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Abstract— Solving Linear equations with large number of variable contains many computations to 
be performed either iteratively or recursively. Thus it consumes more time when implemented in a 
sequential manner. There are many ways to solve the linear equations such as Gaussian elimination, 
Cholesky factorization, LU factorization, QR factorization. But even these methods when 
implemented on a sequential platform yield slower results as compared to a parallel platform where 
the time consumption is reduced considerably due to concurrent execution of instructions. The above 
mentioned linear equation solving methods can be implemented on the parallel platform using the 
direct approaches such as pipelining or 1D and 2D Partitioning approach. Vedic mathematics is a 
very ancient approach for solving mathematical problems. These Vedic mathematical approaches are 
well known for quicker and faster computation of mathematical problems. Vedic Mathematics 
provides a very different outlook towards the approach of solving linear Equation on parallel 
platform. It could be considered as a better approach for reducing space consumption and minimizing 
the number of algebraic operations involved in solving linear equation. In future Vedic Mathematics 
might serve as a viable solution for solving linear equation on parallel platform.   
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1. INTRODUCTION   

Mathematics is the mother of all sciences as it holds the solution to all the problems that are faced 
by the human race. But as the technology advances the complexity of the problems also increases 
and it is desirable that a faster and more accurate solution is obtained. Linear Equations form an 
integral part of the problem solving techniques [1],[2],[3],[4],[5] provided by mathematics which 
helps predict the unknown variables. But as the size of the problem accents the time consumed to 
compute the problems also increases. The uniprocessor system consumes a lot of time for computing 
the solution to linear equations with a large variable size increasing the energy consumption. Parallel 
computation of the problem on a multicore system however should faster results, as parallel 
computing is considered popular way of achieving high energy efficiency. In multi-core systems 
energy efficiency is a question of both the time and space, sharing of resources, and is highly 
dependent on the application characteristics such as its level of parallelism. Thus efficiency can be 
achieved by parallel applications mapping the program on many cores and the clock frequency can 
be lowered. But this not the case when implemented on actual parallel machine as there are many 
factors that hamper the efficiency of the system by causing overheads [6] such as-  

• Inter-process Interaction  
• Idling  
• Excess Computation  
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There are many ways to tackle this problem but main propaganda of this work is to survey and form 
a comparative analysis of all the existing techniques to solve linear equation on parallel platform [7].   
It can be also noted during the further analysis of the previous works that after certain level the 
ordinary mathematics laws fail to give the desired faster and accurate results. Hence the need arises 
for the use of Vedic mathematical principles that satisfy void left by conventional mathematics. Vedic 
mathematics is acclaimed for yielding accurate results in minimum time [8], [9], [10]. These 
mathematical principles involve the use of simple arithmetic operations to compute a very large 
problem in most efficient manner.  
 
2.  MATHEMATICAL METHODS FOR SOLVING LINEAR EQUATIONS 
 
2.1. Survey of methods for solving linear equations: will enlist all the methods that are available for 
solving linear equations irrespective of the platform [1],[2],[3],[4],[5] . 

 
There are many methods available in conventional mathematics for solving linear equations. These 
methods mainly involve the use of matrices for computational purpose [11],[12],[13],[14],[15],[16]. 
The basic considerations for solving linear equations enlisted under this approach follow the 
following course of action-  

 
Step 1: The system of linear equations    
  

a0,0x0 + a0,1x1 +  … + a0,n-1xn-1  = b0, 
 
a1,0x0 + a1,1x1 +  … + a1,n-1xn-1   = b1, 
 :   :   : : 
 :   :   : : 
an-1,0x0 + an,1x1 +  … + an-1,n-1xn-1  = bn-1 

 
This can be represented in the form of Ax = B.  
Where A is matrix containing the values (a i, j, x j), x is the variable vector  

B is the vector containing independent terms.  
 
Step 2: Convert the matrices in the upper triangular or lower triangular form or both as per the 

requirement of the method.  
 
Step 3: The back substitution- The previously triangulated matrices are solved in reverse way to 

obtain the values of the variables.  
 

The most appropriate methods for programming are noted below, 

 

i. Simple Gaussian Method :  
This method converts the Ax = B in the upper triangular matrix and solves the  
Ux = y and the back substitution to get the values of x.  

ii. Gaussian elimination with Partial Pivoting Method :  
The above Simple Gaussian method fails if the A [k, k] value is close or equal to zero. 
This flaw of the previous method is easily removed the use of partial pivoting in which 
a column is selected as a pivot and accordingly the adjustments are done to the matrices.  
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iii. LU Decomposition :  
Similar to the Gaussian elimination is the LU factorization technique [17], [18], [19], 
[20] that considers that  
A = L * U where L and U are the Lower and Upper Triangular matrices respectively.   

 
iv. Cholesky Factorization :  

This method assumes that matrix A is real, symmetric and positive and is in the  
A = L LT, here L is a lower triangular matrix with positive diagonal elements.  

v. QR Factorization : 
Here it can be assumed that A is real m x n matrix which can be decomposed as      
A = QR,  

Where Q is the m x m real orthogonal matrix  
            R is a real upper triangular matrix    

The factorization here is performed using the Householders matrices of the form-  

H = I - τυυT ,  

Where τ is the scaling factor and υ is the column reflector.  
  

2. 2. Survey of methods for parallel platform:  will mention the methods in which the equations can 
be solved on parallel platform [21], [22], [23]. 

 
The solving of linear algebraic equations can be broadly categorized in two main divisions viz.  

i. Iterative method: These methods are quoted to produce approximate results by repeatedly 
computing the same steps or iterations.  

ii. Direct method: This method provides the exact solution based on finite number of arithmetic 
computations.  

 
Based on the analysis of the above methods, by it can be roughly predicted that ‘Direct method are 
best suited for Full or Dense matrices and iterative methods are best suited for very large or sparse 
matrices’.  
  
2.2.1 1D and 2D partitioning Approach  

i. 1D Partitioning Approach : This approach divides the data that is required for computation. 
This data is considered as column or a row-wise vector of the matrix. For example, consider 
the matrix A that is given below 

 

 
  

Here P0 is a row wise 1D partition whereas P1 is the column wise 1D partition of the matrix 
A.  

ii. 2D Partitioning Approach – in the 2D partitioning approach the complete matrix is divide in 
an pxg matrix where the p,q  are less than n,m.   
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          P3  

A    = 

  
 

Here the P3 partition can be considered as a 2D partition. Claims that the 2D partitioning is 
faster and more efficient than 1D partitioning approach.  
The efficiency of the algorithms also differs based on the granularity of the decomposition of 
the problem.  These results vary from problem to problem. This can be better analysed from 
the next section which gives the analysis of the complexities of the various linear equation 
solving methods based on the 1D and 2D partitioning approach.      

 
2.2.2 Pipelining model - In this approach the processes that not having any type of dependencies 

(such as data dependence or control dependence) are divided in finite number of threads 
which each thread [21] then behaves as a producer and a consumer. The threads then 
consumes the input data that is provided to the model and produces the required or desired 
output data for the given process [27], [28]. This is the most direct approach for parallel 
implementation of algorithms [22], [23], [24] but there are various problems that need to be 
dealt with while utilizing this approach.   
  

2.3. Analysis of performance based on Partitioning- the effect of matrix dimensions on the 
complexities of the Linear Equation solving methods.  

The performance of the parallelizing algorithms [25], [26] are highly affected by the partitioning 
that is done for the problem to be solved. The finer the granularity of the problem the faster are 
the results is the general assumption, but when actual computation were performed on a multi 
core system the results seemed to vary.   
Consider the Simple Gaussian Elimination, the complexity of the problem when approached 
sequentially is O(n3). The same problem when solved in a parallel way using the 1D partitioning 
algorithm yields the complexity of ϴ(n3log n)  which is asymptotically higher than the sequential 
complexity of the problem thereby proving that the 1D partitioning is slower than sequential 
approach. The 2D partitioning with less than n2 elements gives the complexity of ϴ(n3/p) where 
p is the number of processes, implies that 2D partitioning of data will give better results for the 
parallel implementation.  

3. THE VEDIC MATHEMATICS APPROACHS  
 

i. The analysis of Paravartya Yojayet method for solving linear equations 
ii. The analysis of Sunyam Anyat method 
iii. The analysis of Sankalana Vyavakalanabhyam method 
iv. The analysis of  Sopantyadvayamantyam method 

 
 

Vedic mathematics is an ancient most mathematical catalogue of various approaches [8], [9], 
[10] to solve any numerical computation. Vedic mathematics is said to be descended from the 
Atharva Veda’s Upaveda (sub section) named Sthapathyaveda that contains all the records of 
the engineering technology and computational strategies. The edge that Vedic mathematics has 
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over the conventional mathematical approaches is that these methods are way simpler, faster and 
accurate.    
Vedic mathematics is nothing but a compilation of simpler arithmetic calculations to perform 
large and cumbersome problems in a very small amount of time. The linear equation solving in 
Vedic mathematics can be approached based on the various sutras that are mention in Vedas. 
Some of these approaches are enlisted as follows 

  

  3.1 The Paravartya Yojayet [8] method for solving linear equations  
The normal system of linear equations of the form   

a1x + b1y = c1, a2x + b2y = c2,   

can be solved by using the cross multiplication rule named as Paravartya Yojayet.  

This rule is divided in two main steps  

i. Step 1 : Finding the denominator that is common for all the terms. This is obtained by the 
difference of the cross multiplications of the coefficient terms.  

ii. Step 2 : Finding the individual numerators for each variable individually. The value of x can 
be obtained by forward cross multiplication of y coefficients to the independent terms.    

3.2 The Sunyam Anyat [8] method:  

This method is mainly used when there are very large values of the coefficient that seems to be 
difficult to compute. But using the Sunyam Anyat we can easily solve even these difficult 
problems. This sutra basically means that if one pair of coefficients is in a ration then the other 
pair equates to zero.  

3.3 The Sankalana Vyavakalanabhyam [8] method 
This the typical method that is used in the conventional mathematics for the computation of linear 
equation by the addition or subtraction of the two equations to obtain the values of the unknown 
variables.  

3.4 The  Sopantyadvayamantyam [8] method  
This method is used to solve equations that are in the format of   

  
 
and the factors (A, B, C and D) are in Arithmetic Progression.  
This method gives the values of the variables just by the summation of the last and twice of the 
penultimate value of the progression.   

  
These approaches are specifically used to simplify the calculation of the linear equations for normal 
person. But not all these methods can be used for parallel computation of linear equation.  
The Paravartya Yojayet is the best fit for dealing with linear equations on a parallel platform. Based 
on the article [9] by DKR Babajee this principle is very lucidly explained for multiple variable values. 
The Paravartya Yojayet that was generalized in [9] is as follows  
For two linear equations say  
 

a1,1x1 + a1,2x2 = b1   ………..  (a)  

a2,1x1 + a2,2x2 = b2   ……….          (b)  
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Step 1 :  Separate the coefficients of x1 and x2  
             x1   x2   Independent terms  
                a1,1         a1,2           b1  

                a2,1          a2,2      b2  

Step 2 : Find the numerator for x1  
             x1  x2   Independent terms  
                 a1,1         a1,2  b1  

                 a2,1         a2,2         b2  

              Nx1 = a1,2 b2 - b1 a2,2  

 
Step 3 : Find the common denominator D  
             x1    x2   Independent terms  
                 a1,1          a1,2     b1  

                 a2,1          a2,2     b2  

D = a1,2 a2,1 - a1,1 a2,2  

 Step 4: The numerator for x2  
             x1              x2   Independent terms  

  a1,1             a1,2                b1  

  a2,1             a2,2                b2  

Nx2 = a2,1 b1 – b2 a1,1  

  
And finally x1 and x2 will be  
  

         x1 =   _____   x2 =  

 

Similarly for the equation that has n number of variables that are greater than 3 the two equations at 
a time are considered and their variables are equated.  
This performed for the rest of the equations also. Once this is done the Paravartya Yojayet is applied 
n/2 times thereby yielding the values of the unknowns. Here it can be noted that there is no 
dependency in the process of equating the variables so that can be done concurrently on a multicore 
system thereby reducing the time consumed also the values to be found Paravartya Yojayet are also 
independent so they can be concurrently.  
The two main stages of equating the variables and the application of Paravartya Yojayet are having 
dependence and so the parallel implementation needs to be done in two stages.  

4. IMPLIMENTATION DETAILS  

Linear equation solving in Vedic mathematics has an alternative faster method for computation. 
This method is called the “Paravartya Yojan”. In this method the linear equations are solved by 
converting the complete equations in terms of one variable. This has been grasped in greater details 
by using the following generalization 
As the method says that if the value of n is odd the procedure [9] of Paravartya Yojan needs to be 
applied (n-1)/2 times and if the number of equations is even i.e. if the value of n is even the 
procedure needs to be applied n/2 times.  
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5. RESULTS AND DISCUSSION 

This Paravartya Yojan is applied to the normal sequential format it has the time complexity of 
O(n2) which is similar to the previous methods such as the Cholesky, LU and QR Factorization. 
But the space complexity here is less than that of these methods as there is no use of matrices done 
here. Also the cache consumption is less. There is least fetching of data from the memory so, a 
considerable reduction in the latency caused due to the memory fetch operations.    

From the sequential implementation it has been seen that the Paravartya Yojan needs to be applied 
n/2 times. But when the same is applied to a system of parallel threads consider only two here 
there is a considerable decrease in the number of time the rule needs to be applied there by reducing 
the complexity. Also there is need to wait for the constants that are derived from the previous 
equations. So there is a need to apply “critical” clause of OpenMP for synchronization. Using the 
critical clause will help get more accurate results for the same.  

When the system of equations is divided among the threads there is a round robin distribution of 
the equations. There is no complexity or the need to keep track as there is no constraint on what 
equations to be used and should they be consecutive. As in case of the previous methods the 
sequence was of utmost importance because of the matrices being used. The computations 
required for the equations to be rearranged in terms of a variable are the most complex part and if 
done in sequential manner it consumes more time. This is where the need to parallelize the steps 
the dependency lies only when there is a need to insert the newly calculated coefficients to the 
system that not be done in the local thread, thus there is a need to follow up this value to the global 
thread.  

Due to the reduction in the space consumption even in the parallel environment the delay caused 
by latency is very negligible for the memory fetch. The local values required for each thread is 
also decreased thereby reducing the space complexity of the whole system.   

5. CONCLUSION  

This paper enlightens about parallel computing or the use of multiprocessor system helps enhance 
the efficiency to solve any kind of problem. Given that there is need for efficiently design the 
algorithms and that the overhead that occurs at the start-up is duly compensated for by the amount 
of calculations that is needed to be done in order to neglect the overhead.   
The Vedic mathematical calculations involve even lesser computations than the conventional LU, 
QR, Cholesky methods the method has been tested for the parallel implementation. The various 
Vedic mathematical approaches opens the avenues to have newer look towards solving linear 
equations. In future the use of Vedic Mathematics might serve a better purpose with respect to 
minimizing the cost required as it involves minimal calculations and with more number of 
variables only a few algebraic calculation might proof sufficient to solve linear equations.  
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