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Abstract

A generalization of the sum of divisors function involves a recursive defi-
nition. This leads to variants of superabundant numbers, colossally abun-
dant numbers, and Gronwall’s theorem (relevant to the Riemann hypoth-
esis).

1 Introduction

For real or complex α and any integer n ≥ 1 we define σα =
∑
d|n d

α, the
sum of the αth powers of the divisors of n. The functions σα are called divisor
functions. The sum of divisors function is commonly denoted by σ(n). The
divisor functions are multiplicative and a Dirichlet product of σ(n) with the
constant function g(n) = 1 gives another multiplicative function. Similarly, the
Dirichet product of this multiplicative function with the constant function gives
yet another multiplicative function.

2 Multiplicative Arithmetical Functions

An arithmetical function f is called multiplicative if f is not identically zero
and if f(mn) = f(m)f(n) whenever (m,n) = 1. Let fα(n) = nα. This function
is completely multiplicative (m and n are not required to be relatively prime).
We denote the function fα by Nα. The divisor functions are multiplicative since
σα = µ ·Nα, the Dirichlet product of two multiplicative functions. The Dirich-
let product of arithmetical functions f and g has the form

∑
d|n f(d)g(nd ). The
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Möbius function µ is defined as follows: µ(1) = 1. If n > 1, write n = pa11 · · · pakk .
Then µ(n) = (−1)k if a1 = a2 = · · · = ak = 1 or µ(n) = 0 otherwise. That the
Möbius function is multiplicative is easily seen from its definition.

(1) If f and g are multiplicative, so is their Dirichlet product f · g.

See Apostol’s [1] Theorem 2.14.

3 Recursive Definition of Divisor Functions

Let rn,1 = σ(n), rn,2 =
∑
d|n rd,1, rn,3 =

∑
d|n rd,2, etc. Note that these are

simplified Dirichlet products so that the functions are multiplicative.

(2) If n is squarefree,
∏
p|n(p + 1) = rn,1. More generally, if pm divides n and

pm+1 does not divide n, then pm + pm−1 + pm−2 + . . .+ 1 divides rn,1, that is,
pm+1−1
p−1 divides rn,1.

(3) If n is squarefree,
∏
p|n(p + 2) = rn,2. More generally, if pm divides n and

pm+1 does not divide n, then pm + 2pm−1 + 3pm−2 + . . .+ (m+ 1) divides rn,2,

that is,
pm+2−1
p−1 −(m+2)

p−1 divides rn,2.

(4) If n is squarefree,
∏
p|n(p + 3) = rn,3. More generally, if pm divides n and

pm+1 does not divide n, then pm + 3pm−1 + 6pm−2 + . . . + (m + 1)(m + 2)/2
divides rn,3. An expression similar to the above can be derived using the bino-
mial theorem.

4 Superabundant Numbers

A natural number is called a superabundant number if σ(n)/n > σ(k)/k for
1 ≤ k ≤ n− 1. The first few superabundant numbers are 2, 4, 6, 12, 24, 36, 48,
60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040,. . .. Gronwall’s theorem
(Theorem 323 in Hardy and Wright’s [2] book) is

(5) limn→∞ sup σ(n)
n log logn = eλ

λ denotes Euler’s constant. A plot of σ(n)
n log logn for n = 2, 4, 6, 12, 24, 36, 48, 60,

120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720,
55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, and 1441440
(the superabundant numbers less than 2 million) is
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Figure 1: Plot of r(n,1) ratios

eλ is approximately equal to 1.7811. A quadratic least-squares fit of rn,1/n ver-
sus log log n for these n values is
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Figure 2: Quadratic least-squares fit

p1 = 0.2386 with a 95% confidence interval of (0.21, 0.2672), p2 = 0.4811 with
a 95% confidence interval of (0.3966, 0.5657), p3 = 1.62 with a 95% confidence
interval of (1.556, 1.683), SSE=0.07629, R-squared=0.9966, and RMSE=0.0522.

Superabundant numbers consist of a product of all the small primes up to some
bound with exponents which are non-increasing as the prime increases. Alaoglu
and Erdös’ [3] theorems on superabundant numbers are

Theorem 1 If n = 2k2 · · · pkp , then k2 ≥ k3 ≥ . . . ≥ kp.

Theorem 2 Let q < r, and set β = [kq log q/ log r]. Then kr has one of the
three values: β − 1, β + 1, β.

Theorem 3 If p is the largest prime factor of n, then kp = 1, except when
n = 4, 36.

In the remainder of the theorems, p always denotes the largest prime factor of
n.

Theorem 4 If q is either the greatest prime of exponent k or the least prime of
exponent k−1, and if q1−θ > log p, then qk = (p log p/ log q)[1+O(log p/q1−θ log q)].

If Riemann’s hypothesis is true any θ > 1/2 can be used.
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Theorem 5 If kq = k and q < (log p)α, where α is a constant, then (i)

log qk+1−1
qk+1−q >

log q
p log p [1 + O((log log p)2/ log p log q)], (ii) log qk+2−1

qk+2−q <
log q
p log p [1 +

O((log log p)2/ log p log q)].

Let Kq +1 be the integral part and θq the fractional part of log[(q1+ε−1)/(qε−
1)]/ log q, where ε = log(1 + 1/p) log p.

Theorem 6 (i) If εq < θq ≤ 1−εq, then kq = Kq. (ii) If θq ≤ εq, then kq = Kq

or kq = Kq − 1. (iii) If 1 − εq < θq, then kq = Kq or Kq + 1.

Theorem 7 p ∼ log n.

Theorem 8 The quotient of two consecutive superabundant numbers tends to
1.

In the proof of Theorem 8 it was shown that the ratio of two consecutive super-
abundants n and n′ is less than 1 + c(log logn)2/ log n. The order of (log p)c is
used.

Theorem 9 The number of superabundant numbers less than x exceeds
c log x log log x/(log log log x)2.

Similar superabundant numbers can be defined for rn,2, rn,3, rn,4, etc. and
usually occur at the same n values. For example, the superabundant numbers
for rn,2 satisfy rn,2/n > rk,2/k for 1 ≤ k ≤ n − 1. As for the usual super-
abundant numbers, these superabundant numbers consist of a product of all
the small primes up to some bound with exponents which are non-increasing as
the prime increases. Exceptions to Theorem 2 for rn,2, rn,3, rn,4, rn,5, and rn,6
and n < 2000000 occur at n = 96, 480, 5760, 241920, and 1209600. In these
cases, kr has the value β − 2 for q = 2 and r = 3. This conclusion is based on
the assumption that the brackets in Theorem 2 denote the floor function. There
are also exceptions to Theorem 3 when q = 2 and r = 3 (such as when n = 6,
12, 24,. . .). The number of superabundant numbers less than 2000000 for rn,2,
rn,3, rn,4,. . .,rn,12 is 38, 39, 44, 43, 41, 41, 42, 48, 48, 49, and 51 respectively.
The number of ordinary superabundant numbers less than 2000000 is 31, so
the counts for the new superabundant numbers are consistent with Theorem 9.
All of these theorems should be applicable to the new superabundant numbers.
As Alaoglu and Erdös state in the introduction of their article - “In comparing
the magnitude of σ(n) and σ(n′) it is clear from the multiplicative property of
σ(n) that one need only consider the behavior of those primes which divide the
two numbers to different powers. The same is true for d(n) and σ(n)/n.” This
appears to be the only property of the sum of divisors function that they use in
proving their theorems.

A plot of
√

rn,2
n log logn for n = 2, 4, 6, 12, 24, 36, 48, 60, 72, 120, 180, 240,

360, 720, 1440, 1680, 2160, 2520, 5040, 10080, 15120, 20160, 25200, 30240,
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50400, 55440, 110880, 166320, 221760, 277200, 332640, 554400, 665280, 831600,
1108800, 1330560, 1441440, and 1663200 is

Figure 3: Square root of r(n,2) ratios

In this variant of Gronwall’s formula, the supremum limit is unknown but is
slightly less than eλ.

A plot of 3

√
rn,3

n log logn for n = 2, 4, 6, 8, 12, 24, 36, 48, 60, 72, 120, 180, 240,

360, 720, 1440, 2160, 2520, 4320, 5040, 10080, 15120, 20160, 30240, 50400,
55440, 60480, 100800, 110880, 151200, 166320, 221760, 302400, 332640, 554400,
665280, 1108800, 1330560, and 1663200 is
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Figure 4: Cube root of r(n,3) ratios

In this variant of Gronwall’s formula, the supremum limit is smaller than above.

A plot of 4

√
rn,4

n log logn for n = 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 240, 360,

480, 720, 1440, 2160, 2520, 2880, 4320, 5040, 8640, 10080, 15120, 20160, 30240,
50400, 60480, 100800, 110880, 120960, 151200, 181440, 221760, 302400, 332640,
55440, 604800, 665280, 1108800, 1330560, 1663200, and 1995840 is
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Figure 5: Fourth root of r(n,4) ratios

In this variant of Gronwall’s formula, the supremum limit is still smaller.

A quadratic least-squares fit of the smallest positive i

√
rn,i

n log logn values for n <

2000000 and i = 1, 2, 3,. . .,12 is
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Figure 6: Quadratic least-squares fit

p1 = 0.003381 with a 95% confidence interval of (0.003023, 0.003739), p2 =
−0.09788 with a 95% confidence of (−0.1027, −0.0931), p3 = 1.782 with a 95%
confidence interval of (1.769, 1.796), SSE=0.0003007, R-squared =0.9993, and
RMSE=0.00578. The first value is for

rn,1
n log logn . The values are 1.6943, 1.5998,

1.5135, 1.4339, 1.3809, 1.3190, 1.2683, 1.2181, 1.1736, 1.1395, 1.1199, and 1.0902
respectively. For small sample sizes, quadratic curves give good approximations
of some logarithmic functions.

5 Euler’s Phi Function and the Sum of Divisors
Function

Hardy and Wright’s Theorem 328 is

(6) limn→∞ inf φ(n) log logn
n = e−λ

φ(n) denotes Euler’s phi function. Their Theorem 329 is

(7) A < σ(n)φ(n)
n2 < 1 for a positive constant A.

This relationship between φ(n) and σ(n) is used to prove Gronwall’s theorem.
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Superabundant numbers can also be defined for the largest
rn,2φ(n)

n2 values. A

plot of
rn,2φ(n)
n2 log logn for n = 3, 4, 8, 16, 24, 32, 48, 72, 144, 288, 432, 576, 720, 864,

1440, 2160, 2880, 3600, 4320, 7200, 8640, 10800, 14400, 15120, 20160, 21600,
30240, 43200, 60480, 75600, 100800, 120960, 151200, 302400, 604800, 907200,
1663200, and 1814400 is

Figure 7: Plot of r(n,2) ratios

In this variant of Gronwall’s formula, the supremum limit is unknown. A

quadratic least-squares fit of
rn,2φ(n)

n2 versus log log n for these n values is
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Figure 8: Quadratic least-squares fit of rn,2 ratios

p1 = 0.2912 with a 95% confidence interval of (0.2573, 0.325), p2 = 0.2204 with
a 95% confidence interval of (0.1131, 0.3276), p3 = 1.201 with a 95% confidence
interval of (1.121, 1.281), SSE=0.08065, R-squared=0.9958, and RMSE=0.048.
Note the resemblance to the curve in Figure 2.

Superabundant numbers can also be defined for the largest
rn,3φ(n)φ(n)

n3 values.

A plot of
√

rn,3φ(n)φ(n)
n3 log logn for n = 5, 7, 8, 16, 32, 64, 128, 256, 288, 432, 576,

864, 1728, 3456, 5184, 6912, 10368, 20736, 31104, 41472, 43200, 86400, 129600,
172800, 259200, 518400, 777600, 1036800, 1296000, and 1555200 is
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Figure 9: Square root of r(n,3) ratios

Superabundant numbers can also be defined for the largest
rn,4φ(n)φ(n)φ(n)

n4 val-

ues. A plot of 3

√
rn,4φ(n)φ(n)φ(n)

n4 log logn for n = 9, 11, 13, 16, 32, 64, 128, 256, 512, 1024,

1728, 3456, 5184, 6912, 10368, 20736, 31104, 41472, 62208, 124416, 248832,
373248, 497664, 518400, 777600, 1036800, and 1555200 is
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Figure 10: Cube root of r(n,4) ratios

Other superabundant numbers are similarly defined for rn,5, rn,6, rn,7, etc. The
smallest of the above values for rn,2, rn,3, rn,4, rn,5, rn,6, rn,7, and rn,8 are
1.3734, 0.6888, 0.5427, 0.4862, 0.4561, 0.4350, and 0.4187 respectively. A plot
of the normalized reciprocals of these minima (decremented by 1/1.3734) and
log(i) for i = 1, 2, 3, 4, 5, 6, and 7 is
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Figure 11: Normalized reciprocals of minimum and log(x)

The logarithm increases more rapidly.

6 Colossally Abundant Numbers

In the above, the n values start with a few odd values followed by powers of 2.
Afterwards, the n values are the product of powers of 2 and 3, the product of
powers of 2, 3, and 5, the product of powers of 2, 3, 5, and 7, etc. For rn,2, the
odd numbers and powers of 2 are 3, 4, 8, and 16. For rn,3, the odd numbers
and powers of 2 are 5, 7, 8, 16, 32, 64, 128, 256. For rn,4, the odd numbers
and powers of 2 are 9, 11, 13, 16, 32, 64, 128, 256, 512, and 1024. For rn,5,
the odd numbers and powers of 2 are 13, 17, 19, 23, 25, 27, 32, 64, 128, 256,
512, 1024, 2048, 4096, and 8192. For rn,6, the odd numbers and powers of 2
are 19, 23, 29, 31, 37, 49, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and
32768. For rn,7, the odd numbers and powers of 2 are 29, 31, 37, 41, 43, 47, 49,
81, 125, 128, 243, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, and
131072. Note that a power of 3 (243) is interspersed between 128 and 256. For
rn,8, the odd numbers and powers of 2 are 31, 37, 41, 43, 47, 53, 59, 61, 67,
121, 125, 243, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072,
262144, 524288, and 1048576. For rn,9, the odd numbers and powers of 2 (up to
2 million) are 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 121, 169, 243, 289, 343,
512, 729, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288,
1048576,.... Note that a power of 3 (729) is interspersed between 512 and 1024.
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For rn,10, the odd numbers and powers of 2 (up to 2 million) are 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 169, 289, 343, 625, 729, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576,.... For rn,11, the odd numbers
and powers of 2 (up to 2 million) are 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 169, 289, 361, 529, 625, 1331, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576,.... For rn,12, the odd numbers
and powers of 2 (up to 2 million) are 71, 73, 79, 83, 89, 97, 101, 103, 107, 109,
113, 127, 131, 137, 139, 149, 289, 361, 529, 841, 1331, 2187, 2401, 3125, 4096,
6561, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576,.... Note that
a power of 3 (6561) is interspersed between 4096 and 8192. The odd numbers
appear to be prime powers. All the n values appear to satisfy Theorem 2 (with
the caveat of the β − 2 case). Other than the odd values, the n values behave
like colossally abundant numbers. Colossally abundant numbers are a subset of
the superabundant numbers.

A spectrum similar to the Riemann spectrum can be computed for the odd num-

bers up to the first even number by using the function F≤C(t) = −
∑
pn≤C

log(p)
pn/2

cos(t log(pn)).

A plot of this function for rn,12 is

Figure 12: spectrum

The inverse function for the Riemann spectrum isH≤C(s) = 1+
∑
i≤C cos(log(s)θi).

The non-trivial zeta function zeros are denoted by θi. In the application of this
function here, no maxima of the spectrum are identified. A plot of the inverse
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function is

Figure 13: inverse of spectrum

The curve is sinusoidal. A systematic method of determining the maxima hasn’t
been identified yet. Whether this is of any value is unknown. Washington and
Yang [4] investigated odd colossally abundant numbers.

Colossally abundant numbers are those numbers n for which there is a positive

exponent ε such that σ(n)
n1+ε ≥ σ(k)

k1+ε for all k > 1. Colossally abundant numbers
consist of a product of all the small primes up to some bound, with exponents
which are non-increasing as the primes increase. The first few colossally abun-
dant numbers are 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440,
4324320, 21621600, 367567200, ....

7 Relevance to the Riemann Hypothesis

Robin’s [5] theorem states that the Riemann hypothesis is true if and only if
σ(n) < eλn log logn for all n ≥ 5041. Robin showed that if the Riemann hy-
pothesis is false, there will necessarily exist a counterexample to this inequality
which is a colossally abundant number.
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