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Abstract: Automation technologies are present in almost every domain of human activity and they 

are now more and more present in our everyday life. The reason for this massive deployment of 

automated systems would reside in all the benefits they offer to the users. In experimental settings, 

multiple studies have demonstrated the positive effects the introduction of automation can have on 

human decision-making and performance. However, studies have also demonstrated that the intro-

duction of automation can have important negative effects as well. Considering that automation is 

now introduced in sensitive domains like military defense or medicine, more than ever we need a 

complete understanding of the effects caused by these systems on human performance and deci-

sion-making, and particularly in tasks and contexts with social or moral dimension. In this paper 

we will firstly review the main effects produced on a human agent’s behaviors by the introduction 

of automation. Then, we will review the conditions identified as underlying factors of these effects, 

and see how they are currently integrated in models of human – automation interaction. We will 

conclude this review by highlighting new directions for future investigations on human – automa-

tion interaction. 

Keywords: automation bias; human – automation interaction; human decision-making; level of au-

tomation; moral decision 

 

1. Introduction 

Over the past 50 years, human activities have been radically changed by the in-

creased use of automation [1-3]. There is almost no area in which these technologies are 

not present to support people in monitoring activities, decision making, or to help in 

action execution [e.g., 4,5]. Automation helps people finding the optimal route to pay a 

visit friends or family, assists workers in industry in the execution of difficult tasks, or 

support physicians in diagnostics and drug prescription. In that respect, the usage of 

automated systems is now widespread in driving [6,7], aviation [8-10], military defense 

and security [11], medicine [12,13], nuclear plants [14, 15], etc., with the part of automa-

tion involved in each of these domains constantly increasing [3].  

The reason for this massive deployment of automated systems would reside in all the 

benefits they offer to the users. Automated systems can make the driving experience 

much more comfortable, reduce work accidents in manufacturing, or help in the detec-

tion of pathologies and negative drug-drug combinations. In the lab, multiple experi-

ments have shown how the use of automated systems results in shorter response times, 

errors decrement, or even a reduced workload and multi-tasking increment, in compari-
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son with conditions without assistance [16-21]. With the level of automatization con-

stantly increasing, we are now close to a stage where human activities will change from 

active participation to a task to a more supervisory role, with the ultimate goal for engi-

neers being a (quasi-)full automation of the systems [1; 3; 10; 11; 22].  

 Unfortunately, the involvement of automated technologies in human activities has 

not systematically been associated with positive effects for the users’ or the system’s per-

formance. More automatization does not result necessarily in systematic performance 

increment or correct decisions. Dramatic examples include the accident of Air France 

flight 447 (AF447) on May 2009, where a failure in the autopilot mode coupled with a 

(supposed) loss of situation awareness from the pilots resulted in the plane stalling and 

falling into the Atlantic Ocean, killing all the 12 staff and 216 passengers on board. Oth-

ers examples with automated vehicles or weapons are also reported in the literature 

[e.g., 23,24].  

For that reason, now scientists are studying human – automated system interac-

tions more thoroughly in order to identify and describe the negative effects arising con-

currently with the benefits of automation, and the conditions in which these effects are 

observed [2, 25]. For example, studies found that the use of automated systems could 

sometimes result in overreliance in the system’s decisions, a degradation of manual 

skills, or in a loss of feeling of control about the ongoing task [21, 26-28]. Understanding 

the conditions that produce these effects is an absolute necessity. It would help us to de-

velop automated technologies that guarantee safety, improve performances and guide 

optimal decision-making from the human users, without the potential negative out-

comes. This is particularly true when automated systems are employed in tasks and con-

texts that involve moral decision-making [29-31]. 

 For instance, a combat drone operator, based on the automated information and/or 

suggestions received from the system, must make moral decisions when he/she is en-

gaged on a battlefield and must choose between bombing a detected military target – 

with the risk of errors and collateral damages – or not bombing the target – with the risk 

of later attacks from the enemy also implying civilian losses and material damages. In 

that situation, the overreliance in the system’s decisions might have dramatic conse-

quences. But, to the best of our knowledge, the majority of research about moral dilem-

mas and automated systems concerns the algorithms and values to assign to the systems 

to guide their decisions during moral decision-making situations [e.g., 32-35]. However, 

another fundamental issue is to understand how the moral decisions made by a human 

agent are influenced by the interaction with automated systems. Considering the nega-

tive effects mentioned above, like automation-bias or loss of feeling of control, it is possi-

ble that the interaction with automated systems also impacts negatively these decisions 

and the corollary actions [36,37].  

Thus, with the use of automated systems in sensitive domains, like military defense 

and security, medicine, or nuclear plants, more than ever we need a complete under-

standing of the effects caused by these systems on human performance and decision-

making, and particularly in tasks and contexts with moral value. Trivial in some cases, 

like when we are biased to follow the instructions from a GPS even when a road-sign 

indicated that the road on which we engaged is closed in 200 meters, overreliance on 

automation or a decrement in feeling of responsibility might have dramatic effects when 

the outcomes of decisions and actions involve human lives. The first objective of this 

paper is to propose an overview of the effects on human decision-making and perfor-

mance associated with automated systems. We will start with a review of the main posi-

tive effects that these systems produce. Then, we will delve into the negative effects and 

their associated conditions reported with the use of automated systems, with a specific 

discussion on situations that involve a moral or social dimension. After this review of 
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empirical findings, in a second part of this paper, we will review factors that are known 

to influence human – automation interaction. After that review, we will present some of 

the psychological models developed to account for the effects reported in part one. We 

will discuss the benefits of these models but also their limits and potential ways of im-

provement. Thus, the second purpose of this paper is to propose a review of the known-

determining factors in human-automation interaction, and a discussion on the concep-

tual models used to interpret these findings. By doing so, we hope to pave the way for 

new research on that domain. Particularly, we hope this review will result in new inves-

tigations and new insights on the circumstances that produce the negative effects some-

times observed with automated systems, and on how it is possible to counteract these 

effects. We will conclude this review by highlighting potential fruitful directions for fu-

ture investigations on human – automation interaction. 

2. Interaction with Automation and Its Effect on Human Decision-Making and Perfor-

mance 

2.1. The good: Behavior enhancement with automation 

Automation is defined as the execution of a task by a machine that was initially 

performed by a human agent [2]. With the massive increment in computer performance 

and the remarkable development of artificial intelligence and machine learning, automa-

tion is now largely dominated by computerized automation [3]. Automation offers many 

benefits in human activities. At an industrial level, automation increases manufacturing 

efficiency and productivity, and reduces the risk of accidents. At an individual level, 

automation is supposed to make the user/consumer experience much more comfortable 

and effective as well. Automation, of course, is not all or none. The extent to which a 

task is performed by automation varies across needs and situations. Thus, automation is 

characterized by different levels of automation [38, 39], and goes from fully manual per-

formance or very basic automation processes (e.g., automated data acquisition), to fully 

autonomous systems. In addition, the introduction of automation can be done at differ-

ent stages of task execution. A classic description is given by Parasuraman et al. [38; see 

also 40]. According to the authors, automation can be assigned to 1) information acquisi-

tion, 2) information analysis, 3) decision-making, or 4) action processing (for different 

descriptions, see also [25, 41]). Thus, automation can help either to detect relevant infor-

mation from the environment and to analyze more deeply the information collected 

(e.g., by inferring about outcomes likelihood), or to help the user in making the optimal 

decision considering the information collected and executing the action selected. In this 

first section and for the rest of the paper, we will put our attention on systems in which a 

human agent is still involved in the task process. Because our focus is on the effect of 

automation on human performance and decision-making and fully autonomous systems 

remain exceptional, the scientific findings presented in this review will not discuss the 

performance and the problematics relate to fully autonomous systems. Now, we will 

illustrate the positive effects of automation on human performance and decision-making 

with some relevant findings found in the literature following the stage classification pro-

posed by Parasuraman et al. [38]. 

 As we have seen the first stage is information acquisition. Information acquisition 

automation commonly consists in adding salient stimuli (or cues), or in changing the 

properties of the environment, to facilitate the detection of relevant target stimuli and/or 

promote appropriate decision-making. A common example of information acquisition 

automation is additional visual cues superimposed on a target that needs to be detected. 

For example, Yeh & Wickens [42] asked participants in a virtual reality environment to 

pilot an unmanned aerial vehicle and search for hidden military targets (e.g., a tank). 

Participants could be assisted by automation that consisted in a reticle automatically su-

perimposed on a target when detected by the system. Here, target detection increased 
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with the help of the target cueing automation (see also [43]). Similarly, Goh et al. [17] 

asked participants in a luggage screening task to detect the presence of a knife in lug-

gage images shown on a monitor. Some of the participants were assisted by an automa-

tion that superimposed a salient green circle to detected knife (i.e., a target). Consistent 

with the results by Yeh & Wickens [42], the authors observed that the proportion of cor-

rect detection was superior in the group with automation compared to the group with-

out automation (see also [16, 44]). Interestingly, the stimulus used for information auto-

mation can have different physical properties. Rice & McCarley [20] used for example a 

text message as cue, while Dixon & Wickens [45] used an auditory stimulus. Finally, in a 

study by St. John et al. [46], information automation consisted in changing directly the 

saliency of the target stimuli. 

The second stage of automation is information analysis automation. In this form of 

automation, information collected from (multiple sources of) the environment is inte-

grated by the system and/or is analyzed to make predictions about future states of the 

environment. In the study by St. John et al. [46] mentioned above, participants in a simu-

lated naval air defense task had to monitor a visual airspace to defend a ship against 

aerial threats. Participants were supported in this task by an automation system that 

continuously analyzed the level of threat represented by the aerial vehicles displayed on 

the monitor, and changed their saliency on the screen accordingly. This automation de-

creased the response time to the threatening aircraft compared to a situation without 

automation. Another good example of information analysis automation is clinical deci-

sion support system. Clinical decision support systems are automation used to help phy-

sicians in diagnoses or drug prescriptions. For example, Martinez-Franco et al. [47] 

tested the effect of DXplain, a decision support system developed to generate lists of 

ranked diagnostic hypotheses based on information put in the system. The authors rec-

orded the rate of correct diagnoses from first-year medicine students and results found 

that the use of decision support system increased the correct diagnoses (see also [48]). 

Automation is thus well suited to assist humans in the detection and the analysis of 

relevant stimuli from the environment, and to promote appropriate decisions. Now, we 

will present examples of automation systems that support directly the user in decision-

making process (stage 3) and action execution (stage 4). In decision automation, automa-

tion is designed to propose or to select an action among a set of possibilities, based on 

the valuation of the different available actions and their potential outcomes. Action auto-

mation simply refers to the actual execution of the action selected by the system (or the 

user). A good example of the effect of decision automation comes from a study by 

Rovira et al. [21] in the military domain. Here, in a command-and-control task, partici-

pants were asked to engage enemies with friendly units on a simulated battlefield. Par-

ticipants could either based their decisions on basic information about the possible en-

gagement combinations, or based on the support of a decision assistance that provided 

with varying degree of precisions the best options to select. The results found by Rovira 

and colleagues show that decision accuracy (in reliable decision trials) are superior to 

basic information, and increases with the degree of precision. We can cite also a study by 

MacMillan et al. [19] who found that participants were better in a simulated air traffic 

control environment, measured by a reduced number of aircraft being on hold, when 

they were supported by decision assistances. Similarly, Sarter & Schroeder [49] found 

that pilots tested in an aircraft simulator were better at managing icing condition when 

recommendations on the action to take were proposed by a decision system.  

 By guiding the detection of relevant stimuli in the environment, by making predic-

tions about future states and outcomes, or by making direct recommendations about the 

correct decisions to make, multiple experiments have demonstrated how automation 

produce positive effects on performance and decision-making. A consequence of the 

facilitation from automation is the increased possibility for multi-tasking for the human 
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agent [e.g., 27, 50-53]. The possibility for multi-tasking represents another advantage of 

automation over pure manual task. For example, Cullen et al. [50] in a multi-task envi-

ronment showed that information cues helped to increase efficient alternation of atten-

tion allocation across the different tasks. More recently, Wright et al. [53] found that de-

cision automation helped participants to monitor the transport of multiple unmanned 

vehicles by making routes recommendations, compared to a situation without assis-

tance. In summary, not only automation can help to perform a specific task, but automa-

tion can also efficiently assist human agents when they have to monitor multiple sources 

of information and execute multiple tasks. Unfortunately, the introduction of automa-

tion might also produce serious drawbacks. The next section will be devoted to present 

the bad in human – automation interaction. 

2.2. The bad: Negative effects of automation on human decision-making and performance 

Troubles with automation are not new in the scientific literature. First evidence and 

discussions of negative effects produced by the interaction with automation were re-

ported around the 1980s and 1990s [e.g., 2, 54, 55], mainly in the aircraft domain [e.g., 56, 

57]. Today, it is largely acknowledged by scientists and engineers that introducing auto-

mation is not just a “substitution” of an intelligent system or a machine for a human ac-

tivity [58]. Automation does not automatically reduce the amount of work that a human 

agent needs to allocate to a task as it does not make the user’s experience necessarily 

easier. 50 years of research teach us that the appropriate balance between automation 

and human control must be well considered before the introduction of new automation 

[59]. Otherwise, automation can have clear detrimental effects on human decision-mak-

ing and performance, which can result in dramatic consequences related to performance 

and safety [2]. In this section, we will review the main findings in the scientific literature 

on the negative effects reported when automation is introduced in human activity. Here, 

we will narrow the presentation to a quasi-strict description of the effects produced on 

performance and decision-making. Mediating factors and concepts (e.g., loss of situation 

awareness, complacency) explaining the influence of automation on those outcomes will 

be discussed in the second part of the manuscript. 

 The first negative effect of automation that we can discuss concerns, with some 

irony, multi-tasking. As we have seen in the previous section, automation is designed 

for the execution of tasks initially performed by a human agent, with the consequence of 

reducing the number of actions a user has to perform and/or helping for multi-tasking. 

However, this beneficial effect of automation is true as long as automation is properly 

designed and introduced. Like performance decreases with manual multi-tasking, intro-

ducing too much automated-tasks to control might also have detrimental effect on per-

formance (for review, see for example [60]). For instance, Chen and Joyner [61] in a sim-

ulated mounted combat system reported that the performance on a target gunnery task 

decreases with the introduction of an additional automated task, particularly with low 

level of automation, while perceived workload increased. Wang et al. [62] in a search 

and rescue task with multiple robots found that the exploration of the environment on 

one hand, and search on a screen of targets to rescue on the other hand, increased with 

the number of robots involved in the mission (4, 8, or 12). However, the authors found 

that performance decreased when participants had to control both exploration and 

search on screen from 8 to 12 robots, and perceived workload increased in each condi-

tion with the number of robots. Similar results were found by Adams [63] or Velagapudi 

et al. [64] in robots-control tasks. These examples show that introducing automation is 

definitely not enough to improve human multi-tasking performance, and inappropriate 

level of automation and task allocation can result, at the opposite, in substantial perfor-

mance decrement and more error from the human user. Particularly, multi-tasking stud-

ies with automation suggest that people are particularly sensitive to automation-bias, 
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which is certainly one of the most important negative effects associated with automa-

tion.  

 Automation bias is defined as the tendency of humans interacting with automation 

to use automated cues as heuristic replacement for information seeking and processing 

[65]. More exactly, automation bias is said to occur when the performance of a user de-

creases because of incorrect information and/or decision from an automated system [25, 

66]. Automation bias is manifest in two types of errors: omission error and commission 

error. Omission error occurs when an automated system does not inform about a signifi-

cant event (e.g., a weapon not detected in a luggage screening task), which result in the 

user not taking the appropriate decision in that situation (e.g., no check of the screened-

luggage). At the opposite, in commission error the system makes an incorrect decision 

about the environment or gives incorrect advices, which result again in inappropriate 

response from the user (e.g., the system consider there is a weapon in a screened-lug-

gage while there is not). Thus, automation bias corresponds to the fact that incorrect in-

formation or decision cues from the automated system, but not the actual environment, 

control the decisions and actions from a human agent. Examples of automation biases 

have been reported in almost any tasks and domains involving automation [25, 66]. For 

longtime, automation bias has been associated with multi-tasking situations. For exam-

ple, Mosier et al. [28] found both omission and commission errors in pilots tested in a 

simulated flight task in which multiple flying tasks had to be monitor and supported by 

not totally reliable automation systems (see also [67-69]). However, it seems now evident 

that automation bias affects also single-task environment [70]. For instance, Alberdi et al. 

[71] found omission errors in a computer-assisted detection task for mammography, 

while Goddard et al. [72] reported commission errors caused by clinical decision-sup-

port system in prescription task. In the command-and-control study by Rovira et al. [21] 

cited above, despite the beneficial effect of decision automation on correct responses 

made by the participants, the authors also found incorrect responses during unreliable 

trials. In summary, automation-bias occurs both in single- and multiple-tasks environ-

ments, both for omission and commission errors, and is observed for both information 

and decision automation. 

 In addition to inappropriate automation-task allocation and automation bias, an-

other negative effect of automation we can mention is loss of skills ([55]; or skill decay). 

Loss of skills refers to a degradation in task performance (motor or cognitive) after a 

more or less prolonged experience of a user with automation. To illustrate this phenom-

enon, we can think about a driver that has difficulty to drive an old car after a long pe-

riod of driving a very modern one with a lot of automated assistances. In the scientific 

literature, evidence of loss of skills were found for example in fine-motor flying skills 

[73] or flight planning [74]. This effect is particularly important in case of failure from 

the system, in which the human operator has to take back manually the control of a task. 

Related to this is the evidence of return-to-manual decrement after system failure. For 

example, Endsley & Kiris [55] found that response time decision in a navigation task 

increases when participants had unexpectedly to respond manually after a period of au-

tomation assistance. Similar results were found by Manzey et al. [27] with highest re-

turn-to-manual decrement for higher level of automation (see also [75, 76]).  

 To conclude on this section, we would like to discuss another aspect of human – 

automation interaction that have shown growing interest in the recent years, that is, the 

effect of automation on human agency [77]. Human agency (or sense of agency) refers to 

the individual experience of controlling one’s own actions and, through these actions, 

outcomes in the external environment [78]. Recently, scientists have been interested in 

how the interaction with automation influences how people feel in control in their own 

actions. One of the first demonstrations of an effect of automation on sense of agency 

came from a study by Berberian et al. [26]. In an aircraft supervision task, the authors 
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found a decrease in agency with the introduction of automation, with lower level of 

agency for higher level of automation. Similar negative influence of automation and 

agency were found for example by Coyle et al. [79] or by Zanatto et al. [80]. This finding 

is relevant in the context of our review because agency is supposed to play a role in the 

attribution of responsibility and in the motivation of goal-directed behaviors [81, 82]. In 

the social domain for example, Caspar and colleagues [83-85] found that a decrease in 

participants’ sense of agency was correlated with anti-social behaviors increment from 

human agents. Thus, the evidence that automation can reduce the sense of agency from 

human users lead to believe of potentially misuses of automation, in addition to the ones 

described above, particularly in moral or sensitive domains. Consider again the example 

of a combat drone operator engaged on a battlefield, exposed to the risk of civilian losses 

and material damages during attacks. Here, a sense of agency decrement – combined 

with omission or commission errors – from the human operator might have dramatic 

consequences in terms of human life. It is clear from that situation that the negative ef-

fects of automation are not just annoying “side-effects” without real importance. If we 

want to avoid such dramatic incidents, we need to understand how the interaction with 

automation might change our behaviors and our decisions when we have to face moral 

situations. 

2.3. The ugly: Automated systems and moral decision-making 

For the last two decades, the main focus of engineers, scientists, and philosophers 

regarding moral decision-making and automation concerned the rules to assign to an 

autonomous system to perform ethical responses, or the ethical and legal issues regard-

ing the use of autonomous systems. Research have been conducted on what is the best 

rule/algorithm to assign to an automation in moral situations [32, 35] and what human 

subjects would do in moral decision-making situations in order to inspire the develop-

ment of ethical automation [33, 34. In addition, scientists and philosophers have thought 

about the legal and ethical consequences of fully autonomous machines in critical situa-

tions like in driving or military conflicts [86-88]. Surprisingly, the understanding of how 

the interaction with automation can change ethical and social behaviors from a human 

agent in moral decision-making situations has received little research attention until 

very recently [36]. By ethical and social behaviors, we mean behaviors that follow some 

consensus on the way to behave or not within a social group. Moral decision-making 

refers to a decision or a judgment made in a situation with moral rules and moral princi-

ples involved [89, 90]. The recent interest on that matter can be explained by the in-

creased proportion of behaviors in our everyday life that are guided by automation sup-

ports (driving, communication, health, etc.). In addition, as we have discussed above, 

automation is now more and more involved in sensitive domains such as military opera-

tions, medicine, and security. Then, understanding the effect of automation in that con-

text is crucial. 

 Available evidences suggest a mixed-picture of the impact of automation in social 

and moral decision-making situations. On the one hand, some recent findings suggest 

for instance that the interaction with automation in social dilemmas can increase fairness 

between human agents [91] or can promote human cooperation [92, 93]. Similarly, 

Kirchkamp & Strobel [94] did not find significant evidence of more selfish behaviors in a 

social game scenario when decision-making is shared with automation. Thus, these re-

sults suggest that the interaction with automation in the social and the moral domain 

does not necessarily increase the rate of unethical or unsocial behaviors, and at the oppo-

site might have a positive effect by increasing prosocial behaviors. On the other hand, an 

analysis of additional results shows that the effect of automation is not so clear and us-

ing automation in social or moral context could have clear detrimental effects. For exam-

ple, recent investigations suggest that people tend to act more selfishly when they are in 
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interaction against a computer player [95] and are more prompt for cheating [96]. Manis-

tersky et al. [97] reported that, in a resource allocation game, participants that played the 

game through self-designed autonomous agents, designed automations for improving 

self-performance and less for cooperation, contrasting with the results found by [91]. 

Very recently, Leib et al. [37] found that advice received from an automation is as strong 

as the effect of human agents to promote unethical behaviors during social interactions.  

 Finally, some of the results on automation bias cited above can also shed light on 

the influence of automation on human decision processes, particularly when these biases 

occur in medical or military situations. We can consider for example the studies by Al-

berti et al. [71] or Goddard et al. [72], in which automation bias was reported for mam-

mography assessment and in prescription task. Although the conflicting moral aspect of 

the decisions made is not evident in these studies, these scenarios had obvious health 

and life consequences. An omission error during mammography assessment for instance 

can result in undiagnosed cancer for a patient. Thus, it seems that despite potential criti-

cal negative outcomes, people can nevertheless follow the bad recommendations of au-

tomation. Similarly, in the military domain we can think about the command-and-con-

trol study by Rovira et al. [21], in which the authors reported high rate of incorrect deci-

sions made by the participants when the automated systems decisions were not reliable. 

The decisions in the Rovira et al.’s study involved the engagement of opponents with 

friendly units on a simulated battlefield. Does it mean that commanders making deci-

sions with the help of decision automation systems could show automation bias? And 

what about combat drone operators when he/she faces the risk of civilian losses while 

he/she is engaging a military target?  

 In conclusion, available empirical evidence suggests that the interaction with auto-

mation might result in the promotion of pro-social behaviors (fairness, cooperation, etc.), 

but in unethical and aberrant behaviors as well. Thus, while automation in the form of 

advisors or decision support system seems to be a very interesting venue to develop and 

favor positive interaction among individuals or groups of human agents, it seems also 

that in certain circumstances the interaction with automation can be detrimental in terms 

of ethical decision making. This dual-aspect of automation is also true for situations that 

do not involve moral and social decision-making at first sight, with automated systems 

favoring at the same time global performance improvement and multi-tasking, but auto-

mation biases and loss of sense of agency as well. Following the research agenda of sev-

eral authors (e.g., [25]), and considering that automation will certainly be more and 

more present in our daily life and sometimes, in critical circumstances, we need more 

than ever to understand the factors and situations that favor both the positive and the 

negative effects of automation. This will help developing systems useful, safe, and ethi-

cal for users and society. The next part of our paper will be dedicated to a review of the 

current known-factors and models of human – automation interaction. 

3. Factors and models of human – automation interaction 

3.1. Determinants of the effect of automation on human decision-making and performance 

Understanding the determining factors in the effect of automation on human per-

formance and decision-making has been for longtime a goal for researchers and engi-

neers [2, 25, 57]. Since the first investigations conducted in the 80s, multiple factors have 

been identified as crucial determinants in human – automation interaction. In this sec-

tion, we will review some of the factors identified as the most important ones and de-

scribe their effects on the human agent interacting with the automated system. Again, 

identifying these factors and understanding exactly what their effects are is particularly 

relevant because this will help to understand the circumstances in which both the posi-
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tive and the negative effects described above are observed. With that information, scien-

tists and engineers will be able to develop new forms of automation, efficient in terms of 

the positive changes they produce on the users’ performance and safety (e.g., fast and 

correct decisions, possibility for multi-tasking, etc.), but preventing or at least mitigating 

the negative outcomes we described, particularly in the context of social and moral situ-

ations. 

3.1.1. Level and stage of automation 

 The first factor that determine how human agents will interact with automated sys-

tems is obviously the level and the stage at which automation occurs. As a reminder, 

levels of automation refers to the notion that the degree of automation on a specific task 

can vary across a continuous scale, with intermediate levels representing different de-

grees at which automation is assigned [38, 39], while the stages of automation refers to 

the different subtasks on which automation can be assigned [38, 40]. Most of the infor-

mation on this topic was already presented in the previous sections. Importantly, an in-

creased level of automation (with a human agent still being at the command) seems to 

be associated with increased performance and improved decisions by the human user. 

For example, Manzey et al. [27] reported that performance in a supervisory control task 

is better with automation than with manual control, this positive effect being superior 

when participants were supported by the highest level of automation [see also 21, 75]. In 

addition, more automation in one task seems to facilitate multi-tasking by the human 

agent. For instance, Chen and Joyner [61] reported that performance on a primary task 

increases when action on a secondary task is supported by a high level compared to a 

low level of automation (see also [27]). Although generally positive in terms of decision-

making and performance, higher level of automation can also result in loss of skills [55] 

and increased delay to take-back control of the system in case of system failure. In Man-

zey et al. [27] study for example, the cost of return to manual was higher for the higher 

level of automation (see also [55, 75, 76]). Finally, we have seen that recent results found 

a loss of subject’s sense of agency with higher level of automation, measured either by a 

direct rating about the task or by the indirect temporal binding measure [26]. Thus, more 

investigations seem necessary to understand the exact balance between the beneficial 

effects and the disadvantages of higher level of automation, and how the interaction 

with other factors (e.g., level of skills and previous experience, accountability) could mit-

igate or increase these effects. Concerning the stage of automation, whether it is infor-

mation and analysis automation or decision and action automation, all of these forms of 

automated system can participate in the improvement of performance and decisions 

[40]. However, in comparison with information/analysis automation, decision automa-

tion seems to be more subject to automation bias [21, 49, 98]. This result is not surprising 

considering that in decision automation, it is not necessary for the user to look at the en-

vironment, but only at the input from the system, while in information automation for 

instance, the user evaluates a preprocessed environment (but still look at the environ-

ment). 

3.1.2. Automation reliability 

 A second major factor is automation reliability. The effect of automation reliability 

is certainly one of the most extensively studied factors in human – automation interac-

tion. Its effect has been tested both for information/analysis automation [e.g., 16, 45] and 

for decision/action automation [e.g., 21]. Overall, investigations conducted on this effect 

found that decisions and performance increase with automation reliability. For instance, 

Goh et al. [17] found that the performance of participants was higher for information 

automation cue with 90% reliability than 70%. Interestingly, a positive effect of automa-

tion might be obtained even with relatively low level of reliability. For example, Cullen 

et al. [51] found that the performance of subjects helped with information automation in 
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a multi-task environment increased compared to a baseline condition without automa-

tion, even with an automation reliability of 67% (see also [21]). Although resulting in 

global performance and decision increment, multiple studies have reported that errors 

rate during unreliable trials increases with a higher level of reliability of the system. 

Thus, high automation reliability seems to be associated with increased tendency for 

automation bias, with both omission and commission errors [25]. In a study by Oakley et 

al. [99], the authors found that the rate at which subjects detect automation failures de-

creased with automation reliability in detecting errors (see also [67]). Thus, with higher 

automation reliability seems to increase the global task performance, but also the risk of 

automation biases. As a consequence, much automation reliability would be relevant 

only as long as the negative outcomes that result from automation biases are not supe-

rior compared to the gain obtained from the increased reliability. Like with the effect of 

higher-level of automation, the balance between the advantages and the disadvantages 

of higher automation reliability will have to be investigated systematically. 

3.1.3. Task difficulty 

 A third important factor that determines how a human agent will interact with au-

tomation is task difficulty and/or the number of tasks simultaneously monitored by the 

agent. As we have already seen, automation is particularly useful in the context of diffi-

cult manual or cognitive tasks. It allows the access to more rewards through the in-

creased correct performance and decisions rate [19, 45, 49, 100], and reduce the cost re-

lated to task execution (measured for example with a reduced subjective workload; e.g., 

[19]). In addition, automation facilitates multi-tasking by automatizing manual tasks 

(action automation) or helping the detection of targets in the environment [e.g., 51, 61], 

allowing the human user to allocate more time and attention to a secondary task. At the 

same time, using automation in the context of a difficult single-task and/or multi-tasking 

is frequently considered as a driving factor of automation bias [25, 70, 72]. However, re-

sults are not always consistent [48, 100]. Related to the notion of task difficulty, studies 

found that time pressure (i.e., a short delay allowed for a subject to complete a task) can 

increase the rate of errors made by a user [e.g., 44]. Finally, as a counteract to the effect 

of task difficulty and multi-tasking, individual experience and task mastery seems to 

reduce the probability of automation bias in the context of difficult task or multi-tasking, 

maybe because of the experience of incorrect information [101], but with novice users 

having generally more benefits from the use of automation [e.g., 102, 103]. 

3.1.4. Performance outcome, accountability, and automation display 

 Additional factors can be cited as determining variables in the effect of automation. 

For example, some experiments have shown that the outcome of performance, and par-

ticularly the consequences of errors, can have an effect on the rate of automation bias. 

Particularly, tasks for which errors might have more important negative consequences 

seem to be more carefully assessed by users [e.g., 28]. Related to this is the evidence of 

an effect of accountability of decisions on the rate of automation bias. Skitka et al. [69], 

for example, found a lower level of commission and omission errors when participants 

were accountable of performance and accuracy (see also [104-106]). Thus, whether it is 

socially-mediated or not, it seems that the consequences of the performance of user in 

interaction with automation has a strong effect on that performance. Finally, we can cite 

the effect of the physical properties of the system and the way the output of automation 

is displayed. For example, Goh et al. [17] found that information automation in a screen-

ing-task is improved when the automation cue is centered on the target compared to an 

indirect cue (see also [16]). Still in a screening-task, Rieger et al. [44] found that a target 

presented in a predictable location improves speed and accuracy. 
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 As a conclusion, the way a human agent interacts with automation is influenced by 

multiples factors. Although the present section is interesting to get an overview of these 

effects, this empirical listing suffers from being a sort of “catalogue” of human – automa-

tion interaction effects without real conceptual or predictive value. Consequently, the 

next and final section of this review will be dedicated to a presentation of models that 

scientists have developed over the last few decades to explain and make prediction 

about the effects reported, and to a discussion on potential way of improvements for 

future models. 

3.2. Models of human-automation interaction 

With the increasing number of studies conducted on the factors underlying human 

– automation interaction, multiples models of human decision-making and performance 

in interaction with automation have been developed. This development has resulted in 

the introduction of new concepts (and their associated models) like trust in automation 

[107, 108], reliance and compliance [45], or mental workload [109]. A complete review of 

all the concepts and models is beyond the scope of this paper. Instead, we will focus our 

discussion on the presentation of two widely used notions in the human – automation 

domain: the loss of situation awareness [110-112] and automation complacency [66, 67]. 

We will present the phenomena and effects encompassed by these notions and how they 

are explained. More generally, we will see how these concepts and their associated mod-

els improve our understanding of the influence of automation on human decision-mak-

ing and performance, but also what their limits are. Particularly, we will discuss the ne-

cessity of a more systematic use of quantitative computational methods, inspired nota-

bly from what it is already done in computational cognitive sciences [e.g., 113], in order 

to increase their precision and their explanatory power. 

 The first concept and associated model we will present is (loss of) situation aware-

ness [110, 111]. Used initially in the aircraft domain, situation awareness has become 

certainly one of the most important concepts used in human – automation interaction 

[114]. According to Endsley [115], situation awareness is defined as “the perception of 

the elements in the environment within a volume of time and space, the comprehension 

of their meaning and the projection of their status in the near future”. Situation aware-

ness is thus composed of three different hierarchical level: The first level of situation 

awareness (the perception phase) corresponds to the perception of the status, attributes, 

and dynamics of relevant information in the environment. The second level of situation 

awareness (the comprehension phase) corresponds to the comprehension of the situation 

based on an analysis and synthesis of elements collected from the perception level. Fi-

nally, in the third level, the situation awareness comes from the ability to project future 

developments of the situation and potential consequences of actions to influence it [110]. 

Based on these representations, the human agent can decide the best action to select. 

Considering the assumed-role of situation awareness in the decision-making pro-

cess, we can see how inappropriate automation conditions could result in the decrement 

of situation awareness (i.e., a loss of situation awareness), and then the increased proba-

bility of incorrect decisions from the human agent. For example, a high level of automa-

tion combined with an absence of sufficient training or a loss of skills from the human 

agent could result, in case of automation failure, in the inability of the agent to detect, 

comprehend, and/or react appropriately to the failure. Recently, Endsley [112] proposed 

an integrated model of situation awareness in which determining factors are notably 

defined. Particularly, the author proposes that a loss of situation awareness during the 

interaction with automation could result, among others things, from a low level of infor-

mation presentation, low monitoring skills, excessive trust in automation, the presence 

of competing tasks, or a low level of cognitive engagement from the agent. All these fac-
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tors are supposed to intervene in agent’s level of situation awareness and thus in its per-

formance in a related task. This integration of factors allowed the author to propose dif-

ferent guidelines for the design of appropriate automated systems in interaction with 

human agents. For example, it is suggested to use automation for routine tasks prefera-

bly, information and analysis automation rather than decision automation, or to increase 

information saliency and provide automation transparency (see [112] for complete 

guidelines). 

 Closely related to situation awareness is another important concept in the human – 

the automation interaction domain named automation complacency [66, 67]. Automa-

tion complacency is said to occur when a human agent is monitoring an automated sys-

tem, but with a suboptimal rate of monitoring which, in turn, might lead to performance 

failures [66, 116]. This performance failure results more exactly from both a direct auto-

mation failure and from the inappropriate response of the human agent. Automation 

complacency was initially developed in the context of multi-tasking with the evidence 

that the rate of automation failure detection is relatively low when subjects have to mon-

itor an automated secondary task with high and constant reliability level [67]. Now the 

concept is associated with the phenomenon of automation bias [25]. Parasuraman and 

Manzey [66] proposed a model integrating both complacency and automation bias. The 

model is composed of a complacency potential component, which influence an atten-

tional information processing component, which in turn influence the agent’s situation 

awareness and performance. Interestingly, the structure of the model is relatively close 

to the recent one proposed by Endsley [112]. In the latter, the complacency potential, 

which is seen as a tendency to react in a less attentive manner during the interaction 

with a specific automated system, is assumed to be influenced by the system reliability 

and consistency as well as by individual characteristics and interaction history with the 

system. Thus, increased automation reliability is assumed to increase agent’s compla-

cency potential. Then, it is assumed by the authors that this complacency potential will 

influence (negatively) attentional information processing by producing inappropriate 

allocation of attention and/or selective information processing in the context, for exam-

ple, of high task load. This low attentional information processing would, in turn, result 

in loss of situation awareness and inappropriate decision-making, like in the absence of 

detection of failure from the system. 

 In summary, both Endsley’s [110, 112] situation awareness models and Parasura-

man & Manzey’s [66] complacency model have been shown interesting to interpret some 

of the effects found when automation is introduced and to integrate empirical demon-

strations of known underlying factors of human – automation interaction (e.g., level of 

automation, automation reliability). Based on their interpretations about the role of spe-

cific underlying factors, these models allow to make recommendations to engineers for 

the design of new automation technologies, with the purpose of avoiding the negative 

outcomes reviewed in the previous sections [112]. Endsley’s situation awareness model 

and Parasuraman & Manzey’s complacency model offer a conceptual interpretation to 

several negative effects like omission and commission errors or return-to-manual decre-

ment after system failure. Considering the potential role of these effects in social or ethi-

cal decision-making situations (e.g., for the decisions made by a combat drone operator), 

the understanding that these models allow is particularly interesting for the develop-

ment and the use of safe automated systems in these situations. Despite all these ad-

vantages, however, the models are not without limitation. Particularly, these models (at 

least in the references above) are defined only at a conceptual or descriptive level, and 

the exact mechanisms that underlie each function or how those functions interact with 

each other or with external factors is not precisely described. Thus, it is hard to know 

what exact predictions they allow in specific circumstances, and consequently, it is diffi-

cult to test these predictions and make comparisons between models. More generally, 
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this reduces the extent to which engineers can use the models to anticipate how human 

users would act in particular circumstances.   

 To improve the power of those models, the use of quantitative computational 

methods is very promising. Computational modeling (in our context, of behavioral data) 

consists in the use of mathematical models either to explain qualitative features of em-

pirical data or to make quantitative predictions [117]. In the last 20 years, behavioral and 

cognitive neuroscientists have shown a strong interest for the use of computational mod-

els in behavioral and neurocognitive research [e.g., 113, 118]. The models show several 

advantages over classic conceptual models. Notably, these models are explicit and falsi-

fiable and their performance can be quantitatively assessed, and they can provide uni-

fied framework for supposedly distinct phenomena [113, 119]. Applications of computa-

tional modeling to learning and decision-making phenomena have shown several im-

portant successes [e.g., 120] and we strongly believe that this could be beneficial as well 

for the understanding of human decision-making and performance in the human – auto-

mation interaction domain. This suggestion has already been proposed in the literature 

[e.g., 121] and computational models of human decision-making during human – auto-

mation interaction have been designed [e.g., 122-125]. To this day, the proportion of 

models using computational methods remains relatively low, however, and much more 

investigation will be necessary for the systematic use of these models. 

4. Discussion 

Automation is now widespread in almost every domain of human activity and it is 

more and more present in our everyday life [1-3]. In this review, we saw that the intro-

duction of automated systems can result in important improvement in human decision-

making processes and performance, but can result in serious negative effects like auto-

mation bias as well [2]. Understanding the conditions in which these effects appear has 

become crucial, particularly when automation is used in situations involving social or 

moral decisions [36]. For these situations, this review has shown that available evidence 

is inconsistent. Since the first investigations conducted on human – automation interac-

tion, multiple factors have been identified, and their effects begin to be well understood 

(at least some of them). Models have been proposed to explain the change in decision-

making and performance found in human – automation investigations. Concepts like 

loss of situation awareness [110, 112] and automation complacency [66] have been intro-

duced and the models allow to make some recommendations about the design of new 

automated technologies. However, these models suffer from being mainly conceptual or 

descriptive models, limiting their predictive value. We suggest the use of computational 

modeling in order to increase the models’ precision in predictions [118, 121]. 

 To conclude on this review, we would like to highlight potential fruitful directions 

for future research in the human – automation domain. Firstly, new investigations must 

be conducted on how the introduction of automated systems influences the decisions 

and performance of human agents in social or moral decision-making situations [36]. As 

we have seen, very few studies have been conducted yet, and they point out both posi-

tive and negative effects. Considering the growing importance of automation in sensi-

tive domain like medicine, defense, and security, we need to understand the conditions 

that favor ethical decisions by the human interacting with automation. Secondly, more 

investigations are necessary on the factors underlying the interaction between human 

and automation. Particularly, while many investigations have been conducted on con-

textual effects (e.g., effect of automation reliability, level and stage of automation, etc.), 

much less is known about the effect of task consequences and/or accountability (i.e., the 

effect of contingent-outcomes presented during the interaction with automation [25]). 

Finally, an important area of research will consist in the more massive development of 
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computational models to explain more exactly how automation changes decision-mak-

ing processes and performance in human subjects [118, 121]. By doing so, engineers will 

be able to develop new automation technologies designed for the improvement of hu-

man performance, but reducing at the same time the risk of dramatic consequences.  
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