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Abstract: The different cell subsets of the immune system express vitamin D receptor (VDR).
Through VDR, vitamin D exerts different functions which influences on immune responses, as pre-
viously shown in different preclinical models. Based on this background, retrospective studies have
explored the impact of vitamin D levels on the outcome of patients undergoing allogeneic hemato-
poietic stem cell transplantation, showing that vitamin D deficiency is related to an increased risk
of complications, especially graft-versus-host disease. These results have been confirmed in a pro-
spective cohorts trial, although further studies are required to confirm this data. In addition, the role
of vitamin D on the treatment of hematologic malignancies has also been explored. Considering this
dual effect both on the immune system as well as on tumor cells in patients with hematologic ma-
lignancies, vitamin D might be useful in this setting both to decrease graft-versus-host disease and
relapse rates.
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INTRODUCTION:

Despite its name, vitamin D is in fact a secosteroid hormone [1]. Currently there is a
concern on vitamin D levels in the population at a worldwide level, with a prevalence of
severe vitamin D deficiency (defined as 25-OH-Vitamin D serum levels lower than 30
nmol/L) ranging from 2.9% in the United States, 7.4% in Canada or 13% in Europe to more
than 20% in India, Pakistan and Afghanistan [2-5]. Several studies have addressed the
intervention on this deficiency in vitamin D, although clinical trials for its supplementa-
tion have not reached satisfactory results (reviewed in Amrein et al. [6]). The incidence of
vitamin D deficiency is even higher among patients undergoing allogeneic hematopoietic
stem cell transplantation, due to long term hospitalizations or liver or renal toxicities,
among other reasons.

CHEMICAL STRUCTURE, SYNTHESIS AND METABOLISM OF VITAMIN D:

Vitamin D chemical structure, synthesis and metabolism has been reviewed in [7]. In
brief, it was initially discovered in 1919 by Edward Mellanby [8] as a micronutrient able
to prevent rickets in dogs. Vitamin D is the common name assigned to a family of mem-
bers, but usually refers to the precursor form Vitamin Ds or cholecalciferol. Vitamin Ds is,
produced in the skin by the photolytic effect of the UV light on 7-dehydro-cholesterol to
produce pre-vitamin D3 and the subsequent thermal isomerization to vitamin Ds. Vitamin
D can also be obtained in the diet either as vitamin D3, of animal origin and vitamin D:
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(ergocalciferol), of vegetal and fungal origin. Vitamin Ds is further processed to 25-hy-
droxyvitamin Ds in the liver, by the enzyme vitamin Ds-25-hydroxilase, codified by the
gene CYP2R1.

25-hydroxyvitamin Ds is the main circulating form and the clinically used marker to
assess vitamin Ds levels. 25-hydroxyvitamin Ds is further processed to 1,25-dihydroxyvit-
amin Ds, which is the active form [9-11], by the vitamin D-1a-hydroxylase, encoded by
the gene CYP27B1 [12,13]. This step takes place mainly in the kidney, but many other
tissues also express this gene, including several immune populations. Finally, vitamin Ds
is deactivated by the enzyme vitamin D 24-hydroxylase, which is expressed in almost all
cells [14], producing 24,25 dihydroxyvitamin Ds, which is further processed and excreted
thought the bile (figure 1).
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Figure 1. Metabolism of Vitamin D

Vitamin D exerts its function mainly through the binding to vitamin D receptor
(VDR), which belongs to the family of the steroid nuclear receptors [15]. VDR dimerizes
with the Retinoic X receptor (RXR) upon vitamin D binding [16,17], and binds to DNA in
the so called vitamin D response elements (VDRE) [18]. Interestingly, VDR also have vit-
amin D independent actions [19]. This is the case of the role of VDR in hair follicle cycling
[20] or in skin cancer development [21].

Several naturally occurring polymorphisms have been described in the VDR gene
[22-26], using restriction fragment length polymorphisms (RFLP). Of special interest is
the Fokl polymorphism, located in the second exon of the VDR mRNA. This polymor-
phism generates an alternative star codon which renders a protein three amino acids
shorter (424 vs 427 aas), with higher transcriptional activity [26]. The Bsml, Apal and Tagl
sites are also extensively studied. These three polymorphisms map in the last intron of the
gene, close to the 3’ UTR of the VDR mRNA, and they are genetically linked. VDR poly-
morphism have been associated to defects in bone metabolism (see [27]and additional ref-
erences therein). The FokI polymorphism has also been described to have impact on the
immune system [28]
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CLASSICAL AND NON-CLASSICAL EFFECTS OF VITAMIN D.

Beyond the classical effects on calcium and phosphate homeostasis and bone for-
mation [1], the vitamin D has also non-classic functions [29] in the regulation of hormone
synthesis and secretion, including the parathyroid hormone (PHT), the fibroblast growth
factor 23 (FGF-23) or insulin, in cell proliferation in the skin, in cancer and in the immune
system

EFFECTS ON THE IMMUNE SYSTEM

Already in the decade of 1980, it was described that the vitamin D has multiple direct
effects on the immune system function [30-36]. Even before, the first link between im-
mune system and vitamin D comes from the observation that cod liver oil could be used
for the treatment of tuberculosis [37,38]. Since then, many studies have elucidated the mo-
lecular mechanisms by which vitamin D affects immune cells. B and T lymphocytes, mon-
ocyte/macrophages, dendritic cells(DCs) and natural killer (NK) cells express VDR
[30,35,39,40], and most immune populations also express the 1a-hydroxylase [39,41-43].

Effect on innate immune cells.

Monocytes and Macrophages: Both monocytes and macrophages express the VDR
and the 1a-hydroxylase [44]. In both cases, their expression is induced upon the stimula-
tion of toll-like receptors (TLR) 2/1 by pathogen associated molecular patterns (PAMPs)
[45] and interferon y (IFN-vy) [41]. Vitamin D induces the expression of antimicrobial pro-
teins such as cathelicidin and (3-defensin-2 [46,47], playing an important role in the first
response to microbial infections On the other hand, vitamin D skews the polarization of
monocytes to a less pro-inflammatory phenotype, altering the cytokine secretion profile
by changing the MAPK1 signaling [48,49]. Additionally, vitamin D impairs the matura-
tion of monocytes to dendritic cells [50], while favoring the phagocytic capacity of macro-
phages though the induction of complement receptors [51].

Dendritic cells: DCs form a complex system of different subsets that play a central
role in the activation of the adaptive immune response through their antigen presenting
capacity to T cells [52]. The effect of vitamin D in DCs has been reviewed by Bscheider
and Butcher [53]. Vitamin D inhibits the differentiation, maturation, activation and sur-
vival of dendritic cells [54,55], which lead to a reduced activation of T cells. These tolero-
genic state is driven by metabolic changes in the vitamin D treated DCs [56]. DCs activated
in the presence of vitamin D also showed altered trafficking properties [57]. Finally, DCs
have been proposed to provide T cells with 25-hydroxy-vitain D3 in a paracrine fashion,
inducing the expression of CCR10 and altering the migratory properties of these T cells
[58]

Neutrophils: Neutrophils represent the mayor population of the innate immune com-
partment Although they express VDR, and several genes modify their expression upon
vitamin D treatment [59], the effect on their functionality is controversial. Neutrophils ex-
ert their function using three different strategies: phagocytosis, degranulation and for-
mation of the so called neutrophil extracellular traps (NETs) [60]. NETs are web like struc-
tures formed by proteins and DNA excreted by the neutrophils upon stimulation, which
are able to trap, neutralize and kill bacteria, but can also contribute to autoimmunity [61].
Vitamin D has been described to prevent the endothelial damage induced by NETS in
Systemic Lupus Erythematosus (SLE) [62], but in the other hand, it has also been shown
to induce the formation of NETs in in vitro cultures [62].

NK cells: The effect of vitamin D on NK cells has not been exhaustively investigated.
In vitro studies have shown that vitamin D impairs NK differentiation from HSCs [63],
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favoring monocyte production. Mature NK cells however were not affected in cytotoxicity
or IFN-y secretion.

Effect on adaptative immunity

T lymphocytes: T cells express VDR, and this expression is upregulated upon activa-
tion [64]. Among T cells, Th1 and Th17 CD4 T cells show the higher expression [65]. VDR
knock out mice showed no significant changes in myeloid or lymphoid populations, but
a reduced Thl polarization with downregulated IFN-y secretion and increased IL4 pro-
duction was observed upon stimulation [66]. CD4 and CD8caa T cells from VDR KO mice
show a reduced homing capacity to the gut, due to reduced CCR9 expression levels [67].
Human T lymphocytes treated with vitamin D also show a reduced Th1 response [65,68].
TCR signaling is also affected by vitamin D. Phospholipase C v-1(PLC vy-1) is a key sig-
naling enzyme downstream of the TCR activation cascade, whose expression is controlled
by VDR in human T cells [69]. In the presence of a vitamin D antagonist, the expression of
PLC vy-1 is downregulated, and therefore TCR signal is impaired. Many studies have
shown the influence of vitamin D in Tregs (reviewed in [70]). Treatment with vitamin D
in induces immunotolerance by increasing Treg numbers in a DC dependent manner
[71,72] through the favoring of a tolerogenic phenotype of DCs. Vitamin D is able also to
influence both IL10+ and Foxp3+ Tregs directly, promoting their expansion [73]. As men-
tioned previously, vitamin D enhanced the VDR signaling through the upregulation of
PLC y-1. In Tregs, the activation of this axis leads to the expression of the anti-inflamma-
tory cytokine TGF-{31 [74], increasing their regulatory properties.

B cells: As in the case of T cells, B cells express low levels of VDR in resting state, and
upregulate it upon activation [75]. In vitro activated B cells showed decreased plasma cells
differentiation and Ig secretion when cultured under vitamin D supplementation [31,75-
77]. The targeting of the VDR with an agonist leads to inhibition of B cell dependent aller-
gic responses in a murine model of type I allergy [78]. Additionally, vitamin D induces
the production of IL10 up to 3 fold [79], suggesting a role in the development of regulatory
B cells [80]. However, these effects have not been observed in vivo in human samples [81],
and therefore the actual role of vitamin D in B cells in vivo remain to be clarified.

Given the broad effects of vitamin D in immune cells, the consequences of vitamin D
deficiency on inflammatory and autoimmune diseases has been extensively investigated
(reviewed in Ao et al. and Hayes et al. [65,82]). In the past two years, the role of vitamin
D in the immune response to Covid19 has also attracted great interest (reviewed in
Ghelani et al. [83]). The importance of vitamin D in stem cell transplantation will be dis-
cussed in the following section, and has been reviewed by Soto et al. [84] and Hong et al.
[85]. Vitamin D impact on leukemia and hematopoiesis [86], and in cancer in general [87]
has also been recently reviewed

The effects of vitamin D in immune cells is summarized in figure 2
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Figure 2. Summary of vitamin D effects on immune cells

Preclinical models of vitamin D in immune diseases and solid organ transplantation

Several preclinical mouse models evaluating the impact of vitamin D in immune dis-
eases have been developed, including solid organ transplant, experimental autoimmune
encephalomyelitis (EAE), autoimmune diabetes, ulcerative colitis, systemic lupus erythe-
matosus (SLE), autoimmune thyroiditis, collagen induced arthritis, and graft versus host
disease (GvHD):

Solid organ transplant models: Adorini et al. showed in 2003 that vitamin D, alone or
in combination with mophetil mycophenolate was able to prevent rejection in a heart
transplant model [88], through the increase of Treg numbers induced by tolerogenic DCs.
More recently, Xi et al have used a combination of anti CD40L antibody and vitamin D to
prevent memory T cell mediated rejection also in heart transplant [89]. The use of vitamin
D in mouse models of pancreatic islet transplantation has been reviewed by Infante et al
[90]

Autoimmune diabetes: Autoimmune diabetes mouse models, based on the non obese
diabetes (NOD) strain have also been used to study the role of vitamin D in diabetes de-
velopment, not only in islet transplantation. Vitamin D reduces immune response to pan-
creatic islands by increasing Tregs [91] and lowering pro-inflammatory cytokines produc-
tion [92]. Interestingly, VDR knock out NOD mice presented unaltered presentation of
diabetes compared to VDR+/+ mice [93].

Experimental autoimmune encephalomyelitis: EAE is a preclinical model for multi-
ple sclerosis. Vitamin D has been shown to reduce EAE in a IL10 signaling dependent
manner [94], by altering the chemokine secretion and monocyte trafficking [95] Ragl de-
pendent cells are essential for this response [96], however CD8+ cells are not necessary
[97]. Conditional deletion of VDR in T cells abolished the beneficial effect of vitamin D on
EAE [98]

Systemic lupus erythematosus: The mouse strain MLR/1 is a model of spontaneous
SLE syndrome. Treatment of these strain with vitamin D reduces the appearance of some
manifestation of the disease [99]. In another model of SLE, pristine-induced lupus [100],
vitamin D alleviates arthritis but does not reduce renal injury [101]
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Ulcerative colitis: Two widely used mouse models of ulcerative colitis are IL10 KO
mice and dextran sodium sulfate (DSS) induced colitis. In the first case, ulcerative colitis
is developed spontaneously in a TNF-a signaling dependent manner. The severity is
lower when high calcium or 1-25 di-hydroxy-vitamin D3 are included in the diet, while.
IL10 VDR double KO develop a fulminating form of the disease [102]. In the case of DSS
induced colitis, the deletion of VDR also renders a hypersensitivity to the agent [103], and
vitamin D deficiency leads to impaired gut antimicrobial response and increased colitis
predisposition [104].

Stem cell transplantation and GVDH: Despite the abundance of animal models in
GvHD, to date the published reports on the effect of vitamin D on GvHD animal models
are scarce. In 2001, Pakkala et al. reported that the vitamin D analog MC1288 prevented
acute GvHD in rats [105]. More recently, Taylor et al. described that vitamin D can allevi-
ate GvHD in allogeneic hematopoietic stem cell transplantation recipients. Using VDR KO
donors the effect was retained, indicating that the vitamin D effect was recipient, and not
donor, dependent [106].

VITAMIN D IN THE CLINICAL SETTING:

Vitamin D compounds available in the clinical setting

The natural compounds ergocalciferol (vitamin D2), cholecalciferol (vitamin Ds), cal-
cifediol (25-hydroxyvitamin Ds) and calcitriol (1,25-dihydroxyvitamin Ds) are available
for use in clinics as supplements. Other synthetic products can be employed as so-called
“analogs”.

A meta-analysis of randomized controlled trials that have directly compared the ef-
fects of ergocalciferol and cholecalciferol confirms that cholecalciferol increases serum 25-
hydroxyvitamin D faster than does ergocalciferol, may be due to the affinity for the VDR
[107]. Cholecalciferol and calcifediol are commonly administered for vitamin D defi-
ciency, although calcifediol is faster in action, more potent and has a shorter half-life as
compared to the prohormones [108].

Chronic kidney disease (CKD) generate hyperparathyroidism, osteomalacia and ad-
ynamic bone disease. In CKD patients, calcifediol normalizes vitamin D levels and de-
creases high PTH concentration

Calcitriol is preferably used in case of secondary hyperparathyroidism in patients
with CKD and in patients with hypocalcemia and normal renal function as it increases
intestinal calcium absorption [109]. In patients with CKD the use of calcitriol has a risk of
hypercalcemia and vascular calcification.

In this context several synthetic vitamin D analogs can be used: paricalcitol (1,25 di-
hydroergocalciferol), doxercalciferol (1-alpha-ergocalciferol), alfacalcidol (1-alpha-hy-
droxyvitamin Ds) or maxacalcitol (22-oxacalcitriol) [110]. All of them can be used in the
treatment of secondary hyperparathyroidism in CKD patients although paricalcitol and
alfacalcidol might be related to a lower risk of hypercalcemia and hypophosphatemia
[111].

The recommended doses depend on whether the subject has vitamin D deficiency or
not. The diagnosis of vitamin D deficiency is established by low serum concentrations of
25-hydroxyvitamin D. Reference values are controversial and differ between populations
due to diet intake, age, geography, sun exposure, etc. The Institute of Medicine (IOM)
committee [112] propose a reference value for healthy population above 20ng/ml in serum
while the International Osteoporosis Foundation (IOF) define it above 30ng/ml [113]. A
vitamin D deficiency staging has been proposed [114,115] in which vitamin D insuffi-
ciency is defined when serum 25-hydroxyvitamin D levels are below 50 nmol/liter (20
ng/ml). This is associated with mild elevations of serum iPTH and biochemical markers
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of bone turnover. Moderate vitamin D deficiency (25-hydroxyvitamin D serum levels are
below 25 nmol/liter or 10 ng/ml) is associated with serum iPTH concentration moderately
increased and high bone turnover. In severe vitamin D deficiency (serum 25-hydroxyvit-
amin D levels lower than 12.5 nmol/liter or 5 ng/ml), patients may be at risk of rickets
and/or osteomalacia. Also, a maximum reference value of 60-70 ng/ml has been proposed
[116].

In the healthy population, recommended doses of cholecalciferol are 400 Interna-
tional Unit (IU)/day for infants (1 IU equal to 0.025 mcg), 600 IU/day for children and
adults until the age of 70 (including pregnant and lactating women) and 800 IU/day above
this age [112]. The American Geriatrics Society (AGS) and the National Osteoporosis
Foundation (NOF) recommends 800 UI to 1000UI daily to reduce the risk of fractures and
falls in people 265 years.

In patients with vitamin D deficiency higher doses are needed. To find the proper
dose, a deficiency calculation should be considered. For every 100 units (2.5 mcg) of added
vitamin D3, serum 25-hydroxyvitamin D concentrations will increase by 0.7 to 1.0 ng/mL
(1.75 to 2.5 nmol/L) [117]. In case of severe deficiency, 4,000 to 6,000 IU daily could be
given for the first 4-6 weeks, followed by dose adjustment in accordance with the bio-
chemical response monitored at 3-months intervals, to achieve the recommended mainte-
nance dose and then continue monitoring at 6-month intervals [118]. Different dosage mo-
dalities have been tested with overlapping results. Therefore, vitamin D can be prescribed
daily, once a week or once a month as it has a half-life of 2-3 weeks and is released slowly
from the storage in the fat [119].

VITAMIN D AND HEMATOLOGIC MALIGNANCIES

The potential antitumor effect of vitamin D and the low serum levels of 25-hy-
droxyvitamin D reported in many neoplasms have led to consider a potential role of vit-
amin D in the treatment and prevention of cancer. Nevertheless, in a randomized trial
controlled-placebo, carried out in more than 25000 subjects, supplementation with chole-
calciferol 2,000UI daily did not result in a lower incidence of invasive cancer than placebo
[120].

The ability of Vitamin D to promote differentiation and apoptosis has been demon-
strated in vitro and in preclinical studies in myelodysplastic syndromes (MDS) and acute
myeloid leukemia (AML). Some degree of responses has been observed with vitamin D in
these neoplasms although evidence is not strong enough to set recommendations in the
clinical setting. Therefore, the use of vitamin D and analogs are on continuous investiga-
tion.

Calcitriol was discovered in 1981 to induce monocytic differentiation of the human
promyelocytic leukemia cell line HL-60 [121]. Later, a similar effect was observed in other
cell population lines such as THP-1 (monoblasts), HEL (bipotent erythroblasts—mono-
blasts), M1 (late myeloblasts) [122]. ATRA and calcitriol for the treatment of acute pro-
myelocytic leukemia has proven to be an effective synergistic combination therapy for
inducing differentiation and impairing cell growth. [123,124]. In addition, the analog
KH1060 (modified 20-epi-1,25 dihydroxyvitamin Ds) in combination with ATRA have
been proven to be synergic and they induce differentiation, proliferation inhibition and
induction of apoptosis.[125,126]. Other analogs have been tested in leukemic cells and
showed to be more potent in vitro than calcitriol [126,127]. Also, the combination of pari-
calcitol and arsenic trioxide potently decreased growth and induced differentiation and
apoptosis of AML cells. [128].

Low serum levels of vitamin D have been reported in MDS [129] although the asso-
ciation with prognosis remains controversial. In a study reported by Pardanani, vitamin
D levels did not correlate with prognosis in a series of 409 patients diagnosed with differ-


https://doi.org/10.20944/preprints202203.0059.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 March 2022 d0i:10.20944/preprints202203.0059.v1

ent myeloid neoplasms and MDS [130]. By contrast, levels of vitamin D were an independ-
ent predictor of survival in a retrospective study of 58 patients with MDS or secondary
oligoblastic AML treated with to 5-azacytidine (AZA) with an estimated probability of 2-
year overall survival of 40% for high vitamin D levels group versus 14% for low levels (p
<0.05). The AZA and 25-hydroxyvitamin Ds combination were also tested in-vitro show-
ing a synergistic effect [131]. Similarly, a worse relapse-free survival was observed in AML
patients with low vitamin D levels [132].

Regarding clinical studies on myelodysplastic syndromes, Koeffler [133] reported a
minor response in 8 out of 18 patients treated with calcitriol at doses > 2 pg/day but hy-
percalcemia was also observed in 8 patients. Mellibovsky [134] reported responses in 11
out of 19 patients treated with calcitriol (0.25-0.75 pg/day) or calcifediol 266 ug three times
a week. No cases of hypercalcemia were registered. In this study, no correlation was ob-
served between baseline levels of vitamin D metabolites and response.

Besides, two trials with paricalcitol at doses of 8 ug/day [135] and doxercalciferol 12.5
pg/day [136] did not show a clinical benefit. By contrast, there is evidence of a potential
effect on progression to AML. In this regard, Motomura et al. randomized a series of 30
patients to receive alfacalcidol versus supportive treatment [137]. Only one of the 15 pa-
tients who received alfacalcidol progressed to AML versus seven in the control group.
Alfacalcidol also demonstrated an ORR of 30% when combined with menatetrenone [138].
In addition, a study of 63 patients with myelodysplastic syndromes (MDS) and 15 with
acute myelogenous leukemia (AML) were randomized to receive low-dose ara-C or low
dose ara-C in combination with 13-cis-retinoic acid (13-CRA) and 1 alpha-hydroxyvitamin
Ds showing that the addition of 13-CRA and 1 alpha-hydroxyvitamin Ds had no impact
on survival or remission rates although a trend towards a lower rate of progression from
MDS to AML was found (p = 0.0527) [139]. Also, erythroid responses as high as 60% have
been reported in MDS with low risk International Prognostic Scoring System (IPSS) score
treated with a combination of EPO, 13-CRA and calcitriol and with a median response
duration of 16 months [140].

In 29 elderly patients with AML a combination of cytarabine (20 mg/m?/day for 21
days), oral hydroxyurea (500 mg twice a day), and calcitriol (0.5 pg twice a day) followed
by calcitriol maintenance was tested achieving 79% overall responses (34% partial and
45% complete remission) with a duration of 9.8 months. Two cases of hypercalcemia were
observed [141].

There are also data on the antitumoral effect of vitamin D in lymphoid neoplasms. A
significant association between low serum vitamin D levels and survival in patients diag-
nosed with follicular lymphoma has been described [142]. Patients included in SWOG
clinical trials, who were vitamin D deficient (< 20 ng/mL; 15% of cohort), had an adjusted
PFS and overall survival hazard ratios of 1.97 (95% CI, 1.10 to 3.53) and 4.16 (95% CI, 1.66
to 10.44), respectively (median follow-up of 5.4 years) [143].

Besides, a prospective study performed in 983 patients with non-Hodgkin lymphoma
showed that vitamin D insufficiency (< 25 ng/mL) in DLBCL was associated with inferior
EFS (hazard ratio [HR], 1.41; 95% CI, 0.98 to 2.04) and OS (HR, 1.99; 95% CI, 1.27 to 3.13).
T-cell lymphoma patients also had inferior EFS (HR, 1.94; 95% CI, 1.04 to 3.61) and OS
(HR, 2.38; 95% CI, 1.04 to 5.41) [144].

A meta-analysis investigated the association between various measures of vitamin D
status and the risk of developing non-Hodgkin lymphoma (NHL). Significant protective
effects of overall sunlight/UVR exposure on NHL were observed, although risk estimates
were inconsistent when dietary vitamin D intake and vitamin D levels were measured
[145]. In mantle cell lymphoma, vitamin D deficiency was an independent prognosis fac-
tor for PFS [hazard ratio (HR) 3.713; 95% confidence interval (CI) 1.822-7.565; P < 0.001],
and OS (HR 8.305; 95% CI 2.060-33.481; P = 0.003), that was confirmed on multivariate
analysis in which mantle cell international prognostic index was included [146]. Similarly,
a decrease in PFS (HR 3.323, 95 % CI 1.527-7.229, P = 0.002) and OS (HR 5.819, 95 % CI
1.322-25.622, P = 0.020) have been observed in patients with Hodgkin lymphoma [147].
Another study that supports a poor prognosis among vitamin D deficient patients in
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Hodgkin lymphoma was carried out in 351 patients included in German Hodgkin Study
Group clinical trials (HD7, HD8, and HD?9). Interestingly, there is evidence of an improved
outcome in patients with DLBCL with rituximab-based treatment who previously were
deficient/insufficient for vitamin D and achieve normal levels after vitamin D3 supple-
mentation [148]. A protective effect of vitamin D supplementation against the develop-
ment of lymphoid malignancies has been reported in a randomized-controlled trial, which
recruited 34763 women, aimed to evaluate the incidence skeletal fractures and cancer.
Woman receiving vitamin D and calcium had HRs of 0.77 (95% CI, 0.59-1.01) and 0.46
(95% (I, 0.24-0.89), respectively, for cancer incidence and mortality. Despite some limita-
tions, these results provide support for the design of vitamin D clinical trials [149]. Several
clinical trials are ongoing to address the impact of vitamin D replacement on the prognosis
of lymphoid malignancies. (Table 1). A vitamin D replacement strategy in vitamin D in-
sufficient patients with lymphoma or chronic lymphocytic leukemia has been successfully
performed by Sfeir et al [150]. Target vitamin D level of > 30 ng/ml were achieved in 97%
of patients at the end of 12-week induction period. This strategy is being now evaluated
in a clinical trial (NCT01787409) to analyze the impact on prognosis.

Regarding multiple myeloma, preclinical studies have shown activity of the vitamin
D analogue EB1089 in cell line H929. This agent promotes apoptosis and induce cell cycle
arrest by downregulation of cyclin-dependent kinases [151,152]. Although vitamin D de-
ficiency is common in multiple myeloma, supplementation has not been found to improve
the outcome of patients. Currently, the recommendations of vitamin D supplements are
to improve bone and immune health in MGUS and MM patients [153].

VITAMIN D AND ALLOGENEIC STEM CELL TRANSPLANTATION: EFFECT ON
GRAFT-VERSUS-HOST DISEASE (GvHD)

Patients undergoing allogenic hematopoietic stem cell transplantation (allo-HSCT)
have a higher risk of VD deficiency than healthy population due to multiple factors, as
previous studies have demonstrated [154]. The long-term hospitalizations decrease their
sun exposure, and they are even counseled to minimize unprotected exposure to sunlight
due to an increased risk of nonmelanoma skin cancer as well as potential activation of
chronic GvHD [155]. Besides, Vitamin D absorption by the small intestine is often de-
creased due to gastrointestinal GvHD, infectious colitis or mucositis. Toxic treatments
used in allo-HSCT also play a role in this deficiency: they can affect absorption too, reduce
oral intake due to gastrointestinal toxicity and can interact with calcitriol throw CYP3A4
(e.g. calcineurin inhibitors, which, as VD, are substrates of this cytochrome). Finally, other
possible complications, usually lead to renal or hepatic dysfunction, affecting vitamin D
status as well [85,155].

GvHD is one of the most frequent and severe complications after allo-HSCT; it is
caused by the cytotoxic effect of the donor T lymphocytes to the recipient organs. Acute
GvHD physiopathology involves T lymphocytes, natural killer cells and also the innate
immune system [156]. In the case of chronic GvHD, a complex interaction between B and
T lymphocytes leads to the production of auto-antibodies, cytokines and chemokines,
which in turn induce the activation of the monocytic-macrophage system. Growth factors,
such as TGFb, produced by wound-healing macrophages induces fibroblasts proliferation
and the subsequent fibrosis of target organs.[157-159].

Considering the previously mentioned influence of vitamin D on regulation of the
immune response and its potential effect on several hematologic malignancies, its role on
allo-HSCT has been a great focus of interest.

Vitamin D levels: impact on allogenic HSCT outcomes
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Patients undergoing hematopoietic stem cell transplant (HSCT) are at high risk for
vitamin D deficiency before and after transplant [160,161]. The prevalence of vitamin D
deficiency has been reported to be approximately of 30% in the general population and is
significantly higher in this setting of HSCT (70% before transplant and 90% after trans-
plant [161,162]). Since vitamin D levels are not always monitored in HSCT patients and
there is a high prevalence of vitamin D deficiency, Kenny et al. established a workflow for
monitoring and treating vitamin D deficiency and to determine whether or not therapeu-
tic vitamin D levels could be achieved posttransplant using a HSCT-specific vitamin D
algorithm [155]. The initial replacement doses were serum vitamin D dependent and again
a dose adjustment-based level was measured in several points. With the implementation
of this algorithm, vitamin D deficiency decreased from 72.9% pretransplant to 26.4% post-
transplant. Vitamin D supplementation in HSCT patients not always achieve optimal se-
rum vitamin D levels [163]. Therefore, a more intensive vitamin D replacement than rec-
ommended for the general population may be required in HSCT patients [155].

Several studies have been reported describing a link between GvHD incidence
and/or severity and vitamin D deficiency [164-168]. Some of them [165,167,168] specifi-
cally described an impact of vitamin D deficiency on chronic GvHD incidence. By con-
trast, others didn’t find a significant correlation [161,169-177].

When we look at survival rates, it is also difficult to make a definitive statement.
Beebe et al and Hansson et al [167,170] described a worse overall survival and Perera et al
[175] a higher mortality among patients with vitamin D deficiency, while Bhandari et al
[174] found that vitamin D levels correlate with overall survival upon considering follow-
up levels but not just vitamin D levels before HSCT.

In the largest study reported by Radujkovic et al [176] in 492 patients, a significant
association between vitamin D deficiency and inferior overall survival was described
(Hazard ratio 1.78; P = .007). This effect was due to a higher risk of relapse (HR 1.96, P =
.006) in myeloid diseases. This study did not find a relationship between vitamin D levels
and incidence of acute or chronic GVHD.

In a meta-analysis, Ito et al [178] observed that lower vitamin D levels were associ-
ated with significantly poorer overall survival (HR: 1.50, 95%CI 1.03-2.18) and a higher
relapse rate (HR: 2.12, 95%CI 1.41-3.19), while no significant impact on non-relapse mor-
tality (NRM) was described (HR: 1.23, 95%CI 0.72-2.10).

Another meta-analysis [179] concluded that vitamin D deficiency was not signifi-
cantly associated with a higher risk of GvHD, although there was a trend for both acute
[HR 1.06 (95% CI 0.74-1.53, P > 0.05)] and chronic GvHD [HR 1.75 (95% CI 0.72-4.26, P >
0.05)]. All these results are summarized on Table 2. With this background, Hong et al pro-
posed that vitamin D levels should be monitored in all patients prior to allo-HSCT and
every 3 months thereafter.

For monitoring purposes, as previously mentioned, the main circulating metabolite
of vitamin D in serum is 25-hydroxyvitamin D and is considered the most reliable marker
[180]. However, Peter et al [177] set out the underestimated role of 1,25-dihydroxyvitamin-
Ds and its value to predict outcomes after of allo-HSCT. They measured 1,25-dihy-
droxyvitamin-Ds in 143 patients and compared their findings with 25-hydroxyvitamin D
levels and found that only peritransplant 1,25-dihydroxyvitamin-Ds deficiency was sig-
nificantly associated with a higher 1-year-NRM. Afterwards, they studied 365 additional
patients and again showed that patients with 1,25-dihydroxyvitamin-Ds levels below
139.5 pM had a 3.3-fold increased risk of NRM (Cox-model unadjusted P <0.0005, adjusted
P =0.001).

Studies evaluating the efficacy of Vitamin D administration
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With these data in mind, several studies have evaluated the potential benefit of the
administration of different subtypes or doses of vitamin D in the allo-HSCT setting (Table
3). Kenny et al [155] propose an ergocalciferol (or cholecalciferol) dose of up to 50 000 IU
orally once weekly, and they got only 19.7% allogenic deficient patients after the trans-
plant (69.7% were deficient before it). They concluded that aggressive vitamin D repletion
posttransplant decreases the incidence of VD deficiency.

Other studies included in Table 3 go further and relate the vitamin D supplementa-
tion with HSCT outcomes. One of them [181] analyzed the impact of VD administration
on patients with active chronic GvHD, finding an improvement in severity and a remark-
able reduction of relapses or progressions.

Bhandari et al. [182] designed a study in a pediatric population to evaluate whether
a single, weight-based ultra-high dose of vitamin D -or Stoss dose- was more effective
than standard supplementation to achieve pre-HSCT vitamin D sufficiency and reduce
the incidence of HSCT-related complications that are associated with immune-mediated
endothelial damage [182]. Stoss dose was given to 33 patients 14 days before conditioning
and then a routine maintenance supplementation before day 100 in case of insufficiency.
The outcome was compared to a historical cohort of 136 patients treated with standard
supplementation. Low levels of vitamin D were present in 61% of patients and 97% of
them maintain vitamin D sufficiency after the Stoss-dose compared to 67% (n = 10/15) of
patients in the historical control who were on standard supplementation at the time the
total 25-OHD level was assessed (P =.013). There was a trend to lower combined incidence
of HSCT-related complications in patients receiving Stoss-dosed vitamin D than the his-
torical control (25% [n = 7/28] versus 42% [n = 57/136], P = .055). A randomized phase 4
trial have been performed to assess safety and efficacy of Stoss dose versus standard vit-
amin D replacement with awaiting results (NCT03176849). A summary of ongoing trials
of vitamin D in HSCT setting is shown on table 4.

The Alovita trial was a prospective study which of 150 patients older than 18 years
from 7 Spanish centers were included from May 2011 to February 2014 [183,184]. Three
consecutive cohorts with 50 patients in each one were included: the control group (CG)
did not receive cholecalciferol (vitamin Ds), the second cohort or low-dose group (LdD)
received 1,000 IU of vitamin Ds per day, and in the high-dose group (HdD), patients re-
ceived 5,000 IU per day. Vitamin Ds was given orally from day -5 before transplant until
day +100 after transplantation.

Regarding toxicity, no serious adverse events, specifically no case of hypercalcemia,
were reported.

Vitamin Ds supplementation was proved to be effective in terms of reduction of
chronic GvHD incidence. A decrease of both overall as well as moderate plus severe
c¢GvHD incidence was observed in LdD at 1 year [37.5% (95% CI, 24.9-56.4) and 19.5%
(95% CI, 10.4-36.7), respectively] and HdD [42.4% (95% CI, 29.3-61.4) and 27% (95% CI,
16.1-45.2), respectively] as compared with patients who did not receive vitamin D [67.5%
(95% CI, 54.1-84.3) and 44.7% (95% CI, 31.2-64.2), respectively; P = 0.019 for overall and P
= 0.026 for moderate plus severe cGvHD, respectively]. No significant differences were
observed in terms of cumulative incidence of overall and grades 2—4 acute GvHD, cumu-
lative incidence of relapse at 1 year. No either significant difference in DFS was observed
nor OS with a median follow-up of 2 years.

This effect correlated with several biological parameters. The most significant differ-
ences between the 3 cohorts were a decrease on both the percentage and absolute number
of circulating B cells on day 100 for LdD and HdD subgroups as compared with CG, a
markedly modified ratio of naive/memory/effector T cells, with a lower number of circu-
lating naive CD8+ among patients receiving vitamin D as compared with those who did
not receive it and a significantly lower expression of CD40L as activation marker among
patients receiving vitamin D. These findings are concordant with an increase of immune
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tolerance development at the same time as survival and expansion of donor naive T and
B cells is impaired.

Next, we performed a retrospective study among patients previously included in the
alovita trial to identify which factors might influence on the effect of vitamin D on cGvHD;
particularly, we focused on the evaluation of the different VDR SNPs among patients and
their respective donors who had genomic DNA stored before transplant [183]. Patients
were gathered in two groups, vitamin D group, who received 1000 or 5000 UI daily (n=71)
and control group (n=36). We investigated the SNPs FokI (rs2228570 T/C), Bsml (rs1544410
A/G), Apal (rs7975232 C/A), and Tagl (rs731236 T/C) in 107 patients and 102 donors. We
found that Bsml, Apal, and Tagl alleles were in strong disequilibrium. In contrast, FoklI did
not demonstrate any association with Bsml, Apal, or Tagl. Overall, there were no signifi-
cant differences on the incidence of cGvHD depending on patients or donors SNPs. In
contrast, VDR genotypes significantly influenced on the impact of vitamin D administra-
tion on cGvHD incidence. The administration of vit D significantly influenced on the risk
of overall cGvHD among patients with FokI, CT [cGvHD incidence 22.5% (95% CI, 8.8-39)
vs. 80% (95% CI, 30.8-95) for patients receiving or not vit D, respectively, P = 0.0004. The
same genotype also influenced on the risk of moderate—severe cGvHD. We also evaluated
the benefit obtained from the administration of vitamin D posttransplant depending on
most frequent patients' Bsml/Apal/Tagl haplotype. In this regard, patients carrying
GGT/GGT genotype had the greatest benefit from receiving vitamin D in terms of cGvHD
incidence although we could not confirm that data on multivariate analysis. In that anal-
ysis a significant interaction for the risk of overall cGvHD was observed between Fokl
genotype and vitamin D administration. Accordingly, the risk of cGvHD of patients
treated with vitamin D was lower among patients carrying Fokl CT genotype [adjusted
hazard ratio (aHR) 0.143; 95% CI, 0.045-0.452; Pinteraction < 0.001]. In addition, we per-
formed analysis to evaluate the vitamin D supplementation impact on survival, relapse
incidence and non-relapse mortality without finding any association.

Emphasizing the finding of a decreased risk of cGvHD among specific SNP (FokI) of
the recipients, the effect of vitamin D in dendritic cells population might be the most rel-
evant to justify the impact of vitamin D on cGvHD incidence. Some subtypes of dentritic
cells from the host persist after engraftment and therefore, vitamin D binding VDR would
inhibit their differentiation and maturation and would decrease alloreactive T-cell activa-
tion at the same time as it would upregulate tolerogenic properties selectively in myeloid
dendritic cells.

In summary, the effect of vitamin D on hematopoietic cells, specially on the different
cell subsets from the immune system, together with the previously mentioned data and
the excellent toxicity profile support its use in the allo-HSCT setting in an attempt to de-
crease cGvHD. Additional studies are required to further explore its efficacy.
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Table 1. Interventional studies evaluating the efficacy of vitamin D administration in hematologic malignancies.

Study N Intervention Vit D levels Endpoints
Median/range
MDS NR 18 Calcitriol >2mcg - MR and PR: 44% (8/18)
Koeffler et al.
1985 [133]
MDS Phase 30 Alfalcidol 4-6 mcg/day - Progression to AML:
Motomura et al, I vs no therapy - Alfacalcidol: 6% (1/ 15)
1991 [137] - No therapy: 46.6% (7/15)
MDS NR 12 Paricalcitol 8 pug/day and - OR: 0%. 1/12 patient’s plate-
IPSS low and high increments of 8 ug/day let count achieved normal
Koeffler et al, every 2 weeks range for 5 weeks.
2005 [135]
MDS and CMML NR 19 - Calcifediol 266 mcg 3 Increased from OR: 57% (11/19)
IPSS low-int1 times a week. N=5. 9.4 + 4.6 ng/ml No hypercalcemia
Mellibovsky et al, - Calcitriol 0.25-0.75 to37.5+44.2
2001 [134] mcg/d N=14 (p=0.003)
MDS an CMML Phase 15 Doxercalciferol 12.5 - No responses
Petrich et al, 1I mcg/day for 12 weeks.
2008 [136]
MDS with IPSS Phase 20  Alfacalcidol 0.75 mcg/day - ORR was 30% (6/20)
low and int-1 I + 45 mg of menatetrenone
Akiyama et al, for 1 year if response
2010 [138]
MDS and AML Phase 63 Arm 1: Ld ara-C vs - Similar OS, ORR or DOR.
Hellstrom et al, I MDS Arm 2: Ld ara-C + 13- Progressed from
2009 [139] 15 CRA and Alfacalcidol MDS to AML:
AML 44% vs 20% (p = 0.0527)
MDS Phase 63 EPO + 13-CRA + - RAEB1 OS 14 months
IPSS low-int-2 I Calcitriol Non-RAEB1 OS 55 months

Ferrero et al,

Erythroid response: 60%
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2008 [140] (93% in low risk patients)
MDS and CMML NR 19 Valproic acid (dose ad- - Blood improvement:
Siitonen et al, justed by levels) + 3/19 patients (16%).
2007 [185] 13-CRA (10mg/12h) + Cal- 8/19 discontinued (side ef-
citriol (1mcg) fects, no hypercalcemia).
AML (elderly) NR 29 -Ld Ara-C+ - ORR 79%
Slapak et al, Hydroxyurea + CR 45% / PR 34%

1992 [141] calcitriol (0.5 pg/12h) DOR: 9,8 months
MDS IPSS 0/1 Phase 36 Cholecalciferol Safety and efficacy
NCT00068276 I Doses not specified

(Ongoing)

CLL Phase 31 Cholecalciferol 5-year OS, PES, TTF
NCT01518959 I (180.000 IU monthly) 5-year lymphocyte count
(Ongoing) vs placebo
Aggressive NHL NR 155 - Cholecalciferol Vitamin D Independent prognostic pa-
Hohaus et al, loading phase: Pre-treatment rameters for EFS:
2018 [148] 25000 IU daily 14+14ng/mL  -25(OH)D levels <20 ng/ml
maintenance phase: post-treatment HR 2.88 p<0.02.
25,000 IU weekly 33 +1.4 (n=81) - IPI HR 2.97 p<0.002.
(p <0.0001) No hypercalcemia
NHL and CLL Phase 158  Cholecalciferol 50.000 IU * Vitamin D 97% of vitamin D

Sfeir et al, I/ weekly, 12 weeks deficiency 45%  insufficient group reached

2017 [150] If <30 ng/ml: (n=71) levels>30 ng/ml prior to fol-
NCT01787409 50.000 IU twice weekly Mean + SEM low-up period of 3 years,

When > 30 ng/ml: 17 + 5 ng/ml during which these levels are
50.000 IU/month maintained
NHL and CLL Phase 713 Cholecalciferol PO once - 12-month EFS
NCT01787409 /11 weekly for 12 weeks and 36-month Treatment free
(Ongoing) then once monthly for a 5-year ORR, OS
total of 36 months 5-year TTF (CLL patients)
NHL and CLL Early 370 *Arm I: high-dose - 3-years PFS
NCT02553447 phase cholecalciferol PO daily 3-years OS
(Ongoing) I *Arm II: low-dose
cholecalciferol PO daily
* Arm III (control)
Indolent NHL Phase 210 Weekly Rituximab x 4 + - 3-years PFS and OS
(Clinical trial 111 Response to rituximab (re-
ILyAD) * Arm 1: Cholecalciferol duction of lymphoma bur-
NCT03078855 2.000 IU daily den by at least 50%)
(Ongoing) * Arm 2: Placebo
Diffuse Large B Phase 430 *Arm A: 7 days of oral -— 54-months PFS, OS, EFS, 54-
Cell Lymphoma i prednisone prephase months RR, EDR
(65 years and older) * Arm B: 7 days of oral 54-months Rate of ECOG
(FIL_PREVID) prednisone and changes after prephase
NCT04442412 cholecalciferol (25.000 Rate of patient with
(Ongoing) IU/day) prephase. 25(OH)VitD levels
Then 25.000 IU/week correction at cycle 2
* Both followed by 6 Time-to-deterioration physi-

courses of R-CHOP
R-miniCHOP/21 days

cal functioning and fatigue at
cycle 2.
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Untreated Early Phase 35 Curcumin + oral daily - ORR, TTNT
Stage CLL (or SLL) I cholecalciferol on days 1- 2 years PFS, OS
(Ongoing) 28, for 6 cycles. If PR, 2 years DOR

treatment up to 2 years.

NR: not reported; PFS: progression free survival; OS: overall survival; EFS: event free survival; PFS:
progression free survival; RR: response rate; ORR: overall response rate; PR: partial response; MR:
minor response. DOR duration of response; EDR: early death rate; TTF: time to first treatment;
TTNT: time to next treatment; CLL: chronic lymphocytic leukemia; SLL: Small Lymphocytic Lym-
phoma. Ld: low dose. SEM: Standard error of the mean. Int-1: intermediate 1. MDS: myelodysplastic
syndrome. CMML: chronic myelomonocytic leukemia. NHL: non-Hodgkin Lymphoma. 13-CRA:
13-cis-retinoic acid
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Table 2: Relationship between vitamin D levels and main outcomes after allo-HSCT.

Study N Vitamin D levels Impact on GVHD Survival and
Median +/- 2 S.D Other endpoints
Pre-Allo Post-Allo
Kreutz et al, Prospective 48 36.4+22 | compared to In patients with grades 3-4 GvHD
2004 [164] nmol/L. Pre-allo: 27.8 £ 1.3 nmol/L.  serum levels remained low/dropped
Glotzbecker  Retrospective 53 21.9 ng/mL cGVHD at2y:
et al, 2013 (7.8 -45.7). 63.8% vs. 23.8% (p=0.009) 0OS: 53% vs. 50% (P =0.57).
[165] Vitamin D cutoff Extensive cGVHD at 2 y: PFS: 51% vs. 47% (P = 0.61).
25 ng/mL. 54.5% vs. 14.3% (p = 0.005).
Ganetsky Retrospective 54 D+30: D30 levels inversely correlate with
et al, 2014 20 ng/mL (6 - 50) risk of skin aGvHD for patients
[166] undergoing RIC (p <0.001).
Campos Prospective 66 25.7 +12.3 ng/mL vs. D+30: 22.7 £ 10.7 ng/mL. No association with GvHD. No effect on survival.
et al, 2014 controls 31.9 (P=0.01) D+180: 20.9 + 10.9 ng/mL
[169] Deficiency prevalence (p=0.01).
(32% vs 8%; p=0.01)
Beebe Retrospective 72 26 ng/mL Pre-HSCT and D+100, No association with GvHD. 1-year OS significantly lower
et al, 2018 (19-34 ng/mL). similar, at 1 year (p=0,01): among patients with vitamin D
[170] Deficiency: 35% 35+16vs.27£10 deficit (P = 0.001).
Robien, Retrospective 95 65% had > 75 nmol/L, No association with GVHD.
et al, 2011 24% low levels (50-75),
[171] 11% had < 50 nmol/L.
Urbain, Prospective 102 16.4 £ 8.9 ng/mL. D+30: 15.5 £ 8.7 ng/mL. Trend towards higher risk of grade
et al, 2012 89.2% had <30 ng/mL D+100: 14.9 + 7.5 ng/mL 2-4 aGvHD among patients with
[160] and 23.5% < 10 ng/mL. lower vitamin D levels (P = 0.066).
Gjeerde, Retrospective 116 64 nmol/L. Pre-HSCT > 85 nmol/L had 1.5 times
et al, 2021 29% had <50 nmol/L and higher odds of grade II-IV aGvHD
[186] 8% <25 nmol/L. than <47 nmol/L (CI : 0.84-2.7).
Bajwa Retrospective 233 24.24 ng/mL. D+30 24.76 ng/mL vs. No statistical difference in acute or No significant influence on OS.
et al, 2021 All patients had vitamin D+100 29.89 ng/mL. chronic GvHD.
[172] D insufficiency. All normal thereafter.
Hansson Retrospective 123 Insufficient level group Vitamin D at 6 months: Grades 2-4 aGvHD: 0OS: 87% vs. 50%, p = 0.01 for
et al, 2014 33 nmol/L (13-49) 23 nmol/L (18-24) in - 47% in Low vitamin D levels vs insufficient vs sufficient level

[167]

Sufficient level group

moderate / severe cGVHD

- 30% in the sufficient (P = 0.05).

Relapse for insufficient vs.
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63 nmol/L (50-97)

vs 37 nmol/L (10-80) in
no cGVHD (p = 0.004)

sufficient level groups:
33% vs. 4%, p =0.03.

Wallace
et al,
2015
[161]

Prospective

70% insufficient levels
(<30 ng/mL)
33% deficient levels
(<20 ng/mL).

134

D+100: 68% insufficient
(<30 ng/mL)
31% deficient
(<20 ng/mL).

No significant impact on acute or
chronic GvHD.

Vitamin D <20 ng/mL at
D+100 was associated with |
OS (70% vs. 84.1%, p = 0.044).
No impact pre-Allo.

Von Bahr
et al, 2015
[168]

Retrospective

166 42 nmol/L (10-118)
(53% insufficient levels,
11% deficient)
Healthy controls:
66.5 nmol/L (21-104)

(p < 0.001).

39 nmol/L (10-116), at 6
months.

No significant impact on aGvHD.
2-year cGVHD (moderate/severe):
Deficient vit. D level: 56%
Insufficient vit. D level: 31%
Sufficient vit. D levels: 21%
(p=0.01).

2-y OS according vit. D levels:
Deficient 63%, Insufficient 69%
Normal 76%; p=0,24; aa p=0.02
Significant 1 of CMV disease if
deficient vit. D (p = 0.005)
and 1 antibiotics (p =0.011)

Katic
et al, 2016
[173]

Prospective

310

Only patients with GvHD.
30 ng/mL (22-42).
77.7% had > 20 ng/mL and
22.3% had <20 ng/mL.

No association between vit. D levels
and major cGvHD characteristics.

| OS in patients with vitamin D
<20 ng/mL vs > 20 ng/mL.

Perera
et al, 2015
[175]

Retrospective

492

No significant differences in
acute/chronic GVHD.

Higher mortality in vitamin D
deficient cohort vs replete group
(HR 1.5, CI 1.1-2.0, P = 0.013).

No PFS or relapse differences

Radujkovic
et al, 2017
[176]

Retrospective

492 11.8 ng/mL (4.0-46.3).
Vitamin D deficiency in

- Training cohort: 80%.

- Validation cohort: 87%.

No significant impact on the cumula-
tive incidence of acute and chronic
GVHD.

| OS in vitamin D deficiency

(HR 1.78; p=0.007), due to a
higher risk of relapse
(HR 1.96; p = 0.006).

Peter
et al, 2021
[177]

Prospective

143 +
365

All patients tested for
1,25-dihydroxyvitamin-D3
and 25-hydroxyvitamin-D3
at day -16 to -6 before
allo-HSCT.

25-hydroxyvitamin-D3
showed a steady increase,
1,25-dihydroxyvitamin-D3
peaked around the time of
allo-HSCT.

No significant association between
vitamin D levels and severe GvHD.

| 25-hydroxyvitamin-D3 during
follow up or | peritransplant
1,25-dihydroxyvitamin-D3 were
associated with increased TRM
(p=0.002 and p=10.001).

aa: age adjusted

Table 3: Interventional studies evaluating the administration of vit D after allogeneic transplantation.

Study

Vitamin D2 or D3

Vitamin D levels

Impact on GVHD
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and dose

Pre-Allo

Post-Allo

NRM and Survival

Wallace
et al, 2018
[187]

Prospective /

10

Cholecalciferol: single enteral
dose (maximum 600,000 IU)
based on weight and pre-trans-
plantation vitamin D level

Mean pre-transplantation
25-OH vitamin D level:
28.9 + 13.1 ng/mL.

All patients achieved a ther-
apeutic vitamin D level (>
30 ng/mL), that were sus-
tained at or above 8-week

Silva
et al, 2011
[181]

Retrospective
/

Cholecalciferol 1000 IU per day
(oral) plus calcium carbonate
1250 mg (one pill per daily) af-
ter HSCT for at least 6 months
in patients with osteopenia

All patients had active cGvHD.
At 6 months after treatment:
- 5 patients obtained complete response
- 6 patients obtained partial response
- 1 patient had no response.

Duncan
et al, 2011
[188]

Prospective /

22

Ergocalciferol: 50,000 TU
once weekly for 6 weeks

Mean pre-transplantation
22.8 ng/mL (7-42.6).
Vitamin D deficiency:
37.3% (CI 25.8%-50%).

Mean increase following
supplementation:
18.8 (SD =11.3, 8-42).
4.5% remained deficient

Bhandari
et al, 2021
[182]

Prospective /
(historical
cohort
comparison)

33

Cholecalciferol: one-time oral
Stoss* dose of cholecalciferol in
5000 IU/mL liquid formulation,

5000 IU/capsule, or 50,000
IU/capsule vs standard dose
14 days before conditioning.

Mean pre-transplantation
27.7 ng/mL (SD 10.8).

59% were vitamin D in-
sufficient vs. 61% in the
historical cohort.

* Mean level (p<0.001)
post Stoss: 72.2 ng/mL vs.
standard dose: 35.8 ng/mL
* Vitamin D sufficiency in

97% of Stoss cohort
vs. 67% of standard dose

No association with acute GvHD, veno-
oclusive disease or transplant associated
thrombotic microangiopathy.

Wallace
et al, 2016
[189]

Prospective /

60

Cholecalciferol.
*Control cohort (1) treated ac-
cording NKF” guidelines.
*Intervention cohort (2): high
doses of vitamin D
based on body weight
(15000 - 100 000 IU weekly) .

51% (18 of 35 patients)
in control cohort and
48% (12 of 25 patients)
in the intervention cohort
were vitamin D insuffi-
cient at the time of
transplant.

Outcomes improved in co-
hort 2, but still only 64%
achieved a therapeutic level
despite receiving > 200
1U/kg/day.

Kenny
et al, 2019
[155]

Prospective /

144

Cholecalciferol: The dose was
guided by vitamin D levels
(max. 50 000 IU orally once
weekly).

72.9% were vitamin D
deficient before HSCT.

Mean pre-transplantation
21 ng/mL.

26.4% were vitamin D defi-
cient before HSCT.

Mean 6-month posttrans-
plant level: 36 ng/mL.

Caballero-
Velazquez

Prospective /

150

1,25-Dihydroxyvitamin D3.
3 groups:

Plasma levels of
25-OH vitamin D3

Significantly higher levels
among patients receiving

| overall and moderate + severe cGVHD
at 1 year: LdD (37.5% and 19.5%)
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et al, 2016
[184]

Control group (CG): no vitamin
Low-dose (LdD): 1,000 IU /day,
High-dose (HdD): 5,000 1U/day

were measured on days
=5, +1, +7, +14 and +21.

high doses as compared with
the control group beyond
day +7.

HdD (42.4% and 27%) compared with
CG (67.5% and 44.7%; P < 0.05)
In multivariable analysis, vitamin D
| the risk of overall cGvHD and
moderate + severe cGVHD (p <0.01)
Similar relapse rate and survival.

Carrillo-
Cruz

et al, 2019
[183]

Prospective /

107

1,25-Dihydroxyvitamin D3
3 groups:
D3Control (CG) (no vitamin D)
Low-dose (LdD)(1,000 IU/day)
High-dose (HdD)(5,000 1U/day)

The incidence of overall cGvHD varied
depending on the VDR genotype: among
patients with FokI CT genotype (22.5%
vs 80%, P = 0.0004) and among patients
treated with vitamin D as compared with
the CG (HR 0.143, P < 0.001).
Patients w/o Bsml/Apal/Taql ATC hap-
lotype (22.2% vs. 68.8%, P = 0.0005).

Bhandari,
2020
[182]

Prospective /

314

Cholecalciferol

Obtained in 94 patients.
Mean levels of vitamin D
with supplementation
33.67 ng/mL
vs. 29.16 ng/mL
without it (p =0.11)

31.85 ng/mL in patients with
aGVHD
vs. 31.42 ng/mL in those
w/o aGVHD (p =0.91).

Vitamin D levels did correlate with OS:
every 10 ng/mL increase there was a
28% decreased risk of death (P =0.01).
No difference for levels before HSCT.
Malignant diagnosis was associated
(multivar. analysis) with EFS (P <0.01).

HSCT: Hematopoietic Stem Cell Transplantation; GVHD: Graft-versus-Host Disease; cGvHD: Chronic Graft-versus-Host Disease; aGvHD: Acute Graft-versus-Host Disease; CI:

Confidence Interval; SD: Standard Deviation; VOD: Veno Occlusive Disease; TA-TMA: Transplant-Associated Thrombotic Microangiopathy; HR: Hazard Ratio; VDR: Vitamin
D Receptor; SNPs: Single Nucleotide Polymorphisms; OS: Overall Survival.

(*) The Stoss dosing was based on weight and total 25-OHD level, as previously published by Wallace et al: Vitamin D <10 ng/mL: 14,000 IU/kg/dose; Vitamin D: 10-29 ng/mL:

12,000 IU/kg/dose; Vitamin D 30-50 ng/mL: 7000 1U/kg/dose.

() National Kidney Foundation.

| with an aggressive dosage increase in those who remained vitamin D insufficient.
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Table 4. Clinical trials currently active evaluating the use of vitamin D among patients undergoing allo-HSCT.

N Vitamin D Dose Main Objective

Children's Hospital 100 Single large dose of vita- Incidence of acute GI GVHD at
Medical Center, min D "stoss therapy" with day +100 after transplant.
Cincinnati, 2018 a placebo vs. single large

doses of both vitamins D
and A.

Children's Hospital 20  Cholecalciferol ~ Vitamin D OTF weekly for  To investigate efficacy of OTF D3
Medical Center, a maximum of 12 weeks. replacement by measuring vita-
Cincinnati, 2021 The dose may be in- min D levels.

creased or decreased
based on the dosing
schema.
Children's Hospital 33 Cholecalciferol ~ Single dose of ultra-high- 1. Incidence of GVHD, veno-oc-
Los Angeles, 2018 dose vitamin D. clusive disease and thrombotic
microangiopathy at day +100 af-
ter transplant.

Children's Hospital 10 Cholecalciferol ~ One oral vitamin D dose 2. Vitamin D sufficiency
Medical Center, (based on vitamin D status following Stoss dosing,
Cincinnati, 2016 and rounded to 5000 IU) prior to transplant.

<2 weeks prior to HSCT.
University of Brit- 84 Cholecalciferol Intervention group: To test the efficacy and safety of
ish Columbia, 2018 loading dose of 100 000 IU  high dose vitamin D therapy by
vitamin D3, after measuring serum 25-OH vitamin
vitamin D3 2000 IU daily. D level weekly for 8 weeks.
Seoul National 88 Cholecalciferol Control group: 2000 IU Assess the efficacy (patients

University Hospi-
tal, 2017

vitamin D3 daily.

achieving sufficient serum 25-OH
vitamin D3 level in day +100
post-aHSCT) with 100.000 IU
vitamin D3 prior to aHSCT.

GI: Gastrointestinal; GvHD: Graft-versus-Host Disease; OTF: Oral Thun Film; HSCT: Hematopoietic Stem Cell Transplantation;
aHSCT: Allogenic Hematopoietic Stem Cell Transplantation;

c¢GvHD: Chronic Graft-versus-Host Disease.
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