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Abstract

Superabundant and colossally abundant numbers are generated using
the sum of divisors function. If the Riemann hypothesis is false, there will
necessarily exist a counterexample to an inequality involving the maxi-
mal order of the sum of divisors function which is a colossally abundant
number. This paper introduces a generalization of the sum of divisors
function having a recursive definition. The multiplicative property of the
sum of divisors function is preserved so that infinitely many variants of su-
perabundant and colossally abundant numbers can be generated. Besides
the usual method of generating superabundant and colossally abundant
numbers, we introduce a new method involving both the sum of divisors
function and Euler’s totient function. This method is applicable to the
variant superabundant and colossally abundant numbers. There is an
abundance of material for new research.

1 Introduction

The sum of divisors function is commonly denoted by o(n). An arith-
metical function f is called multiplicative if f is not identically zero and
if f(mn) = f(m)f(n) whenever (m,n) = 1. The Dirichlet product of
arithmetical functions f and g has the form 3, f(d)g(%). If f and
g are multiplicative, so is their Dirichlet product f - g. See Theorem
2.14 of Apostol’s [1] book. The sum of divisors function is multiplica-
tive. See section 2.13 of Apostol’s book. The Dirichlet product of o(n)
with the constant function g(n) = 1 gives another multiplicative function.

Similarly, the Dirichet product of this multiplicative function with the
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constant function gives yet another multiplicative function. The multi-
plicative property of these functions is essential for generating variants of
superabundant numbers.

The connection between the Riemann hypothesis and the sum of di-
visors function dates back to Ramanujan’s [2] work on highly composite
numbers. In 1913, Gronwall [3] determined the maximal order of the
sum of divisors function. More recently Alaoglu and Erd8s [4] improved
Ramanujan’s work and proved theorems applicable to superabundant and
colossally abundant numbers. In 1984, Robin [5] gave a much more refined
version of the asymptotic upper bound of the sum of divisors function than
Gronwall and proved a statement equivalent to the Riemann hypothesis.
Since then, many statements involving the maximal order of the sum of
divisors function have been proved to be equivalent to the Riemann hy-
pothesis.

One purpose of this work is to show that there are infinitely many
variants of superabundant numbers and thus that there are likely to be
infinitely many statements equivalent to the Riemann hypothesis. No vari-
ant superabundant number is proven to lead to a statement equivalent to
the Riemann hypothesis - empirical evidence is just given. Another pur-
pose is to investigate the alternate method for generating superabundant
and colossally abundant numbers.

2 Results

Let rn,1 = o(n), Tn2 = de Td,1, Tn,3 = Zd‘n Td,2, etc.

Theorem 1 Ifn is squarefree, [, (p+1) = rn,1. More generally, if p™

diwides n and p™*! does not divide n, then p™ +p™ L +p™m 2 4. . +1

.. . m+1_ .
divides rn,1, that is, £ P L divides Tn,1-

Proof 1 See Lemma 2.1 of Carella’s [6] article.

¢(n) denotes Euler’s totient function. The alternate representation (o(n) =
IL. pnj%) is of importance due to the similar representation of ¢(n).

o(n)=n len(l — pfl. See Theorem 2.4 of Apostol’s book.

Theorem 2 Ifn is squarefree, len(p+2) = rpn,2. More generally, if p™
divides n and p™ does not divide n, then p™ + 2p™ 1 +3p™ 2 4+ ..+

P21 o)
(m +1) divides ry 2, that is, —=————

divides 1 2.
Proof 2 Ifp™||n, then 14(p+1)+(p*+p+1)+.. A+ (p"+p™ ' +...4+1) =
p™42p" 4 3p™ 2 .+ (m+1) divides 7y2. This can easily be verified
P2
g —(m+2)
to equal ”1#.

Theorem 3 If n is squarefree, ]_[pln(p+3) = rn,3. More generally, if p™
divides n and p™ ! does not divide n, then p™ + 3p™ 1 +6p" "2 4+ ... +
(m+1)(m + 2)/2 divides Tn,3. An expression similar to the above can be

derived using the binomial theorem.
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Proof 3 Ifp||n, then 1+ (p+2)+ (p° +2p+3) + (p° +2p* +3p+4) +...+
(P + 20" 3" 2 L+ (m 1) = p 4 2Byt 36D me2
ot % divides Ty, 3.

2.1 Superabundant Numbers

A natural number is called a superabundant number if o(n)/n > o(k)/k
for 1 <k <n—1. The first few superabundant numbers are 2, 4, 6, 12,
24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040,....
Gronwall’s theorem is

o(n) A

Theorem 4 lim,_, o sup TToalogn — €

Proof 4 See Theorem 323 in Hardy and Wright’s [7] book.
X denotes Euler’s constant. A plot of —=1 _ for n =2, 4, 6, 12, 24,

nloglogn
36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080,
15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400,
665280, 720720, and 1441440 (the superabundant numbers less than 2

million) is

r(n, 1 )énflogilaginy) for n=2 4 6,12 24 36 48 60,120,180 240,360 720 840 ...

Figure 1: Plot of nl(:g"il';gn values

e is approximately equal to 1.7811. A quadratic least-squares fit of
rn,1/n versus loglogn for these n values is
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rin, 13n versus log(loging) for n=2 4 5,12 24 36 48 B0 120 180 240 360,720, .

0 05 1 15 2 25

Figure 2: Quadratic least-squares fit of r,,_ 1 /n versus loglogn

p1 = 0.2386 with a 95% confidence interval of (0.21, 0.2672), p2 =
0.4811 with a 95% confidence interval of (0.3966, 0.5657), ps = 1.62 with a
95% confidence interval of (1.556, 1.683), SSE=0.07629, R-squared=0.9966,
and RMSE=0.0522. SSE denotes sum-squared error and RMSE denotes
root-mean-squared error.

Superabundant numbers consist of a product of all the small primes
up to some bound with exponents which are non-increasing as the prime
increases. Alaoglu and Erdds’ theorems on superabundant numbers (given
for comparison purposes) are

Theorem 5 Ifn =22 ...p" then ko > ks > ... > k,.

Theorem 6 Let ¢ < r, and set § = [kqlogq/logr]. Then k. has one of
the three values: 8 —1, B+ 1, (.

Theorem 7 If p is the largest prime factor of n, then k, = 1, except
when n =4, 36.

In the remainder of the theorems, p always denotes the largest prime
factor of n.

Theorem 8 If q is either the greatest prime of exponent k or the least
prime of exponent k— 1, and if ¢" =% > logp, then ¢" = (plogp/logq)[1 +
O(logp/q' " log q)].

If Riemann’s hypothesis is true any 6 > 1/2 can be used.
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Theorem 9 If kg = k and ¢ < (logp)®, where a is a constant, then

) K+1_ o . K2 _
(i) log L=y > iat[1 + O((loglog p)®/ log plog q)], (ii) log Tem=y <

SPEL[1 4 O((loglog p)®/ log plog )]

Let K,+1 be the integral part and 6, the fractional part of log[(¢' ¢ —

1)/(g° — 1)]/log q, where € = log(1 + 1/p) log p.

Theorem 10 (i) If e, < 0 < 1 —¢€q, then kq = K,. (i) If 04 < €q, then
kg =Kq orky=Kq—1. (5i) If 1 —eq < 04, then kg = Kq or Kg+ 1.

Theorem 11 p ~ logn.

Theorem 12 The quotient of two consecutive superabundant numbers
tends to 1.

In the proof of Theorem 12 it was shown that the ratio of two consec-
utive superabundants n and n’ is less than 1 + c(loglogn)?/logn. The
order of (logp)® is used.

Theorem 13 The number of superabundant numbers less than x exceeds
clog z loglog z/(log log log x)?.

Similar superabundant numbers can be defined for ., 2, rn,3, 7n.4, €tc.
and usually occur at the same n values. For example, the superabundant
numbers for r, 2 satisfy r,,2/n > rg2/k for 1 < k < n — 1. Like the
usual superabundant numbers, these superabundant numbers consist of a
product of all the small primes up to some bound with exponents which
are non-increasing as the prime increases. For nn, 2, 7n,3, Tn 4,...,7n,13 and
n < 2000000, there are no exceptions to Theorem 5.

For rp 2, 7,3, and n < 2000000 there are no exceptions to Theorem
6. For 75,4 and n < 2000000 exceptions occur at n=96 and 480. In these
cases, k, has the value f — 2 for ¢ = 2 and r = 3. There are more such
exceptions for ry 5, Tn6, 7, . . ., Tn,13 and higher order 7, ; values. Typical
values are n = 96, 480, 960, 1152, 5760, 34560, 40320, 241920, 483840,
and 1209600. For 7,9 and 75,11, there are exceptions at n = 1088640.
In this case, k, has the value § — 2 for ¢ = 3 and » = 5. For 7,,11 and
n < 2000000, exceptions occur at n = 11520 and 80640. In these cases,
kr has the value 8 — 3 for ¢ = 2 and r = 3. For higher order 7, ; values,
typical n values where such exceptions occur are 2304, 11520, 80640, and
967680.

There are also exceptions to Theorem 7 when ¢ = 2 and » = 3. For
rn,1, €xceptions occur at 4 and 36 (the exceptions for ordinary super-
abundant numbers). For r, 2, exceptions occur at 4, 36, and 72. For 7, 3,
exceptions occur at 4, 8, 36, and 72. For r, 4, exceptions occur at 4, 8,
36, 72, and 144. Usually there is one more new exception for the next
higher order of variant superabundant numbers. For n,13, the exceptions
are 4, 8, 16, 36, 72, 144, 288, 432, 576, 864, 1152, 1728, 2304, 86400, and
172800.

Empirically, it is not practical to determine if Theorems 8, 9, and 10
are applicable to variant superabundant numbers.

A plot of p versus logn for n = 2, 4, 6, 12, 24,...,1441440 (the ordinary
superabundant numbers) is
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pversus login), n=2 4 61224 . 1441440

Figure 3: p versus logn for ordinary superabundant numbers

This is pertinent to Theorem 11. Similar plots occur for the variant
superabundant numbers. For n < 2000000, the largest p values for ry 1,
Tn,2, Tn,3,--s"n,13 are 13, 13,11, 11,11, 7, 7,7, 7, 7,7, 7, and 7 respectively.

For rn,1, Tn,2, Tn,3,---,7n,13 and n < 2000000, a superabundant number
(ordinary or variant) is at most twice as large as the previous superabun-
dant number. This is pertinent to Theorem 12.

The number of superabundant numbers less than 2000000 for rj, o,
Tn,3, Tn,dy--Tn,13 18 38, 39, 44, 43, 41, 41, 42, 48, 48, 49, 51, and 53
respectively. The number of ordinary superabundant numbers less than
2000000 is 31, so the counts for the new superabundant numbers are
consistent with Theorem 13.

A plot of «/nl:g"iiign for n = 2, 4, 6, 12, 24, 36, 48, 60, 72, 120, 180,
240, 360, 720, 1440, 1680, 2160, 2520, 5040, 10080, 15120, 20160, 25200,
30240, 50400, 55440, 110880, 166320, 221760, 277200, 332640, 554400,
665280, 831600, 1108800, 1330560, 1441440, and 1663200 is
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sqrt{r(n 20nAagllog(n))) for n=2,45,12 24 36 48 B0 72,120,180 240 380 ..

5 .

2t . .

1F .

Tn,2
nloglogn

Figure 4: Square root of
In this variant of Gronwall’s formula, the supremum limit is unknown
but is slightly less than e*. For a cubic least-squares fit of 7,,2/n versus
log log n for these n values, SSE=2.172, R-squared=0.9977, and RMSE=0.2527.

A plot of 13/nl(:;7iggn forn=2,4,6, 8, 12, 24, 36, 48, 60, 72, 120, 180,
240, 360, 720, 1440, 2160, 2520, 4320, 5040, 10080, 15120, 20160, 30240,
50400, 55440, 60480, 100800, 110880, 151200, 166320, 221760, 302400,

332640, 554400, 665280, 1108800, 1330560, and 1663200 is
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cube root(r(n, 3)ndogiloain))) for n=2 4 68,12 24 36 48 60,72 120,180 240, .

sF. .

2t . .

1k -

Tn,3
nloglogn

Figure 5: Cube root of

In this variant of Gronwall’s formula, the supremum limit is smaller
than above. For a 4th power least-squares fit of 7, 3/n versus loglog n for
these n values, SSE=35.02, R-squared=0.9979, and RMSE=1.015.

A cubic least-squares fit of the smallest positive i/ T’Llcjgrliiégrz values for
n < 2000000 and ¢ =1, 2, 3,...,16 is
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smallest positive root(r(n,iynfoglogini)), n=2000000, i=1,23....,16

Figure 6: Cubic least-squares fit of smallest positive values of roots of ratios

RMSE=0.0002309, R-squared=0.9997, and RMSE=0.004386. The val-
ues are 1.6943, 1.5998, 1.5135, 1.4339, 1.3809, 1.3190, 1.2683, 1.2181,
1.1736, 1.1395, 1.1199, 1.0902, 1.0623, 1.0392, 1.0278, and 1.0018 re-
spectively. For small sample sizes, quadratic and cubic curves give good
approximations of some logarithmic functions. Eventually, higher order
curves will be required to approximate the values (which are expected to
approach zero).

2.2 FEuler’s Phi Function and the Sum of Divisors
Function

Hardy and Wright’s Theorem 328 is
Theorem 14 lim, ., inf Mnglog" =e
Their Theorem 329 is
Theorem 15 A < % < 1 for a positive constant A.

The alternate representations of ¢(n) and o(n) are used to prove the
above theorem. No counterpart of the alternate representation of 7y, 2

pTH2 o1 —(m+2
(L. p’lTl(H) has been found. In general, the relationship be-

tween ¢(n) and o(n) is used to prove Gronwall’s theorem.
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2.3 New Method for Generating Superabundant
Numbers

T”%f(n) values.

Superabundant numbers can also be defined for the largest
A plot of 20 g — 348, 16, 24, 32, 48, 72, 144, 288, 432,

n2loglogn
576, 720, 864, 1440, 2160, 2880, 3600, 4320, 7200, 8640, 10800, 14400,
15120, 20160, 21600, 30240, 43200, 60480, 75600, 100800, 120960, 151200,

302400, 604800, 907200, 1663200, and 1814400 is

i 2){niinindloglogin)) for n=3 4 5,16 24 32 48 72,144 266 432 576 ...

125 A

10F .

2F ", .

| 1 | 1 | 1
g 10 15 20 25 3a 34

Figure 7: Plot of _Tn2¢(n)

n2loglogn
In this variant of Gronwall’s formula, the supremum limit is unknown.

A quadratic least-squares fit of T"iif(n) versus log logn for these n values
is

10
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0.5 1 15 2 25

Figure 8: Quadratic least-squares fit of “2—‘2(”) versus loglogn

p1 = 0.2912 with a 95% confidence interval of (0.2573, 0.325), p2 =
0.2204 with a 95% confidence interval of (0.1131, 0.3276), ps = 1.201 with
a 95% confidence interval of (1.121, 1.281), SSE=0.08065, R-squared=0.9958,
and RMSE=0.048. Note the resemblance to the curve in Figure 2.

Superabundant numbers can also be defined for the largest M

values. A plot of;/M for n =5, 7, 8, 16, 32, 64, 128, 256, 288,
432, 576, 864, 1728, 3456, 5184, 6912, 10368, 20736, 31104, 41472, 43200,
86400, 129600, 172800, 259200, 518400, 777600, 1036800, 1296000, and
1555200 is

11
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sqrtrin Idin)dinndnindAoailogin))) for n=57 8,16 32 B4 128 256 285, . ..

D.B' ..ioo. -

rn,30(n)¢(n)

Figure 9: Square root of =5 TogTog n
For a cubic least-squares fit of r,, 3 /n versus log log n for these n values,
SSE=0.09052, R-squared=0.9935, and RMSE=0.05901.
Superabundant numbers can also be defined for the largest M

values. The smallest value of {/ %W forn =9, 11, 13, 16, 32,

64, 128, 256, 512, 1024, 1728, 3456, 5184 6912, 10368, 20736, 31104,
41472, 62208, 124416, 248832, 373248, 497664, 518400, 777600, 1036800,
and 1555200 is 0.5427.

Other superabundant numbers are similarly defined for 7, 5, Tn.6, T'n,7,
etc. The smallest of the above values for rn 2, Tn,3, Tn,4, ™n,5, Tn,6; T™n,7,
and 7,5 are 1.3734, 0.6888, 0.5427, 0.4862, 0.4561, 0.4350, and 0.4187
respectively.

2.4 Variants of Colossally Abundant Numbers

Colossally abundant numbers are those numbers n for which there is a
positive exponent € such that “1(22 > ,jffl for all k > 1. The first few
colossally abundant numbers are 2, 6, 12, 60, 120, 360, 2520, 5040, 55440,
720720, 1441440, 4324320, 21621600, 367567200, .... Colossally abundant
numbers are a subset of the superabundant numbers. In the above, the n
values start with a few odd values followed by powers of 2. Afterwards,
the n values are the product of powers of 2 and 3, the product of powers
of 2, 3, and 5, the product of powers of 2, 3, 5, and 7, etc. This is similar
to colossally abundant numbers. Unlike colossally abundant numbers, the
factorization of the n values does not result in a sequence of relatively large

12
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primes with an exponent of 1. For 7, 2, the odd numbers and powers of
2 are 3, 4, 8, and 16. For ry, 3, the odd numbers and powers of 2 are 5, 7,
8, 16, 32, 64, 128, 256. For ry 4, the odd numbers and powers of 2 are 9,
11, 13, 16, 32, 64, 128, 256, 512, and 1024. For r, 5, the odd numbers and
powers of 2 are 13, 17, 19, 23, 25, 27, 32, 64, 128, 256, 512, 1024, 2048,
4096, and 8192. For r, 6, the odd numbers and powers of 2 are 19, 23, 29,
31, 37, 49, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768.
For 7,7, the odd numbers and powers of 2 are 29, 31, 37, 41, 43, 47, 49,
81, 125, 128, 243, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
and 131072. Note that a power of 3 (243) is interspersed between 128 and
256. For 1, 8, the odd numbers and powers of 2 are 31, 37, 41, 43, 47, 53,
59, 61, 67, 121, 125, 243, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
65536, 131072, 262144, 524288, and 1048576. For ry 9, the odd numbers
and powers of 2 (up to 2 million) are 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 121, 169, 243, 289, 343, 512, 729, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576,.... Note that a power of
3 (729) is interspersed between 512 and 1024. For 10, the odd numbers
and powers of 2 (up to 2 million) are 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 169, 289, 343, 625, 729, 1024, 2048, 4096, 8192, 16384, 32768,
65536, 131072, 262144, 524288, 1048576,.... For 7, 11, the odd numbers
and powers of 2 (up to 2 million) are 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 169, 289, 361, 529, 625, 1331, 2048, 4096,
8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576,.... For 7, 12,
the odd numbers and powers of 2 (up to 2 million) are 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 289, 361, 529, 841,
1331, 2187, 2401, 3125, 4096, 6561, 8192, 16384, 32768, 65536, 131072,
262144, 524288, 1048576,.... Note that a power of 3 (6561) is interspersed
between 4096 and 8192. For r,, 13, the odd numbers and powers of 2 (up to
2 million) are 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 289, 361, 529, 841, 1331, 2197, 2401, 3125, 6561, 8192,
15625, 16384, 32768, 65536, 131072, 262144, 524288, 1048576,.... Note
that a power of 5 (15625) is interspersed between 8192 and 16384. For
T'n,14, the odd numbers and powers of 2 (up to 2 million) are 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 361, 529, 841, 961, 1331, 2197, 2401, 6561, 14641, 15625,
16384, 32768, 65536, 131072, 262144, 524288, 1048576,.... For ry 15, the
odd numbers and powers of 2 (up to 2 million) are 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 221. 223,
227, 529, 841, 961, 1331, 2197, 4913, 14641, 15625, 19683, 32768, 59049,
65536, 131072, 262144, 524288, 1048576,.... For 7, 16, the odd numbers
and powers of 2 (up to 2 million) are 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241,
251, 257, 529, 841, 961, 1369, 1681, 2197, 4913, 6859, 14641, 15625, 16807,
59049, 131072, 262144, 524288, 1048576,.... The odd numbers appear to
be prime powers. All the n values appear to satisfy Theorem 2 (with the
caveat of the 8 — 2 case).

A spectrum similar to the Riemann spectrum can be computed for
the odd numbers and the powers of 2 by using the function F<c(t) =
=Y pn<o 1;5(/’;) cos(tlog(p™)). See Chapter 30 of Mazur and Stein’s [8]

13
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book for graphs of the Riemann spectrum. A plot of the positive values of
this function for the odd numbers and powers of 2 corresponding to 7.4
and ¢t < 100 is

spectrum of rin 4) values, n=2000000, t<=100
18 T T T T T T T T T

06 A

0.4H A

0.2 .

L

1] 10 20 30 40 a0 G0 70 80 80 100

Figure 10: spectrum of odd numbers and powers of 2 corresponding to r, 4

All 27 of the variant colossally abundant numbers for 7, 4 are checked
(to determine if they are prime powers), so C is effectively 2 million. The
locations of the peaks for ¢ < 300 are
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2 3 4
13 14 15
20 21
25
31 32 33
41 42 43
48 49 50
59 60 61
66 67
76 7 78
83
88 89
94 95 96

104 105 106
111 112 113
122 123 124
130

134

139 140 141
150 151 152
157 158 159
167 168 169 170
174 175 176
185 186 187
192

196 197 198
202 203 204
213 214 215
220 221 222
231 232 233
248 249 250

259 260

266 277

276 277 278
283

294 295 296

The width of the peaks is usually three. The inverse function for the
Riemann spectrum is H<c(s) = 1+ >, cos(log(s)f;). The non-trivial
zeta function zeros are denoted by 0;. In the application of this function
here, the maxima of the spectrum are taken to be just the positive values.
A plot of the inverse function is
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inverse of spectrum of rin 4), n=2000000, versus log(t)
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Figure 11: inverse of spectrum of odd numbers and powers of 2 corresponding
to ry4

The inverse of the spectrum of the variant colossally abundant numbers
for rp, 2 is a constant 39. The locations of the peaks of the spectrum of the
variant colossally abundant numbers for 7, 3 and ¢t < 300 are 14, 76, 95,
186, 276, and 295. (Note that these locations are common to the locations
for rp,4.) The largest value of the inverse is 31.

The locations of the peaks of the spectrum of the variant colossally
abundant numbers for r,5 and ¢t < 300 are 2, 15, 21, 25, 43, 48, (60,
61), 88, 106, 111, 124, 134, 151, 157, 170, 185, 197, 202, (220, 221), 232,
248, (260, 261), 266, 283, and 295. (Except for the location 261, these
locations are common to the locations for 7, 4.) The largest value of the
inverse is 28.

The locations of the peaks of the spectrum of the variant colossally
abundant numbers for r,6 and ¢t < 300 are 2, 14, 21, 25, 30, 33, (48,
49), (60, 61), 65, 76, 88, 96, 107, (111,112), (123, 124), 134, 139, 151, 158
(169,170), 174, 185, 197, 202 (220, 221), (232, 233), 248, 260, 279, 283,
and 295. (Two of the locations are one less than a location for r, 4 and
two are one more than a location.) The largest value of the inverse is 27.

The locations of the peaks of the spectrum of the variant colossally
abundant numbers for 7,7 and ¢ < 300 are 25, 30, 33, 48, 61, 65, 76,
(88, 89), 96, 107, 111, 124, 134, 139, 170, 174, 185, 198, 202, 205, (220,
221), (232, 2233), (247, 248), (260, 261), 279, and 283. (Three of the
locations are one less than a location for 7,4 and four are one more than
a location.) The largest value of the inverse is 28.
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The locations of the peaks of the spectrum of the variant colossally
abundant numbers for r, g and ¢ < 300 are 2, 21, 25, 30, 33, 41, 44, 50, 53,
61, 65, 76, 83, 89, (95, 96), 107, 111, 124 (134, 135), 138, 147, 150, 156,
159, 170, 174, 185, 192, 198 (201, 202), 205, 216, 221, 225, 233, 237, 244,
247, 261, 276, 279, (282, 283), and (295, 296). (Seven of the locations are
one less than a location for 7,4 and seven are one more than a location.
Five more locations do not match a location for 7, 4.) A plot of the inverse
function is

inverse of spectrum for rin 8), n=2000000, versus log(t)

L]
1

27

2B+ s, A

24t . .

2r .

Figure 12: inverse of spectrum variant colossally abundant numbers correspond-
ing to r, g

These are all the variant colossally abundant numbers for r, ; values
where the largest power of 2 does not exceed two million. The spectra of
the variant colossally abundant numbers appear to have some significance.
Interpreting the inverses of the spectra is more difficult.

For the variant colossally abundant numbers corresponding to 75,17,
the odd numbers are 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 292, 312, 372, 412, 432, 133, 173, 193, 11%, 7%, and 3''. There
are 39 of them.

For the variant colossally abundant numbers corresponding to 7,13,
the odd numbers are 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
311, 313, 317, 331, 297, 312, 372, 41, 43%, 472, 17%, 19°, 23% 11, 13, 57,
31 and 5%. There are 44 of them.
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For the variant colossally abundant numbers corresponding to ry,19,
the odd numbers are 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 312, 372, 412, 432, 472, 532, 173, 193, 233,
11%, 13%, 57, 7°, 5%, and 3'°. There are 47 of them.

A quadratic least-squares fit of the number of odd numbers is

number of odd numbers for rin2), rin,3), tih 4),... K019
50 A T T T T T T T T =

Figure 13: Quadratic least-squares fit of number of odd numbers corresponding
to 7y,,; values

p1 = 0.06153 with a 95% confidence interval of (0.03608, 0.08699),
p2 = 1.491 with a 95% confidence interval of (0.9438, 2.038), p3 = —3.263
with a 95% confidence interval of (—5.792, —0.7346), SSE=22.11, R-
squared=0.9942, and RMSE=1.214.

Apparently, the number of odd numbers can become arbitrarily large.
Perhaps another variant of the Riemann hypothesis can be derived.

2.5 Factorization of the Variants of Colossally Abun-
dant Numbers

Neglecting the odd numbers and powers of 2, the variant colossally abun-
dant numbers less than 2 million corresponding to r, 2 are 2* -3, 23 . 32,
24.32,925.32 9%.33% 26.32 2%.32.5,95.3% 25.32.5 24.33%.5,26.32.5,
24.32.52 25.3%.5,25.32.5226.3%.5 24.3%.52 26.32.52 24.33.5.7,
206.32.5.7,25.3%.5%,25.33.5.7,20.3%.52 26.3%.5.7,2.3%.5.7,
20.32.52.7,27.3%.5.7,2°.3%.52.7,26.3%.52.7, 27. 3% .52.7, 26.3%.52. 7,
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2°.3%.52.7.11, and 27 - 3* - 52 . 7. The numbers 2° - 3%, 2° . 33 . 52,
26.33 .52 and 27 -3*. 52 . 7 are of interest because they are exceptions
to the orderly increase of the last primes of the factorizations. What they
have in common is that all the 8 values of a number equal the exponent
of the previous prime. Using 2° - 3% as a “seed”, the sequence of numbers
2°.3% 25.3%.5% 27.3%.5%.7,2%.3%.5%. 77 .11, 210. 3% . 51 . 7% . 117 . 13,
213.38.55.74.113.132.17,... is obtained. When the next-larger prime
is added, the exponents of the previous primes are adjusted from right to
left. The least exponent of the previous prime that equals S is selected.
There is then a well-defined procedure for generating these numbers. Ap-
parently, these numbers can be used to predict when the last primes of
the factorizations increase.

These numbers can also be used to generate “building blocks”. For
example, the “building blocks” for 27 -3%.5% .7 are 27-3° (3 = 4), 27 - 3*
(5:4)7 2" 3° (ﬂ:4)v 2" . 3 (/324)7 3.5 (6:2)7 3. 5° (/6:2)7
3.5(8=2),5-7B=1),5-7TB=1),and 7-11 (8 = 0). The
previous exponents can be 41, 8, 8—1, or 3 —2 (permissible values). A
cubic least-squares fit of the logarithm of the logarithm of all the building
blocks generated from the above numbers is

loglogibuilding blocks)), seed=2" 3°

1.4E ] ] ] ] | ] | | |

|
1] 10 20 30 40 A0 B0 70 g0 90 100

Figure 14: Cubic least-squares fit of the logarithm of the logarithm of all the
building blocks

SSE=0.0245, R-squared=0.9989, and RMSE=0.01551. The good fit
indicates that the ”building blocks” may be useful.
The numbers generated from the “seed” 2*-3% are 2*.32.5, 25.3%.52.7,
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28.3%.5%.72.11,210.36. 5. 73,112 .13, 213 .38 .55 . 74 . 118 . 132 - 17,
218315775114 13% . 177 . 19, 22%. 31 . 5277 . 115 . 13* . 17% . 192 . 23, ..
These values are not associated with a r, ; value. The cubic least-squares
fit of the logarithm of the logarithm of all the building blocks generated
from these numbers is also good.

Neglecting the odd numbers and powers of 2, the variant colossally
abundant numbers less than 2 million corresponding to 7,3 are 2° - 3%,
25.33 96.32 95.33 26.33 97.33 96.3% 98.33 oT.3% 98.3% 97.35%
2%.3°,20.3%.5% 27.3%.5%, 26.3%.5% 2%.3%.5% 27.3%.5% 2%.3° .57,
27.3%.52% 29.3%.52 27.3%.53 and 2%-3%-52. Unlike ordinary colossally
abundant numbers, the exponents of the primes are strictly decreasing as
the primes increase. This appears to be the case for variant colossally
abundant numbers corresponding to rn. 4, Tn.5, Tn,6,....
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