
 

Article 

Robust PVC Identification by Fusing Expert System and Deep 
Learning 
Zhipeng Cai 1, Tiantian Wang 1, Yumin Shen 1, Yantao Xing 1, Ruqiang Yan 1,2,*, Jianqing Li 2 and Chengyu Liu 1,* 

1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China; 
zhipeng@seu.edu.cn (Z.C.); 220183259@seu.edu.cn (T.W.); 1047476062@qq.com (Y.S.); 230198304@seu.edu.cn 
(Y.X.); yanruqiang@xjtu.edu.cn (Y.Q.); liq@seu.edu.cn (J.L.); chengyu@seu.edu.cn (C.L.) 

2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 714009, China; yanruqiang@xjtu.edu.cn 
* Correspondence: yanruqiang@xjtu.edu.cn (Y.Q.); chengyu@seu.edu.cn (C.L.) 

Abstract: Premature ventricular contraction (PVC) is one of the common ventricular arrhythmias, 
which may cause stroke or sudden cardiac death. Automatic long-term electrocardiogram (ECG) 
analysis algorithms could provide diagnosis suggestion even early warning for physicians, how-
ever, they are mutually-exclusive in terms of robustness, generalization and low complexity. In this 
study, a novel PVC recognition algorithm that combines deep learning-based heartbeat template 
clusterer and expert system-based heartbeat classifier is proposed. Long short-term memory-based 
auto-encoder (LSTM-AE) network was used to extract features from ECG heartbeats for K-means 
clustering. Thus, the templates were constructed and determined based on clustering results. Fi-
nally, the PVC heartbeats were recognized based on a combination of multiple rules, including tem-
plate matching and rhythm characteristics. Three quantitative parameters, sensitivity (Se), positive 
predictive value (P+) and accuracy (ACC), were used to evaluate the performances of the proposed 
method on the MIT-BIH Arrhythmia database and the St. Petersburg Institute of Cardiological Tech-
nics database. Se on the two test databases was 87.51% and 87.92%, respectively; P+ was 92.47% and 
93.18%, respectively; and ACC was 98.63% and 97.89%, respectively. The PVC scores on the 3rd 
China Physiological Signal Challenge 2020 training set and hidden test set were 36,256 and 46,706, 
respectively, which could rank first in the open-source codes. The results showed that the combina-
tion strategy of expert system and deep learning can provide new insights for robust and general-
ized PVC identification from long-term single-lead ECG recordings. 

Keywords: electrocardiogram; K-means clustering algorithm; premature ventricular contraction; 
rule-based decision algorithm 
 

1. Introduction 
Cardiovascular diseases (CVDs) are the foremost cause of human death worldwide, 

which can lead to over 31% of deaths every year. With the progressive aging of popula-
tions worldwide, the number of patients with CVDs may continue to increase. It is esti-
mated that the number of deaths due to CVDs will increase from 17 million in 2016 to 24 
million in 2030 [1]. Therefore, monitoring and preventing CVDs in advance has become 
one of the important tasks for many countries [2].  

Arrhythmia is a common CVDs, which refers to a series of rhythm and/or waveform 
irregular. As one of the most common arrhythmias, premature ventricular contraction 
(PVC) is caused by premature ectopic beats in the right or left ventricle [3]. Frequent PVC 
and multi-source PVC detection have important clinical significance [4]. Clinicians gener-
ally detect PVC by observing rhythmic changes and subtle morphological changes from 
electrocardiogram (ECG) signal. However, this visual inspection may increase the manual 
interpretation work for physicians and lead to low efficiency for long-term PVC recogni-
tion. In order to reduce the workload of clinicians and improve PVC detection accuracy, 
researchers developed computer-aided systems for automagical diagnosis [5]. 
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Various automatic ECG heartbeat classification algorithms have been developed in 
recent decades, which can be summarized into two categories: expert system (ES)-based 
and deep learning (DL)-based methods. The ES-based methods classify heartbeats into 
different categories by judging multiple features with fixed thresholds. Most ES-based al-
gorithms utilize rule-based features derived from rhythmic intervals (RR-interval, QT-in-
terval, PR-interval, etc.) and morphological characteristics (P-wave, Q-wave, T-wave, 
etc.). Liu et al. [6] presented a personalized ECG template construction method and de-
tected PVC beats based on template matching, the sensitivity (Se) on the MIT-BIH arrhyth-
mia database (MIT-BIH-AR) (DS2) reached over 99%. Although this method has low com-
putational complexity and can be applied for real-time conditions, the high performance 
is not tested on other databases especially on the dynamic noisy signals. Nahar et al. [7] 
proposed an algorithm for PVC detection based on morphological transformation and 
cross-correlation technology, which used the morphological features to directly detect 
PVC. The potential of this proposed method was examined using 32 records from the MIT-
BIH-AR database, reporting a specificity (Sp) of 96.67%, and a Se of 95.2%. Li et al. [8] 
proposed a low-complexity data-adaptive approach for PVC recognition. They tested the 
method on INCART database and achieved a Se of 93.4%, an accuracy (ACC) of 94%, and 
a positive predictive value (P+) of 66.5%. These methods can be used for real-time appli-
cations without patient-specific consideration, as these methods have low computational 
complexity and good generalization capabilities. However, they need professional re-
searchers to choose features and specific thresholds according to different tasks. Moreo-
ver, these detailed features are susceptible to noise interference, resulting in poor anti-
noise ability of the algorithm. 

With the development of machine learning, numerous DL-based methods have been 
developed, including auto-encoding (AE) [9], convolutional neural network (CNN) [10], 
block-based neural network (BBNN) [11], long-short term memory (LSTM) [12], support 
vector machine (SVM) [13], decision tree [14], Cascade Forward Neural Network (CFNN) 
[15], and random forest [16], etc. The DL-based method omits the handcrafted features 
extraction process, as the DL network can automatically extract the high-dimensional fea-
tures. Therefore, DL-based methods can be applied in situations with big data processing 
capabilities, such as cloud computing platforms [17]. Yildirim et al. [1] presented a new 
1D-Convolutional Neural Network model for cardiac arrhythmia detection based on 
long-duration ECG signal analysis, which achieved an ACC of 91.33% for 17 cardiac ar-
rhythmia classes classification in the MIT-BIH-AR database. Similarly, Pławiak et al. [18] 
proposed genetic ensembles of SVM-based classifiers for the same classification task, and 
achieved a Se of 91.40% and an ACC of 98.99%. These two methods can be used for real-
time signal processing and cloud computing on mobile devices, as they eliminate the need 
for detection and segmentation of QRS complexes. However, neither of these two meth-
ods can classify ECG segments that contain multiple ECG abnormalities. Shadmand et al. 
[11] employed the particle swarm optimization algorithm to optimize the structure and 
weights of BBNN, and obtained an accuracy of 97.00% for 5 classes ECG classification on 
the MIT-BIH-AR database. This method highly relied on the massive labeled data and 
computing resources to obtain its satisfactory performance on different databases. 

Although the reported ES- and DL-based automatic heartbeat classification algo-
rithms can achieve high performances on different databases, the extracted features of ES-
based method require professional knowledge and are susceptible to noise; while DL-
based method is unexplainable, and is easy to overfit on a small amount of labeled data. 
Therefore, in order to ensure the accuracy of ES-based and DL-based algorithms while 
considering the disadvantages of these two methods, a robust PVC identification algo-
rithm based on a novel expert system and deep learning combination strategy was pro-
posed in this paper. To evaluate its performance and generalization capacity, the method 
was tested on three different databases: the MIT-BIH-AR database, the St. Petersburg In-
stitute of Cardiological Technics (INCART) database and the China Physiological Signal 
Challenge 2020 (CPSC2020) database. There are three major contributions of the proposed 
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work: 1). This article proposed a novel expert system and deep learning combination strat-
egy for PVC recognition in single-lead ECG; 2). The developed PVC detection algorithm 
is unsupervised, since the employed LSTM-AE network is used as the feature extraction 
process for heartbeat clustering; 3). The designed method is less complex and lightweight 
compared to most of the proposed automatic PVC detection methods. 

2. Materials and Methods 

2.1 MIT-BIH-AR database 
The lead II ECG signal of MIT-BIH arrhythmia (MIT-BIH-AR) database is used as the 

training set in our study. The database contains 48 half-hour two channel ambulatory ECG 
recordings, obtained from 47 subjects, and sampled at 360 Hz. Following the Association 
for the Advancement of Medical Instrumentation (AAMI) recommendations, the experi-
ments are performed by excluding 4 records (102, 104, 107, and 217) containing paced 
beats, and the remaining 44 recordings are used as training set. Similar to [19], the Fusion 
and Supraventricular beats are treated as Non_PVC beats while Unclassified (Q) and dis-
tortion beats are ignored, so there are 6,990 PVC beats and 92,851 Non_PVC beats (Table 
1). 

Table 1. The Detailed Information of Three Database. 

 Database ECG length # PVC beats # Non_PVC beats # Total beats Sampling Frequency (Hz) 
Training MIT-BIH 1 30 min 6,990 92,851 99,841 360 

Test 
INCART-12 30 min 20,008 155,652 175,660 275 

CPSC2020 Training ~24 h 42,075 853,636 895,711 400 
1 Four records (102,104,107, and 217) containing paced beats in MIT-BIH database were excluded in this study. 

2.2 INCART database 
The performance of the proposed algorithm was evaluated on the INCART database, 

which consists of 75 12-lead ECG records. Each recording was sampled at 275 Hz and 30 
minutes in duration. The annotations were produced by an automatic algorithm and then 
corrected manually, containing over 175,000 annotations in total [15]. Among these re-
cordings, ECGs of lead II are adopted as our experimental data [20], and the ventricular 
ectopic beats (V) are regarded as PVC beats, and the others are Non_PVC beats. 

2.3 CPSC2020 database 
CPSC2020 database is a wearable ECG database constructed for challenging PVC and 

supraventricular premature beat detection tasks [21], including pathological arrhythmias 
and poor signal quality due to artifact and noise. The training data consists of 10 single-
lead ECG recordings collected from arrhythmia patients, each of the recording lasts for 
almost 24 hours. The test set contains similar ECG recordings, which are not public. All 
data were collected with a sampling frequency of 400 Hz. It is worth noting that we did 
not participate in CPSC2020 in order to avoid doubts (we are affiliated with the organizer), 
but we tested our algorithm on this database and compared it with the final top 5 teams. 

3. Method 
In this study, ECG recordings were cut into 30-min ECG segments. Each 30-min ECG 

segment was preprocessed to exclude the noise episodes, and filter the artifacts for accu-
rate R-peak detection. Thereafter, the feature vectors extracted by LSTM-AE were used 
for template construction based on K-means clustering, and the type of each template was 
determined by rule-based method. Finally, PVC heartbeats were identified by several 
rules. The flowchart of the proposed method is illustrated in Figure. 1. 
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3.1 Signal Preprocessing 
ECG signal is easily polluted by a variety of noises, including body movement, ECG-

lead off, etc. The corrupted ECG data could significantly affect the PVC identification. To 
remove the unacceptable ECG segments with poor signal quality, the signal quality as-
sessment is used based on our previous work [22]. In brief, seven signal quality indices 
(SQIs) were calculated to train an SVM-based signal quality classification model, the train-
ing strategy and parameters setting were same as our previous work. After that, the base-
line drift and high-frequency noise is excluded by a Butterworth band-pass (0.1-45 Hz) 
filter. Then, R-peaks are detected using an adaptive and time-efficient algorithm [23]. It 
was an adaptive method integrating wavelet-based multiresolution analysis, signal mir-
roring, local maximum detection, and amplitude and time interval thresholding. The R 
peaks were refined three times by replacing the detected R peak with the position of its 
surrounding (± 25 ms) maximum absolute amplitude to address the R-peak misalignment 
problem. Finally, the 30-min ECG segment is divided into ECG heartbeats with 0.5 s 
length window centered around the detected R-peaks (0.1 s in front and 0.4 s after) re-
ferred from previous works [24]. 

 
Figure 1. Flowchart of proposed method. 

3.2 Heartbeats Clustering and Templates Classification 
3.2.1 Feature Vectors Extraction based on LSTM-AE 

The long short-term memory-based auto-encoder (LSTM-AE) network is used to ex-
tract the feature vectors of ECG heartbeats in this research. Figure. 2 shows the structure 
of LSTM-AE. LSTM is designed for processing time series based on the framework of the 
recurrent neural network, consisting of three gate structures: input gate, forget gate, and 
output gate. The forget gate decides what information will be thrown away from the pre-
vious cell state. The vectors tf  generated by the hidden state 1th −  from the previous 

LSTM cell and the input tx  of the current step t. The generation process can be repre-
sented as 

, (1) 
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Where fW  is the weighted matrix of the forget gate and fb  is the bias. As for the input 

gate, the vector ti  and the input candidate information 
~

tC  is also generated by the hid-

den state 1th −  and the input tx  as 

, (2) 

, (3) 

 

Figure 2. Structure of LSTM-AE in this study. 

The weighted matrices of iW , oW  and bias ib , ob  represent the connection be-
tween two components respectively. The forget gate and the input gate together deter-
mine the current control cell status tC : 

, (4) 

The output gate also generates a vector to  to determine the hidden state th  in the 
output state of the LSTM, as shown in the following equations: 

, (5) 

, (6) 

In (5), oW  is the weighted matrix of the forget gate and ob  represents the bias. In 
this study, the LSTM-AE network is adopted in this study to extract feature vectors of the 
heartbeat, the training parameters are: feature number = 32, batch size = 128, epoch num-
bers = 100, and Adam optimizer is selected as the optimizer [25]. 

This research embeds the LSTM network into the AE framework; thus, the process of 
encoder and decoder is implemented by LSTM. The encoder converts the input tx  to a 

hidden representation th  (feature vectors) using a deterministic mapping function: 

, (7) 

where W is the weight between input  and hidden representation th  and b  represents 

the bias. The decoder implements reconstructing the output 
^

tx  by th , which can be ex-

pressed as 

, (8) 

where 'W  is the weight between hidden representation th  and output 
^

tx  and 'b   is 

the bias.  
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3.2.2 K-Means Clustering Using Feature vectors 
The divided ECG heartbeats in each 30-min ECG segment are preliminarily clustered 

into K groups (K <= M, M represents the total number of heartbeats) based on the feature 
vectors using K-means clustering technique. In this study, K is determined by Silhouette 
Coefficient (SC): 

, (9) 

where and are the intra-cluster dissimilarity and inter-cluster dissimilarity of ith 
coded feature, respectively. The maximum SC is defined as K. 
3.2.3 Templates Construction & Templates Classification 

After K-means clustering, the distances between each coded feature sample in each 
group and its centroid are calculated, and sorted in ascending order (10): 

, (10) 

where  is the index of the sample corresponding to the distance between the 
sample in group and the centroid  after sorted, and  the number of sam-
ples in the group. 

The first 30 samples after sorting are selected to construct templates, and the type of 
each template is determined as PVC/Non_PVC based on the morphological rules referring 
to our previous work in [26]. 

3.3 Heartbeat Classification 
To quantify the similarity between each heartbeat waveform (HW) and the deter-

mined template waveform (TW), three characteristics are adopted in this study: cross-cor-
relation coefficient (Covr), area difference (ArDiff) and energy difference (EnDiff). The Covr 
is defined as 

, (11) 

where and are the mean values of HW and TW, respectively, N is the sample 
points of HW and TW. ArDiff indicates the area difference between HW and TW, the defi-
nition of ArDiff is 

, (12) 

EnDiff is used to assess the energy difference between HW and TW, and is defined as 

, (13) 

The details of the proposed heartbeat classification are described as follows: 
Step1: Evaluate the similarity between template and each intra-cluster heartbeats to 

determine the heartbeat type. If the current heartbeat and its related intra-cluster template 
meets the following conditions (14), the current heartbeat type and its template type are 
considered the same; else the current heartbeat is considered as "Unknown". 

 , (14) 
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Step2: Evaluate the similarity between "Unknown" heartbeat with all determined 
templates. The template matching result between "Unknown" heartbeat and all deter-
mined templates, as well as the rhythmic rules defined in [26] are considered simultane-
ously to identify the type of "Unknown" heartbeat. 

For the long-term ECG signal in CPSC2020, the 24-hour signal is divided into several 
30-min segments, and the first 30-min segment is processed as described above. For other 
segments, rule-based method is used to determine whether need to update the template. 
If necessary, the previous described steps are performed to update the template; other-
wise, the templates of the previous 30-min segment are used for the current 30-min seg-
ment. 

3.4 Evaluation method 
Three common metrics including Se, P+ and ACC are used to evaluate the perfor-

mance of the proposed method [27]. 

, (15) 

, (16) 

, (17) 

where TP represents the number of PVC beats correctly identified; TN indicates the num-
ber of Non_PVC beats correctly identified; FP represents the number of Non_PVC beats 
incorrectly identified as PVC beats; FN indicates the number of PVC beats incorrectly 
identified as Non_PVC beats. Almost all experiments are carried out on Intel®Core™i5-
8250U 1.60 GHz CPU and 8GB RAM. The operating system is Windows10, the platform 
is Spyder3, and the deep learning tool Keras based on the Python programming language 
is used. However, the comparison of running time with the top 5 PVC scores of CPSC 
2020 are carried out on Intel® Xeon® Silver 4215R 3.20 GHz CPU and 129GB RAM with 
the help of the competition organizing committee. The operating system is CentOS Linux 
release 8.4.2105, the platform is Anaconda. 

We adopt the scoring rules of the CPSC 2020 competition (PVC score) to evaluate the 
performance of the algorithm on the CPSC 2020 database, so that our algorithm can be 
compared with the participating teams of the cpsc2020 competition. The scoring rules are: 

• a false positive (FP) detection deduct 1 point. 
• a false negative (FN) detection deduct 5 points, since from a clinical perspective, 

missed diagnosis is more serious than misdiagnosis, thus we penalize FN detection. The 
final score for PVC is the sum of all deducted points. 

Table 2. The example of classification accuracy in MIT-BIH-AR database under different hyperpa-
rameter setting (record 100). 

            Batch          64 128 256  
Feature num-

bers 
 

 

16 99.62% 99.65% 98.61%  
32 99.68% 99.78% 98.59%  
64 99.33% 99.60% 99.65%  
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4. Results 

4.1 Effectiveness of feature vectors extracted by LSTM-AE 
LSTM-AE model combines the LSTM network with the AE, which means the encod-

ing and decoding process is performed by LSTM. Through LSTM, encoder extracts feature 
from the input ECG signal, while decoder implements the conversion from feature maps 
to the output. The parameters of the encoding and decoding operations are computed 
using unsupervised greedy training. In this paper, the input ECG signal of the LSTM-AE 
model is the raw ECG without filtering, while the loss function used to optimize the 
LSTM-AE model is calculated between the bandpass-filtered ECG signal and the recon-
structed ECG signal. In order to determine the detailed hyperparameter (batch size and 
feature numbers) of the LSTM-AE model, we tested the PVC detection performance on 
different parameter settings. Table 2 illustrates the classification accuracy in MIT-BIH-AR 
database under different hyperparameter settings (take record100 as an example), it can 
be seen that the model can provide better classification performance when batch size and 
feature numbers are set to 128 and 32, respectively. Therefore, the batch size and feature 
numbers are set to 128 and 32 in our paper, respectively. 

Figure. 3 shows the ranked feature vectors of PVC and Non_PVC in record 228 from 
the MIT-BIH-AR database, sorted according to their T-test p-value. It can be seen that the 
feature values of Non_PVC fluctuate slightly around 1, while the feature vectors of PVC 
vary greatly from 0 to 10. In addition, it is obvious that more than half feature vectors 
between PVC and Non_PVC is different, which indicates that the feature vectors can sub-
stitute original ECG data for heartbeat clustering. 

 
Figure 3. The ranked feature vectors of PVC and Non_PVC from record 228, according to the T-test 
p_value in ascending order. 

4.2 Results of K-means clustering 
The example of K-means clustering result of record 210 in MIT-BIH-AR database is 

shown in Figure. 4. It can be seen that the heartbeats are clustered into only two groups 
(K=2), including 164 heartbeats and 2475 heartbeats (Figure. 4 (a), Figure. 4 (b)), respec-
tively. The heartbeats in each group show high similarity, and the templates (Figure. 4 (e), 
Figure. 4 (f)) constructed from the 30 heartbeats closest to the centroid of each group show 
great difference (Figure. 4 (c), Figure. 4 (d)). It demonstrates that the K-means clustering 
based on the feature vectors can better divide the heartbeats into different groups.  
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4.3 Results on MIT-BIH-AR database 
Figure. 5 (a) shows the confusion matrix of the results on MIT-BIH-AR database, and 

the detailed results for this database are illustrated in the appendix (Table A1). The overall 
ACC is 98.63%, which is comparable to the state of art algorithms. The Se for Non_PVC 
and PVC beats is 99.46% and 87.51%, respectively; and the P+ is 99.06% and 92.47%, re-
spectively.  

4.4 Results on INCART database 
The confusion matrix for INCART database is shown in Figure. 5 (b) and the results 

for each recording are shown in the appendix (Table A2). For this database, we obtained 
a 97.89% overall ACC; Se 99.17% and P+ 98.46 % for non-PVC beats, and Se 87.92% and 
P+ 93.18% for PVC beats. In order to evaluate the multi-lead robustness of our method, 
the algorithm was independently verified in all 12-lead signals of the INCART database 
(Table. A2). The results on 12-lead INCART database indicated the proposed method had 
a good generalization ability between leads. 

 
Figure 4. The results of clustering from record 210. (a) and (b) are all heartbeats superposition of 
each cluster; (c) and (d) are the 10 heartbeats extracted from each cluster to build templates; (d) and 
(e) are templates of the cluster. 
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4.5 Results on CPSC2020 dataset 
Table 3 shows the results of the proposed method on CPSC 2020 dataset. According 

to the scoring standards of the competition, the PVC score reached 46,706 and 36,256 on 
the hidden dataset and training dataset, respectively. The result of our method is com-
pared with the final scores of the top five teams on the hidden test set, we got first rank 
among the open-source codes. In addition, the computational complexity on the hidden 
test set is analyzed with the help of the competition organizing committee. Compared 
with the top five teams, the running time of our method is much shorter than theirs. It 
indicates that the proposed method has the potential to be applied in long-term dynamic 
ECG monitoring for PVC recognition. 

 
Figure 5. Results of the proposed method on the MIT-BIH-AR database and INCART database, re-
spectively. (a) the evaluation indices of the proposed method on MIT-BIH-AR database, (b) the eval-
uation indices of the proposed method on INCART database. 

Table 3. The Detailed Information of Three Database. 

Code No. CPSC1077 1 CPSC1091 CPSC1093 CPSC1082 CPSC1089 This work 
Method Dense-

Net+Rules 
DL-based 2 

+Rules 
Bidirectional 

LSTM 
WT+DL-based 3 CNN LSTM-AE+K-

Means+Rules 
PVC Score of Test  41,479 55,706 95,900 97,913 142,228 46,706 

PVC Score of 
Training 

— 16,467 6,370 4,482 11,086 36,256 

Running Time (s) 1600.35±311.32 695.55±185.45 12810.90±726.48 18260.57±2100.84 368.29±33.27 215.93±59.32 
1 This team not public their code, so we cannot obtain the evaluation score of their algorithm on the training set. The other codes are 
available in http://2020.icbeb.org/CSPC2020. 
2 This DL-based method refers to a deep learning architecture containing multi-dilated convolutional blocks and Squeeze-and-Exci-
tation network. 
3 This DL-based method refers to the combination of one-dimensional convolutional layers and gated recurrent unit layers. 

5. Discussion 
A PVC recognition algorithm based on integrating deep learning and rules was pro-

posed in this study. Many ES-based or DL-based automatic ECG heartbeat classification 
algorithms have achieved high recognition results. However, they are complementary in 
terms of robustness and generalization. 

The contribution of this paper is the combination of the DL-assisted template con-
struction and ES-based heartbeat classification, which not only guarantees the accuracy 
but also improves the interpretability, robustness and generalization ability of the algo-
rithm. A wavelet-based statistical process control (SPC) method was proposed for PVC 
recognition on MIT-BIH-AR database [28], the overall ACC was 97.90%, and the Se and 
P+ for PVC were 87.20% and 84.60%, respectively. This method could improve PVC sen-
sitivity by manually adjusting parameter thresholds according to different situations, 
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873 92353 99.06%
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while our method could achieve high PVC sensitivity without any manual process. A real-
time premature beat (PB) detection method for single-lead ECG was proposed based on 
several simple rules [26], which was reported to have low computational complexity and 
could be used for real-time PB detection for portable ambulatory ECG monitoring. How-
ever, their accuracy on the total data (85.56%) was still non-neglected for accurate clinical 
diagnosis. Malek et al. [29] developed an improved template matching technique for iden-
tifying normal and PVC beats in ECG signals, which was evaluated on the INCART, QT, 
MIT-BIH Supraventricular Arrhythmia, and Fantasia databases, and the accuracy was 
97.91%, 99.34%, 99.89%, and 98.44%, respectively. One of the strengths of this method was 
the application of an adaptable threshold without the need for expert intervention, how-
ever, the features they adopted were more complex than ours. Talbi et al. [30] studied the 
effectiveness of the fractional linear prediction (FLP) technique on the ECG signal model-
ing, and developed a PVC recognition method based on the three coefficients of FLP and 
KNN, and the best accuracy of 96% was achieved on MIT-BIH-AR database. Most of the 
existing ES-based methods are efficient and requires less expert intervention, but the ro-
bustness still needs to be improved for daily life application. 

Table 4. Comparison of PVC recognition between the proposed method and existing methods on 
MIT-BIH-AR database and INCART database. 

Author Class and focus Method Database 
# Total 
beats 

# PVC 
beats 

Se(%) P+(%) ACC(%) 

Talbi, et al. 2016 
[30] 

PVC, Non_PVC KNN+FLP 

MIT-BIH-
AR 

 

95,743 7,147 80.88 — 94.63 

Wang, et al. 2017 
[31] 

PVC, Non_PVC Statistics +SVM 110,906 — 75.00 — 93.13 

Jung, et al. 2017 
[28] 

PVC, Non_PVC Wavelet-based SPC — — 87.20 84.60 97.90 

Mazidi, et al. 2019 
[32] 

PVC, Non_PVC SVM 82,163 7,111 99.91 — 99.78 

Li, et al. 2019 [33] PVC, Non_PVC Wavelet Transform 100,372 6,990 82.55 82.39 97.56 
Cai, et al. 2020 [26] Normal, PAC, PVC +CNN 98,426 6,734 76.54 90.47 85.56 
Kalidas, et al. 2020 

[19] 
PVC, Non_PVC Rules 93,432 6,898 96.58 97.20 — 

Wang, et al. 2021 
[34] 

PVC, Non_PVC 
SSAE+Random For-

ests 
24,922 2,187 95.47 98.75 98.25 

This study. 2021 PVC, Non_PVC OTSU+CNN 99,841 6,990 87.51 92.47 98.63 
Li, et al.2013 [8] PVC, Non_PVC LSTM-AE+K-Means+ 

INCART 
 

175,892 20,011 93.40 66.50 94.00 
Oster, et al. 2015 

[35] 
PVC, Non_PVC Rules 175,871 20,011 95.40  99.30 — 

Rahhal, et al. 2018 
[36] 

Normal, PVC and 
Others 

Template-matching  — — 85.20 80.90 92.00 

Kalidas, et al. 2020 
[19] 

PVC, Non_PVC 
SKF with X-factor 

Mode 
175,674 19,990 88.08 94.70 — 

This study. 2021 PVC, Non_PVC SDAEs+DNN 175,660 20,008 87.92 93.18 97.89 
With the popularity of machine learning, many researchers have implemented ma-

chine learning algorithms in arrhythmia recognition and achieved high performance. 
Mazidi et al. [32] designed a linear kernel-based SVM classifier with morphology, time 
domain, time-frequency domain and nonlinear features for PVC recognition, the method 
achieved a higher overall ACC and Se (99.78% and 99.91%, respectively) than our method. 
Wang et al. [34] proposed PVC detection scheme based on image processing and CNN for 
scanned clinical ECG reports, and their Se and ACC could reach 95.47% and 98.25%, re-
spectively. However, our method was unsupervised while the training set used in their 
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method was overlapped in their test set. Oh et al. [12] proposed an automated system 
using a combination of CNN and LSTM for variable-length ECG classification (5 class), 
they obtained the high classification accuracy of 98.10% without noise elimination on the 
MIT-BIH-AR database. The system could analyze ECG signals of different lengths with 
only a single type of arrhythmia, but it was computationally intensive. Yang et al. [27] 
applied stacked sparse auto-encoders (SSAEs) and a Softmax regression (SF) for six types 
ECG classification and achieved average 99.22% Se and 99.37% P+ on MIT-BIH-AR data-
base. The features extracted by SSAE had no individual independent differences in feature 
selection and extraction accuracy, and almost no useful heartbeat information was lost. 
However, the method was semi-supervised and required trained cardiologists to first clas-
sify each beat cluster into normal or ventricular. Therefore, it was inappropriate for ana-
lyzing long-term signals. 

From Table 4, we compared the PVC recognition between the proposed method with 
existing methods on MIT-BIH-AR database and INCART database. The satisfactory per-
formance of the proposed method on these two clinical databases demonstrated that our 
method not only guarantees the accuracy and robustness advantages of DL-based 
method, but also improved the generalization capacity and interpretability advantages of 
ES-based methods. 

Although we did not participate in CPSC2020 as we were affiliated with the organ-
izer of the challenge, the performance of the proposed method on long-term wearable 
ECG database (CPSC2020) was also compared with the published top 5 teams of PVC 
recognition in CPSC2020 (Table 3). The method proposed by the published champion 
team employed DenseNet model to classify the heartbeats into three categories (Normal, 
Premature Ventricular Contraction and Supraventricular Premature Beat) and refined the 
results by a post-processing procedure with several clinical rules. The algorithms of other 
teams were almost all DL-based methods, and they could achieve excellent performance 
on the training set, but they could not maintain such good results on the test set. The rea-
son might be that these teams over-optimized the accuracy of their algorithm on the train-
ing set, leading to overfitting, which affected the algorithm results on hidden test set. Both 
our method and the published champion team's results outperformed DL-based methods, 
indicating that the fusion of these two (ES-based and DL-based) methods had the potential 
to reform the existing methods based only on ES or DL. 

To evaluate the computational complexity of our method, we computed and com-
pared the operating time of our method and the CPSC2020 top five teams on the hidden 
test set. In addition, we also compared the running time with some published works in 
parallel. Three morphological features and seven statistical features were directly ex-
tracted, normalized and fed into CFNN classifier for PVC recognition, which could pro-
cess 20-s segment within 2.1 s on a Samsung Galaxy J1 motherboard (a quad-core Cortex-
A7 CPU clocked at up to 1.2 GHz with 1GB RAM, OS Android 6.0) [15]. Khalaf et al. [37] 
proposed an SVM-based method on MATLAB R2010a on Intel® Core™ i5 3.2 GHz pro-
cessor and 8 GB RAM, and it consumed 54.8 ms for each beat classification. Arrais Junior 
et al. [38] reported an adaptive threshold and redundant discrete wavelet transform fusion 
method, which can process 30-minute signals using only 61.2 s on the Matlab 2014a plat-
form. These results showed that 1) the superposition of deep learning and time-frequency 
conversion processes will increase the complexity of the algorithm; 2) complex deep learn-
ing frameworks are indeed more time-consuming than simple CNN; 3) the DL-based fea-
ture extraction + ES-based post-processing analysis generally take less time. The compar-
ison results further verified the advantage of the fusion of these two (ES-based and DL-
based) methods. 

The employed DL-based method (LSTM-AE module) was used to extract features 
from ECG heartbeats for K-means clustering, and the PVC identification was based on a 
combination of multiple rules, including template matching and rhythm characteristics. 
The features used for classification are extracted according to the R-peak-relevant clinical 
experience: the Covr, ArDiff and EnDiff are used to map the morphological and frequency 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 March 2022                   doi:10.20944/preprints202203.0054.v1

https://doi.org/10.20944/preprints202203.0054.v1


 13 of 16 
 

domain difference between PVC and Non_PVC, and the rhythmic rules are used to map 
the variation of RR intervals between PVC and Non_PVC. All these features are extracted 
only based on R peaks instead of those complex features detected from precise fiducial 
points (Q wave, S wave, etc.) and professional knowledge, which can not only retain the 
interpretability of the proposed algorithm, but also improve the anti-noise ability of the 
algorithm. 

Although the proposed method is an important contribution to unsupervised PVC 
identification, there is still room for improvement. A limitation of the proposed approach 
is that the performance is affected by the detection accuracy of QRS complex, more accu-
rate QRS detection algorithm should be designed for precise ECG classification. Another 
limitation is that this method is trained and tested only on windows platform, further 
work is needed to embed the algorithm to the mobile terminal. In addition, only one chan-
nel information is considered in this paper, more data of other leads should be considered 
for the accuracy improvement of PVC recognition, or even more kinds of heartbeats clas-
sification. 

6. Conclusions 
In summary, an unsupervised adaptive PVC recognition algorithm is proposed for 

single-lead ECG based on a novel expert system and deep learning combination strategy. 
The personalized heartbeat templates are firstly clustered by K-means using LSTM-AE 
extracted features and determined by rule-based methods. Then, each heartbeat is classi-
fied into PVC or Non_PVC by a series of rules. The performance of the proposed algo-
rithm is tested on the clinical databases (MIT-BIH database and INCART database) and 
long-term wearable databases (CPSC2020 training set and hidden test set). The compari-
son with the existing PVC algorithms shows that the proposed method embraces the ad-
vantages of deep learning and rules, and achieves high accuracy, robustness, and inter-
pretability. 
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Appendix 

Table A1. Comparison of PVC recognition between the proposed method and existing methods on 
MIT-BIH-AR database and INCART database. 

Record Se (%) P+ (%) ACC (%) Record Se (%) P+ (%) ACC (%) 
100 100.00  100.00  100.00  202 94.74  81.82  99.77  
101 — — 100.00 1 203 73.76  91.06  95.00  
103 — — 100.00 1 205 92.96  100.00  99.81  
105 90.24  68.52  99.18  207 65.07  61.54  91.50  
106 79.81  100.00  94.82  208 92.42  100.00  97.08  
108 88.24  65.22  99.43  209 100.00  100.00  100.00  
109 76.32  100.00  99.64  210 75.77  96.71  98.03  
111 100.00  4.35  98.96  212 — —  100.00 1 
112 — — 100.00 1 213 98.18  99.08  99.79  
113 — — 100.00 1 214 60.78  100.00  95.57  
114 95.35  100.00  99.89  215 91.46  100.00  99.58  
115 — —  100.00 1 219 79.69  100.00  99.40  
116 91.67  100.00  99.62  220 — — 100.00 1 
117 — —  100.00a 221 97.22  100.00  99.55  
118 93.75  40.54  98.99  222 — 0.00  88.99 2 
119 99.55  100.00  99.90  223 63.21  100.00  93.28  
121 100.00  100.00  100.00  228 98.62  100.00  99.76  
122 — —  100.00a  230 100.00  100.00  100.00  
123 100.00  100.00  100.00  231 100.00  100.00  100.00  
124 78.72  100.00  99.38  232 0.00  —  99.89 2 
200 94.97  99.74  98.34  233 94.10  99.74  98.34  
201 99.49  89.95  98.83  234 100.00  100.00  100.00  

1 This single record excludes PVC beats, and there is no false detection of PVC beats. Therefore, the TP, FN, and FP of this record are 
all 0. 
2 This single record excludes PVC beats but false detects Non_PVC beats as PVC beats. Therefore, TP and FN of this record are 0, but 
TP is not 0. 

Table A2. Comparison of PVC recognition between the proposed method and existing methods on 
MIT-BIH-AR database and INCART database. 

ID Se (%) P+ (%) ACC (%) ID Se (%) P+ (%) ACC (%) ID Se (%) P+ (%) ACC (%) 
I01 100.00 86.00 97.97 I26 25.00  50.00  99.73  I51 97.63  100.00  99.32  
I02 87.34 94.34 98.47 I27 100.00  100.00  100.00  I52 100.00  100.00  100.00  
I03 92.00 100.00 99.59 I28 75.00  33.33  99.59  I53 96.94  100.00  98.50  
I04 22.31 93.10 96.01 I29 68.33  99.63  90.45  I54 68.18  93.75  99.66  
I05 83.40 99.52 97.62 I30 80.13  99.83  93.86  I55 94.12  100.00  99.95  
I06 100.00 81.82 99.92 I31 70.99  99.28  87.44  I56 100.00  100.00  100.00  
I07 100.00 5.88 99.41 I32 84.21  97.96  99.38  I57 100.00  48.84  99.23  
I08 86.61 99.02 97.65 I33 100.00  16.67  99.73  I58 100.00  100.00  100.00  
I09 73.17 83.33 99.43 I34 — 0.00  99.03  I59 64.20  96.30  98.56  
I10 83.13 100.00 99.62 I35 77.46  100.00  97.18  I60 — 0.00  98.87 2 
I11 100.00 50.00 99.81 I36 86.89  100.00  98.49  I61 — — 100.00 1 
I12 33.33 14.29 99.43 I37 99.56  100.00  99.92  I62 32.45  100.00  76.21  
I13 100.00 100.00 100.00 I38 86.61  100.00  97.29  I63 58.70  100.00  97.13  
I14 100.00 100.00 100.00 I39 94.25  100.00  98.99  I64 69.57  100.00  99.63  
I15 33.33 50.00 99.89 I40 92.39  92.39  99.47  I65 93.46  100.00  99.06  
I16 100.00 50.00 99.87 I41 100.00  33.33  99.88  I66 97.50  100.00  99.79  
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I17 92.59 100.00 99.88 I42 99.29  99.87  99.58  I67 97.93  100.00  99.63  
I18 91.80 99.70 98.98 I43 97.86  99.91  98.87  I68 95.65  99.35  99.70  
I19 84.59 100.00 93.65 I44 100.00  100.00  100.00  I69 99.40  98.81  99.86  
I20 75.45 100.00 98.98 I45 100.00  100.00  100.00  I70 — 0.00  92.50 2  
I21 87.50 77.78 99.86 I46 98.34  99.76  99.70  I71 — 0.00  86.22 2  
I22 69.73 99.23 98.18 I47 98.92  96.84  99.80  I72 91.19  33.85  68.17  
I23 61.54 100.00 99.77 I48 98.72  100.00  99.87  I73 94.29  100.00  99.80  
I24 16.67 50.00 99.77 I49 100.00  96.43  99.95  I74 98.18  100.00  99.79  
I25 60.00 37.50 99.59 I50 50.00  50.00 99.87  I75 99.02  100.00  99.71  

1 This single record excludes PVC beats, and there is no false detection of PVC beats. Therefore, the TP, FN, and FP of this record are 
all 0. 
2 This single record excludes PVC beats but false detects Non_PVC beats as PVC beats. Therefore, TP and FN of this record are 0, but 
TP is not 0. 
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