is consistent with the heterofermentative metabolism of *L. buchneri* that yields both lactic and acetic acids. The final pH values are all within the expected range for well-ensiled biomass [25].

Organic acid production and the decrease in pH values function to inhibit microbial activity, leading to well preserved biomass. The data presented here indicate that wet anaerobic storage can successfully preserve algae biomass with high moisture content (65%, wet basis) for more than six months, the length of storage required to mitigate for seasonal variation in biomass productivity.

Total organic acids produced after 30 and 180 days of storage were 8.3 - 9.8% and 13.2 - 16.7% (d.b.), respectively (Table 1). There was a significant increase in the total organic acid produced as the storage duration increased from 30 to 180 days as well as a shift in their relative concentrations (Figure 1). In both the untreated and the *T. halophilus* inoculated algae biomass samples, lactic acid was the dominant organic acid at both short and long storage durations. However, they differed in the second most abundant organic acid with isovaleric being prominent in untreated biomass and propionic acid with *T. halophilus* inoculation. *L. buchneri* treated biomass had the lowest lactic acid and highest acetic acid production for both storage durations, consistent with its heterofermentative metabolism. With continued storage, each storage condition experienced additional lactic acid production. Butyric acid, commonly associated with Clostridia metabolism and poor preservation, appeared to be below 1% for all samples and did not increase with additional storage for the untreated and *T. halophilus* inoculated biomass. For all treatments,

lactic, propionic and isovaleric acids were predominant organic acids. Acetic acid was only a substantial component for *L. buchneri* inoculated algae biomass.

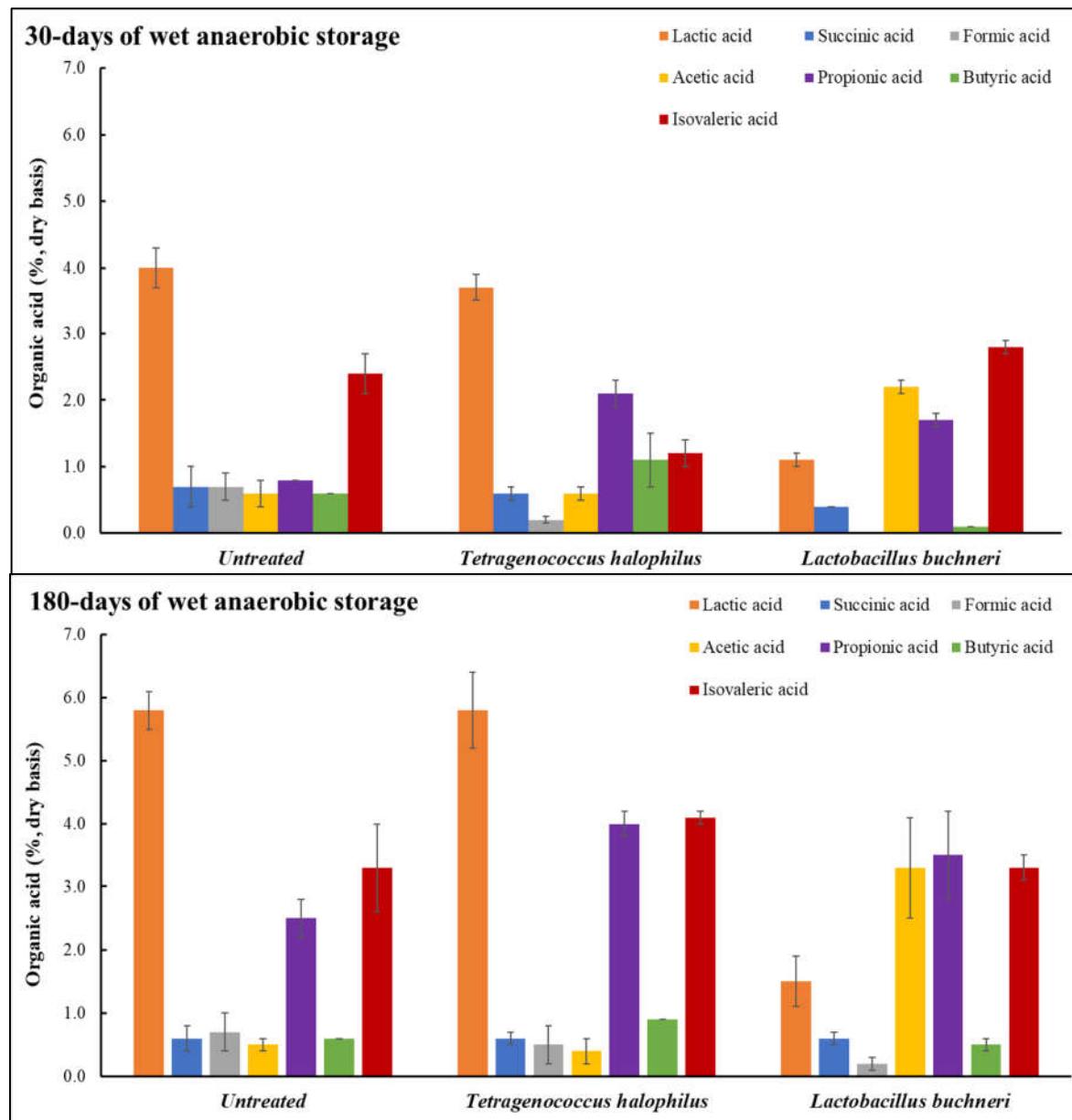


Figure 1. Effect of storage treatment on the organic acid composition of *Nannochloropsis gaditana* biomass after 30 and 180 days of wet anaerobic storage. *Nannochloropsis gaditana* biomass was either stored without treatment (Untreated) or after inoculation with *T. halophilus* or *L. buchneri*.

Cultivation of algae strains tolerant of water with a wide salinity range is important to reducing the cost of algal biomass production and enhancing its sustainability. Evaporation of water from open ponds increases salinity throughout the day and a strain tolerant of high dissolved salt (35 - 50 ppt) permits the use of brackish or saline water to replace water lost to evaporation [26], avoiding costly consumption of freshwater. Prior to this study, the effect of higher salt concentration on the microbial community responsible for establishing conditions for ensiling of algal biomass was uncertain and poor stability had been observed with saline algae biomass (unpublished results). The outcome of storage stability studies reported here, low dry matter loss, post-storage pH of 4.75 or lower and

effective lactic acid production, indicates the compatibility of this approach to preservation with algal biomass cultivated in saline conditions. The algal biomass for this study was cultivated in closed flat panel reactors where evaporative water loss and contamination was minimized. Additional research is needed to verify that the variable salinity and increased microbial contamination inherent to open raceway ponds does not adversely impact preservation in wet anaerobic storage of saline strains.

3.2 Elemental and proximate compositions

Table 2 shows the elemental composition, energy, and ash contents of the algae samples. The ash content of the unstored biomass was 7.0%. The storage durations had no effect on the ash content of the untreated biomass. However, the ash contents slightly increased to ~8% for the biomass samples inoculated with *L. buchneri* and *T. halophilus* during the 30 and 180 days of storage. Wahlen et al. [1] reported a consistent increase in the ash contents of wet anaerobically stored *S. obliquus* blended with corn stover. Wendt et al. [2] also reported an increase in the ash contents (3.50 – 4.36%, d.b.) of *S. acutus* mixed with glycosidase and glucose oxidase which were anaerobically stored for 30 and 180 days. The high ash contents reported in this study can be attributed to the cultivation conditions of *N. gaditana*, which as a marine strain higher ash content compared to freshwater strains is expected due to the much higher dissolved solid content of seawater. [16] It is imperative to note that high ash content in algal biomass, or in any biomass, is an undesirable property. Elevated ash content can adversely impact conversion operations to produce biofuels by reducing fuel yield, requiring greater throughput due to unconvertible material and can have an adverse effect on equipment operation (e.g., wear, slagging, scaling, etc.).

The higher heating values of the algae samples ranged between 27.6 – 28.5 MJ/kg. There was no significant difference ($p < 0.05$) in the higher heating values of algal biomass stored for 180 days in comparison to the unstored biomass. However, the higher heating value (27.6 MJ/kg) of *T. halophilus* treated biomass after 30 days of storage was significantly lower ($p < 0.05$) than the higher heating value (28.0 MJ/kg) of the unstored biomass. This reduction can be attributed to the higher ash content (8.1% d.b.) of *T. halophilus* treated biomass. The small difference (< 1.0 MJ/kg) in the higher heating values of the stored and unstored biomass samples is an indication that the wet anaerobic storage was effective in preserving the algal biomass.

Table 2: Elemental and proximate compositions of *Nannochloropsis gaditana* stored for 30 and 180 days

Treatment	Storage duration	Ash (% d.b.)	C (% d.b.)	H (% d.b.)	N (% d.b.)	O (% d.b.)	S (% d.b.)	HHV (MJ/kg)
Unstored	0	7.0	57.6 ^c ± 0.6	9.1 ^b ± 0.1	2.5 ^b ± 0.0	23.5 ^a ± 0.7	0.31 ^a ± 0.02	28.0 ^{ab} ± 0.2
Untreated		7.0	58.3 ^c ± 0.1	9.2 ^b ± 0.0	2.7 ^b ± 0.0	22.5 ^b ± 0.1	0.35 ^a ± 0.01	27.8 ^{bc} ± 0.1
<i>L. buchneri</i>	30	7.0	58.3 ^c ± 0.1	9.0 ^c ± 0.1	2.9 ^{ab} ± 0.0	22.5 ^b ± 0.1	0.32 ^a ± 0.03	28.2 ^a ± 0.2
<i>T. halophilus</i>		8.1	58.4 ^{ab} ± 0.1	9.1 ^b ± 0.1	3.0 ^a ± 0.0	21.1 ^c ± 0.2	0.29 ^a ± 0.02	27.6 ^c ± 0.2
Untreated		7.3	59.1 ^a ± 0.1	9.3 ^b ± 0.0	2.8 ^b ± 0.0	21.2 ^c ± 0.1	0.32 ^a ± 0.04	28.2 ^a ± 0.2
<i>L. buchneri</i>	180	8.4	58.9 ^a ± 0.2	9.3 ^b ± 0.0	3.0 ^a ± 0.0	20.2 ^d ± 0.2	0.29 ^a ± 0.03	28.5 ^a ± 0.2
<i>T. halophilus</i>		7.7	58.9 ^a ± 0.3	9.4 ^a ± 0.0	3.0 ^a ± 0.0	20.6 ^{cd} ± 0.3	0.36 ^a ± 0.05	28.5 ^a ± 0.3

All values were measured in triplicate and are displayed as a percentage of dry biomass (dry basis, d.b.).

Values in each column with the same superscript are not significantly different ($p < 0.05$)

There was a slight increase in the elemental compositions (Carbon, Hydrogen, and Nitrogen) of the algae samples after the storage durations (30 and 180 days) in comparison to the unstored sample. Meanwhile elemental oxygen content was significantly reduced ($p < 0.05$) for both storage durations and all treatments. This reduction may be attributed to production of CO₂ occurring during storage due to microbial activity. There was no significant difference ($p < 0.05$) in the sulfur contents in any of the algae samples.

Algae biomass has high nitrogen content, which can be problematic for thermochemical conversion approaches such as hydrothermal liquefaction but is less of a concern for fermentation approaches to fuel production. The high concentration of nitrogen (2.5 - 3.0%, d.b.) in this biomass is an indication that the utilization of the biofuel derived from this algae feedstock may result in NO_x emission or

require substantial hydrogenation. However, the carbon (57 - 59%, d.b.) and hydrogen contents (~9.0%, d.b.) of the algae samples were higher and the oxygen contents (20 - 23%, d.b.) were lower than the ones reported for lignocellulosic biomass feedstocks such as Miscanthus, Switchgrass, and Arundo [27, 28], pinewood and pine bark [29], yard wastes [16], and forest residues [30, 31].

3.3 Biochemical composition

The impact of wet anaerobic storage on the biochemical composition of *N. gaditana* is presented in Table 3. Carbohydrate content of the unstored algae sample was 21.4% (d.b.) and carbohydrate content reduced significantly ($p < 0.05$) as the storage duration increased from 30 to 180 days. The carbohydrate content of the untreated algae sample decreased from 16.6% to 9.7% (d.b.) with continued storage. Similarly, the total carbohydrate content of *L. buchneri* and *T. halophilus* treated biomass samples decreased from 16.7 to 11.7% and from 13.9 to 9.1% (d.b.), respectively from 30 to 180 days storage. This reduction in carbohydrate content with increased storage duration is not ideal and can be attributed to continued fermentation of accessible and non-recalcitrant carbohydrates present in the biomass to organic acids under anaerobic conditions. Ensiling as a method of preservation necessarily leads to some decomposition of biomass in order to produce sufficient organic acids to limit microbial metabolism and minimize degradation [2, 9]. Of the treatments evaluated in this study, *L. buchneri* inoculation was the most effective at preservation as this biomass experienced the least amount of dry matter loss after 180 days and also had the highest carbohydrate content after storage.

Protein content of the algae samples increased in apparent concentration as the storage duration increased from 30 to 180 days. The protein content of the unstored algae was 12.1% (d.b.) and after storage the untreated algae had protein contents of 12.7% (30 days) and 13.3% (180 days, d.b.). Increases in protein content observed for the treated algae samples were not substantial as the increase was <5% higher than the protein content of the unstored algae sample. A similar increase in protein content was reported for *S. acutus* biomass after storage and various treatments [2]. The conclusion in this study that protein is unaffected by storage is not conclusive and this is due to limitations to the standard method for protein measurement.[32] This method is not a direct measurement of protein but a measurement of nitrogen content. Protein content is then determined by multiplying the nitrogen content by an experimentally determined conversion factor [33]. It is possible for proteins to be degraded without bulk nitrogen content changing. Future research will explore protein stability through direct measurements of protein content. The apparent increase in protein content can be due to nitrogen content being unchanged in storage while carbohydrates are consumed, enriching for nitrogen in the biomass.

The FAME lipid content was influenced by the storage duration, as there was a significant difference ($p < 0.05$) between the lipid content of unstored algae and the algae samples stored for 30 and 180 days, except in the case of *L. buchneri* inoculated biomass after 30 days storage. However, there was no significant difference ($p < 0.05$) between the lipid contents of the algae samples stored for 30 and 180 days except for *L. buchneri* treated biomass in which its lipid content increased from 40.6% to 44.3% (d.b.) as the storage duration increased from 30 to 180 days. The relative increase in the FAME lipid content is attributed to changes in the carbohydrate fraction of the algae samples during storage. Degradation of any one of the three biomass macromolecules (carbohydrate, lipid, and protein) during storage can cause the others to increase in proportion to the total. Changes in biochemical composition could affect the value of the algal biomass and influence the distribution of the biofuel and bioproducts obtained from the biomass [1].

Table 3: Effect of wet anaerobic storage on biochemical composition of *Nannochloropsis gaditana*

Treatment	Storage duration	Carbohydrates (% d.b.)	Protein (% d.b.)	FAME (% d.b.)
Unstored	0	21.4 ^a ± 0.8	12.1 ^c ± 0.2	41.1 ^c ± 0.3
Untreated		16.6 ^b ± 0.1	12.7 ^c ± 0.1	45.1 ^a ± 0.3
<i>Lactobacillus buchneri</i>	30	16.7 ^b ± 0.2	13.9 ^b ± 0.1	40.6 ^c ± 0.6
<i>Tetragenococcus halophilus</i>		13.9 ^c ± 0.2	14.2 ^a ± 0.1	46.1 ^a ± 2.1
Untreated		9.7 ^e ± 0.4	13.3 ^b ± 0.1	46.9 ^a ± 0.8
<i>Lactobacillus buchneri</i>	180	11.7 ^d ± 0.1	14.3 ^a ± 0.1	44.3 ^b ± 0.8
<i>Tetragenococcus halophilus</i>		9.1 ^e ± 0.1	14.5 ^a ± 0.1	44.5 ^a ± 2.1

3.4 Carbohydrate composition

Storage has the greatest effect on carbohydrate content (Table 4) with glucose being affected to a greater extent than other sugar monomers. Glucose (4.2 – 15.2%, d.b.) and galactose (3.8 – 4.5%, d.b.) were the primary sugar monomers identified in *N. gaditana* biomass, while xylose (0.6 – 0.8 %, d.b.), galactose (3.8 – 4.5%, d.b.), arabinose (0.2 – 0.4 %, d.b.), and mannose (0.6 – 0.9%, d.b.) were identified as minor sugar monomers. A comparison of the sugar monomers of the algae samples after 30 and 180 days of storage, demonstrated that glucose content significantly reduced from its initial value of 15.2% (d.b.), reaching values of 10.4% (d.b.) and 4.2% (d.b.) for untreated algal biomass stored anaerobically for 30 and 180 days, respectively. A similar reduction in glucose content was observed for all other treatments as well. Surprisingly, there were no significant changes in the contents of other carbohydrate monomers. Given that glucose constitutes about 40 – 71% of the total carbohydrate content of any of the algae samples, it can be inferred that the wet anaerobic storage had a significant effect on the carbohydrate composition of *N. gaditana* biomass.

Wendt et al. [2] reported a similar change in carbohydrate compositions for freshwater strain *S. acutus* treated with sulfuric acid, glycosidase, and glucose oxidase. The authors reported a reduction in glucose, galactose, and mannose contents of the enzyme-treated biomass. This reduction was attributed to the conversion of complex carbohydrates into simple sugars that were then easily utilized as a carbon source. Wahlen et al. [1] however reported glucose and xylose as the major carbohydrates (constituting about 90 – 93% of the total sugars) while galactose, arabinose, and mannose were the minor carbohydrate components found in a *S. obliquus* algae biomass blended with corn stover.

Table 4: Effect of wet anaerobic storage on carbohydrate composition of *Nannochloropsis gaditana*

Treatment	Storage Days	Glucose (% d.b.)	Xylose (% d.b.)	Galactose (% d.b.)	Arabinose (% d.b.)	Mannose (% d.b.)
Unstored	0	15.2 ^a ± 0.6	0.63 ^c ± 0.04	4.68 ^a ± 0.25	0.39 ^{ab} ± 0.02	0.69 ^a ± 0.06
Untreated		10.4 ^c ± 0.03	0.70 ^b ± 0.01	4.46 ^{ab} ± 0.09	0.40 ^{ab} ± 0.02	0.77 ^a ± 0.04
<i>L. buchneri</i>	30	10.8 ^b ± 0.05	0.66 ^{bc} ± 0.01	4.17 ^c ± 0.05	0.40 ^{ab} ± 0.04	0.64 ^a ± 0.04
<i>T. halophilus</i>		8.5 ^e ± 0.02	0.61 ^c ± 0.02	3.84 ^{de} ± 0.05	0.32 ^b ± 0.10	0.64 ^a ± 0.1
Untreated		4.2 ^g ± 0.1	0.63 ^{bc} ± 0.03	3.80 ^e ± 0.05	0.40 ^{ab} ± 0.04	0.74 ^a ± 0.1
<i>L. buchneri</i>	180	5.5 ^f ± 0.03	0.83 ^a ± 0.02	4.04 ^{cd} ± 0.09	0.52 ^a ± 0.06	0.76 ^a ± 0.01
<i>T. halophilus</i>		3.6 ^h ± 0.04	0.65 ^{bc} ± 0.02	3.92 ^{de} ± 0.01	0.31 ^b ± 0.03	0.64 ^a ± 0.04

4. Conclusion

This study has demonstrated that wet anaerobic storage of *Nannochloropsis gaditana* algal biomass is a promising preservation approach to ensure continuous supply of the algal biomass to biorefineries. Dry matter loss in long-term storage (180 days) of less than 10% (d.b.) for all treatment conditions and post-storage pH values measuring less than 4.8

indicate that wet anaerobic storage is an effective means of preserving saline microalgal biomass. The minimal change in the higher heating values, reduction of oxygen content and preservation of lipids indicate that the wet anaerobic approach to preserving algal biomass will preserve feedstock quality for high temperature conversion approaches, such as hydrothermal liquefaction. The loss of carbohydrates in storage could impact fuel yields through biochemical approaches to conversion. The loss in yield could partly be recovered by the value of organic acids that are produced in well-ensiled algal biomass. Utilizing this preservation technique will not only stabilize the dry matter and biochemical composition of saline algae strains, but it will be a cost-effective preservation approach which will help to mitigate the seasonal variation in the productivity of algal biomass feedstocks.

Author Contributions: Conceptualization, Bradley Wahlen and Lynn Wendt; Formal analysis, Oluwatosin Oginni, Bradley Wahlen and Lynn Wendt; Funding acquisition, Bradley Wahlen and Lynn Wendt; Investigation, Oluwatosin Oginni, Bradley Wahlen, Lynn Wendt and Michelle Walton; Methodology, Bradley Wahlen, Lynn Wendt and Michelle Walton; Project administration, Bradley Wahlen and Lynn Wendt; Resources, Thomas Dempster and Henri Gerken; Supervision, Bradley Wahlen and Lynn Wendt; Visualization, Oluwatosin Oginni; Writing – original draft, Oluwatosin Oginni, Bradley Wahlen and Lynn Wendt; Writing – review & editing, Oluwatosin Oginni and Bradley Wahlen.

Funding: This research was funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (BETO), under Idaho National Laboratory Award No. DE-AC07-05ID14517. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Acknowledgments: The authors acknowledge Kastli Schaller and Bradley Thomas at the Idaho National Laboratory for analytical support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study, collection, analyses, or interpretation of data, writing of the manuscript, or in the decision to publish the results.

References

1. Wahlen, B.D.; Wendt, L.M.; Murphy, J.A.; Seibel, F. Mitigation of variable seasonal productivity in algae biomass through blending and ensiling: An assessment of compositional changes in storage. *Algal Research* 2019, **42**, 101584, doi: <https://doi.org/10.1016/j.algal.2019.101584>.
2. Wendt, L.M.; Kinchin, C.; Wahlen, B.D.; Davis, R.; Dempster, T.A.; Gerken, H. Assessing the stability and techno-economic implications for wet storage of harvested microalgae to manage seasonal variability. *Biotechnol Biofuels* 2019, **12**, doi: ARTN 8010.1186/s13068-019-1420-0.
3. Langholtz, M.H.; Stokes, B.J.; Eaton, L.M. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; Oak Ridge National Laboratory: Oak Ridge, TN, 2016; p. 448p.
4. Shakya, R.; Adhikari, S.; Mahadevan, R.; Shanmugam, S.R.; Nam, H.; Hassan, E.B.; Dempster, T.A. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. *Bioresource Technology* 2017, **243**, 1112-1120, doi: <https://doi.org/10.1016/j.biortech.2017.07.046>.
5. Dong, T.; Knoshaug, E.P.; Davis, R.; Laurens, L.M.L.; Van Wychen, S.; Pienkos, P.T.; Nagle, N. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. *Algal Res.* 2016, **19**, 316-323, doi: <http://dx.doi.org/10.1016/j.algal.2015.12.021>.
6. Li, Y.; Leow, S.; Dong, T.; Nagle, N.J.; Knoshaug, E.P.; Laurens, L.M.L.; Pienkos, P.T.; Guest, J.S.; Strathmann, T.J. Demonstration and Evaluation of Hybrid Microalgae Aqueous Conversion Systems for Biofuel Production. *ACS Sustainable Chemistry & Engineering* 2019, **7**, 5835-5844, doi:10.1021/acssuschemeng.8b05741.
7. Knoshaug, E.P.; Mohagheghi, A.; Nagle, N.J.; Stickel, J.J.; Dong, T.; Karp, E.M.; Kruger, J.S.; Brandner, D.G.; Manker, L.P.; Rorrer, N.A.; et al. Demonstration of parallel algal processing: production of renewable diesel blendstock and a high-value chemical intermediate. *Green Chemistry* 2018, **20**, 457-468, doi:10.1039/C7GC02295F.

8. Wahlen, B.D.; Roni, M.S.; Cafferty, K.G.; Wendt, L.M.; Westover, T.L.; Stevens, D.M.; Newby, D.T. Managing variability in algal biomass production through drying and stabilization of feedstock blends. *Algal Research* 2017, 24, 9-18, doi: <https://doi.org/10.1016/j.algal.2017.03.005>.
9. Wendt, L.M.; Wahlen, B.D.; Li, C.; Kachurin, G.; Ogden, K.L.; Murphy, J.A. Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part I—Storage performance. *Algal Research* 2017, 25, 567-575, doi: <https://doi.org/10.1016/j.algal.2017.05.016>.
10. Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products; NREL/TP-5100-62368 United States 10.2172/1159351 NREL English; National Renewable Energy Lab. (NREL), Golden, CO (United States): 2014; p. Medium: ED; Size: 110 pp.
11. Nelson, J.A. Postharvest Degradation of Microalgae: Effect of Temperature and Water Activity. Utah State University, Kogan, Utah, 2015. <https://doi.org/10.26076/2f25-e7ba>
12. Aliyu, A.; Lee, J.G.M.; Harvey, A.P. Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production. *Bioresource Technology Reports* 2021, 14, 100676, doi: <https://doi.org/10.1016/j.biteb.2021.100676>.
13. Pereira, A.P.; Dong, T.; Knoshaug, E.P.; Nagle, N.; Spiller, R.; Panczak, B.; Chuck, C.J.; Pienkos, P.T. An alternative biorefinery approach to address microalgal seasonality: blending with spent coffee grounds. *Sustainable Energy & Fuels* 2020, 4, 3400-3408, doi:10.1039/d0se00164c.
14. Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. *Journal of Dairy Science* 2018, 101, 3952-3979, doi: <https://doi.org/10.3168/jds.2017-13837>.
15. Wendt, L.M.; Wahlen, B.D.; Knoshaug, E.P.; Nagle, N.J.; Dong, T.; Spiller, R.; Panczak, B.; Van Wychen, S.; Dempster, T.A.; Gerken, H.; et al. Anaerobic Storage and Conversion of Microalgal Biomass to Manage Seasonal Variation in Cultivation. *ACS Sustainable Chemistry & Engineering* 2020, 8, 13310-13317, doi:10.1021/acssuschemeng.0c03790.
16. Wahlen, B.D.; Wendt, L.M.; Murphy, A.; Thompson, V.S.; Hartley, D.S.; Dempster, T.; Gerken, H. Preservation of Microalgae, Lignocellulosic Biomass Blends by Ensiling to Enable Consistent Year-Round Feedstock Supply for Thermochemical Conversion to Biofuels. *Front Bioeng Biotech* 2020, 8, doi: ARTN 31610.3389/fbioe.2020.00316.
17. Wychen, S.V.; Laurens, L. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP). 2013. NREL/TP-5100-60957
18. Van Wychen, S.; Ramirez, K.; Laurens, L.M.L. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP); NREL/TP-5100-60958 United States 10.2172/1118085 NREL English; National Renewable Energy Lab. (NREL), Golden, CO (United States): 2016.
19. Lourenço, S.O.; Barbarino, E.; Lavín, P.L.; Lanfer Marquez, U.M.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. *European Journal of Phycology* 2004, 39, 17-32, doi:10.1080/0967026032000157156.
20. ASTM International. Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM D5865 / D5865M-19 2019.
21. ASTM International. Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. ASTM D7582-15 2015.
22. ASTM International. Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM D5373-10 2010.
23. ASTM International. Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM D 4239-10 2010.
24. McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage, 2 ed.; Cambrian Printers, Ltd.: Aberystwyth, UK, 1981. <https://doi.org/10.1017/S0021859600067162>.
25. Weinberg, Z.G.; Muck, R.E. New trends and opportunities in the development and use of inoculants for silage. *FEMS Microbiology Reviews* 1996, 19, 53-68, doi:10.1111/j.1574-6976.1996.tb00253.x.
26. Krishnan, A.; Likhogrud, M.; Cano, M.; Edmundson, S.; Melanson, J.B.; Huesemann, M.; McGowen, J.; Weissman, J.C.; Posewitz, M.C. *Picochlorum celeri* as a model system for robust outdoor algal growth in seawater. *Scientific Reports* 2021, 11, 11649, doi:10.1038/s41598-021-91106-5.
27. Oginni, O.; Singh, K.; Zondlo, J.W. Pyrolysis of dedicated bioenergy crops grown on reclaimed mine land in West Virginia. *Journal of Analytical and Applied Pyrolysis* 2017, 123, 319-329, doi: <https://doi.org/10.1016/j.jaap.2016.11.013>.
28. Oginni, O.; Singh, K. Pyrolysis characteristics of *Arundo donax* harvested from a reclaimed mine land. *Industrial Crops and Products* 2019, 133, 44-53, doi: <https://doi.org/10.1016/j.indcrop.2019.03.014>.
29. Ren, X.; Meng, J.; Chang, J.; Kelley, S.S.; Jameel, H.; Park, S. Effect of blending ratio of loblolly pine wood and bark on the properties of pyrolysis bio-oils. *Fuel Processing Technology* 2017, 167, 43-49, doi: <https://doi.org/10.1016/j.fuproc.2017.06.025>.
30. Oginni, O.; Singh, K. Effect of carbonization temperature on fuel and caffeine adsorption characteristics of white pine and Norway spruce needle derived biochars. *Industrial Crops and Products* 2021, 162, 113261.
31. Oasmaa, A.; Solantausta, Y.; Arpiaainen, V.; Kuoppala, E.; Sipilä, K. Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues. *Energy & Fuels* 2010, 24, 1380-1388, doi:10.1021/ef901107f.
32. Laurens, L.M.L. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures. NREL 2013, 303, 275-3000.

33. Templeton, D.W.; Laurens, L.M.L. Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed, and fuel. *Algal Res.* 2015, 11, 359-367, doi:10.1016/j.algal.2015.07.013.