

Article

Development of a novel anti-CD44 monoclonal antibody C₄₄Mab-46 for multiple applications against esophageal squamous cell carcinomas

Nohara Goto¹, Hiroyuki Suzuki^{1,*}, Tomohiro Tanaka², Teizo Asano², Mika K. Kaneko² and Yukinari Kato^{1,2,*}

¹ Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan s1930550@s.tsukuba.ac.jp (N.G.);

² Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; tomohiro.tanaka.b5@tohoku.ac.jp (T.T.); teizo.asano.a7@tohoku.ac.jp (T.A.); k.mika@med.tohoku.ac.jp (M.K.K.)

* Correspondence: hiroyuki.suzuki.b4@tohoku.ac.jp (H.S.); yukinari.kato@med.tohoku.ac.jp (Y.K.); Tel.: +81-22-717-8207

Abstract: CD44 is a cell surface glycoprotein, which is widely expressed on normal and cancer cells. CD44 is involved in cell adhesion, migration, proliferation, survival, stemness, and chemo-resistance. Therefore, CD44 is thought to be a promising target for cancer diagnosis and therapy. In this study, we established anti-CD44 monoclonal antibodies (mAbs) by immunizing mice with CD44v3-10 ectodomain and screening using enzyme-linked immunosorbent assay. We then characterized them using flow cytometry, western blotting, and immunohistochemistry. One of the established clones (C₄₄Mab-46; IgG₁, kappa) reacted with CD44s-overexpressed Chinese hamster ovary-K1 cells (CHO/CD44s) or esophageal squamous cell carcinoma (ESCC) cell lines (KYSE70 and KYSE770). The K_D of C₄₄Mab-46 for CHO/CD44s, KYSE70, and KYSE770 was 1.1×10^{-8} M, 4.9×10^{-8} M, and 4.1×10^{-8} M, respectively. C₄₄Mab-46 detected CD44s of CHO/CD44s and KYSE70, and CD44v of KYSE770 in western blot analysis. Furthermore, C₄₄Mab-46 strongly stained esophageal squamous carcinoma cells in immunohistochemistry using formalin-fixed paraffin-embedded ESCC tissues. Taken together, C₄₄Mab-46 is very useful for detecting CD44 in various applications.

Keywords: CD44; monoclonal antibody; esophageal cancer

1. Introduction

CD44 is a cell surface glycoprotein, which is widely expressed on various tissues [1]. The CD44 gene is comprised of 19 exons in human [2]. The first five and the last five exons are constant and encode the shortest isoform of CD44 (85–95 kDa), called as CD44 standard isoforms (CD44s). The middle nine exons can be alternatively spliced and assembled with the ten exons contained in CD44v [3]. CD44 is a major receptor for hyaluronic acid (HA), and is involved in cell adhesion, migration, and proliferation [4]. CD44 also plays important roles in tumor progression, metastasis, and resistance to chemo- and radiotherapy [5,6]. Therefore, CD44 is a promising target for cancer diagnosis and therapy.

Several CD44-targeting monoclonal antibodies (mAbs) have been developed for pre-clinical researches. IM7 mAb inhibited HA-induced VEGF production in human vascular endothelial cells [7]. IM7 mAb significantly decreased cell migration and invasion in breast cancer cells [8]. In pancreatic cancer, H4C4 mAb reduced tumor growth, metastasis, and post-radiation recurrence [9]. A humanized mAb specific for CD44, RG7356, was directly cytotoxic for leukemia B cells, but no effect on normal B cells. Administration of RG7356 to immune-deficient mice engrafted with human chronic lymphocytic leukemia cells resulted in complete clearance of engrafted leukemia cells [10]. Furthermore, CD44v6-specific humanized mAbs (BIWA-4 and BIWA-8) labeled with ¹⁸⁶Re showed the therapeutic efficacy in head and neck SCC xenograft bearing nude mice [11].

Sulfasalazine is an inhibitor of xCT, the subunit of cystine-glutamate transporter. CD44v was found to interact with the xCT and promotes oxidative stress resistant in cancer cells [12,13]. The clinical trials of sulfasalazine have been evaluated in combination with cisplatin in patients with CD44v-expressing advanced gastric cancer refractory to cisplatin [14], and the reduction of the CD44v-positive gastric cancer cells [15]. These results suggest that CD44v is an important marker to predict and evaluate the sensitivity of sulfasalazine.

Previously, we established the novel mAb, C₄₄Mab-5 (IgG₁, kappa) against CD44 using Cell-Based Immunization and Screening (CBIS) method [16]. C₄₄Mab-5 showed high sensitivity for flow cytometry and immunohistochemical analysis in oral cancers. In this study, we developed a novel anti-CD44 mAb, C₄₄Mab-46 (IgG₁, kappa), and evaluated it for various applications, including flow cytometry, western blotting, and immunohistochemical analyses.

2. Materials and Methods

2.1. Cell lines

Mouse multiple myeloma P3X63Ag8U.1 (P3U1), a glioblastoma cell line (LN229) [17], and CHO-K1 cell lines were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). Esophageal squamous cell carcinoma (ESCC) cell lines, KYSE70 and KYSE770 were obtained from the Japanese Collection of Research Bioresources (Osaka, Japan).

CD44s ORF was amplified from LN229 cDNA using HotStar HiFidelity Polymerase Kit (Qiagen Inc., Hilden, Germany). CD44s ORF was subcloned into pCAG-Ble-ssPA16 vector possessing signal sequence and N-terminal PA16 tag (GLEGGVAMPGAEVV) [16,18-22]. CHO/CD44s was established by transfecting pCAG-Ble/PA16-CD44s into CHO-K1 cells using a Neon transfection system (Thermo Fisher Scientific, Inc., Waltham, MA, USA). CD44v3-10 ectodomain (CD44ec)-secreting LN229 (LN229/CD44ec) was established by transfecting pCAG-Neo/PA-CD44ec-RAP-MAP into LN229 cells using the Neon transfection system. The amino acid sequences of the tag system in this study were as follows: PA tag [23-25], 12 amino acids (GVAMPGAEVV); RAP tag [26,27], 12 amino acids (DMVNPGLEDRIE); and MAP tag [28,29], 12 amino acids (GDGMVPPGIEDK).

LN229, KYSE70, and KYSE770 were cultured in Dulbecco's Modified Eagle Medium (DMEM) complete medium, including DMEM (4.5 g/L glucose) with L-Gln and without sodium pyruvate (Nacalai Tesque, Inc., Kyoto, Japan), 10% heat-inactivated fetal bovine serum (FBS, Thermo Fisher Scientific Inc.), 100 U/mL of penicillin (Nacalai Tesque, Inc.), 100 µg/mL streptomycin (Nacalai Tesque, Inc.), 0.25 µg/mL amphotericin B (Nacalai Tesque, Inc.). LN229/CD44ec was cultured in DMEM complete medium, including 0.5 mg/ml of G418 (Nacalai Tesque, Inc.).

P3U1 and CHO-K1 were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium (Nacalai Tesque, Inc.) supplemented with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B. CHO/CD44s was cultured in RPMI complete medium, including 0.5 mg/mL Zeocin (InvivoGen, San Diego, CA, USA). All cells were grown in a humidified incubator at 37°C with 5% CO₂.

2.2. Purification of CD44ec

After LN229/CD44ec was cultured using DMEM complete medium without G418, CD44ec was purified from the supernatants using RAP tag system, comprised an anti-RAP tag mAb (clone PMab-2) and a RAP peptide (GDDMVNPGLEDRIE) [26,27]. The filtered culture supernatant (5L) was passed through PMab-2-Sepharose (2 mL bed volume), and the same process was repeated three times. The beads were then washed with 100 mL of phosphate-buffered saline (PBS, Nacalai Tesque, Inc.), and eluted with 0.1 mg/mL a RAP peptide in a step-wise manner (2 mL × 10).

2.3. Hybridoma production

Female BALB/c mice (6-week-old) were purchased from CLEA Japan (Tokyo, Japan). The animals were housed under specific pathogen-free conditions. The Animal Care and Use Committee of Tohoku University approved all animal experiments.

A BALB/c mouse was immunized with CD44ec (150 µg) intraperitoneally (i.p.) with Imject Alum (Thermo Fisher Scientific Inc.). The procedure included three additional immunizations with CD44ec (2nd immunization, 150 µg; 3rd immunization, 100 µg; 4th immunization, 50 µg) followed by a final booster injection of CD44ec (50 µg) two days prior to the harvest of splenic cells.

Subsequently, splenic cells were fused with P3U1 cells using polyethylene glycol 1500 (PEG1500; Roche Diagnostics, Indianapolis, IN, USA). The hybridomas were then grown in RPMI media supplemented with hypoxanthine, aminopterin, and thymidine (HAT) for selection (Thermo Fisher Scientific Inc.). The culture supernatants were screened for the anti-CD44s antibody production using enzyme-linked immunosorbent assay (ELISA).

2.4. ELISA

CD44ec was immobilized on Nunc Maxisorp 96-well immunoplates (Thermo Fisher Scientific Inc) at a concentration of 1 µg/mL for 30 min at 37°C. After washing with PBS containing 0.05% Tween20 (PBST; Nacalai Tesque, Inc.), wells were blocked with 1% bovine serum albumin (BSA)-containing PBST for 30 min at 37°C. Culture supernatants were added to each well, followed by peroxidase-conjugated anti-mouse immunoglobulins (1:2000 diluted; Agilent Technologies Inc., Santa Clara, CA, USA). Enzymatic reactions were conducted, using 1 Step Ultra TMB (Thermo Fisher Scientific Inc.), followed by the measurement of the optical density at 655 nm, using an iMark microplate reader (Bio-Rad Laboratories, Inc., Berkeley, CA, USA).

2.5. Flow cytometry

Cells were collected following a brief exposure to 0.25% trypsin and 1 mM ethylene-diaminetetraacetic acid (Nacalai Tesque, Inc.). The cells were then washed with 0.1% BSA in PBS and treated with C44Mab-46 for 30 min at 4°C. After incubation, cells were treated with Alexa Fluor 488-conjugated anti-mouse IgG (1:2000; Cell Signaling Technology, Inc., Danvers, MA, USA). Fluorescence data were collected using SA3800 Cell Analyzer (Sony Corp.) and analyzed using FlowJo (BD Biosciences, Franklin Lakes, NJ, USA).

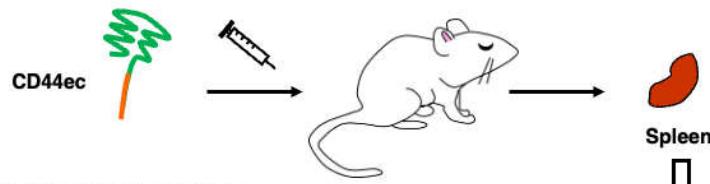
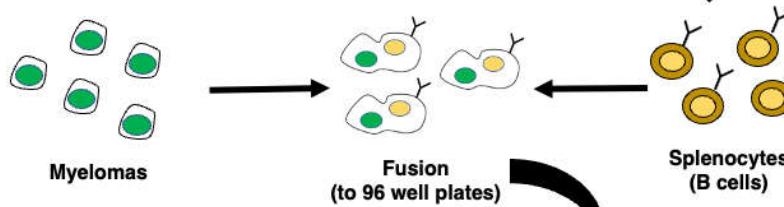
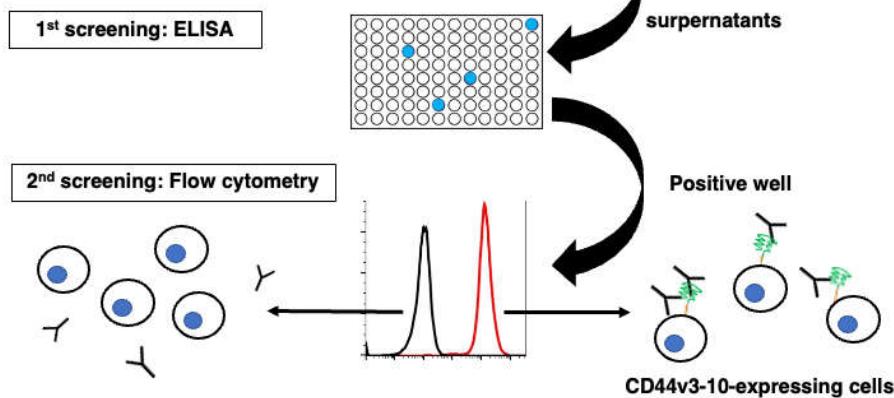
2.6. Determination of dissociation constant (K_D) through flow cytometry

CHO/CD44s, KYSE70, and KYSE770 cells were suspended in 100 µL serially-diluted anti-C44Mab-46 mAbs, after which 50 µL Alexa Fluor 488-conjugated anti-mouse IgG (1:200; Cell Signaling Technology, Inc.) was added. Afterward, fluorescence data were collected, using BD FACSLyric. The K_D was subsequently calculated by fitting saturation binding curves to the built-in; one-site binding models in GraphPad PRISM 8 (GraphPad Software, Inc., La Jolla, CA, USA).

2.7. Western blot analysis

Cell lysates (10 µg) were boiled in sodium dodecyl sulfate (SDS) sample buffer (Nacalai Tesque, Inc.). Proteins were separated on 5%–20% polyacrylamide gels (FUJI-FILM Wako Pure Chemical Corporation) and transferred onto polyvinylidene difluoride (PVDF) membranes (Merck KGaA, Darmstadt, Germany). After blocking with 4% skim milk (Nacalai Tesque, Inc.) in PBS with 0.05% Tween 20, membranes were incubated with 1 µg/mL C44Mab-46 or 1 µg/mL anti-β-actin (clone AC-15; Sigma-Aldrich Corp., St. Louis, MO, USA). Membranes were then incubated with peroxidase-conjugated anti-mouse immunoglobulins (diluted 1:1000; Agilent Technologies, Inc.) to detect C44Mab-46 and anti-β-actin. Finally, protein bands were detected with a chemiluminescence reagent, ImmunoStar LD (FUJIFILM Wako Pure Chemical Corporation) using a Sayaca-Imager (DRC Co. Ltd., Tokyo, Japan).

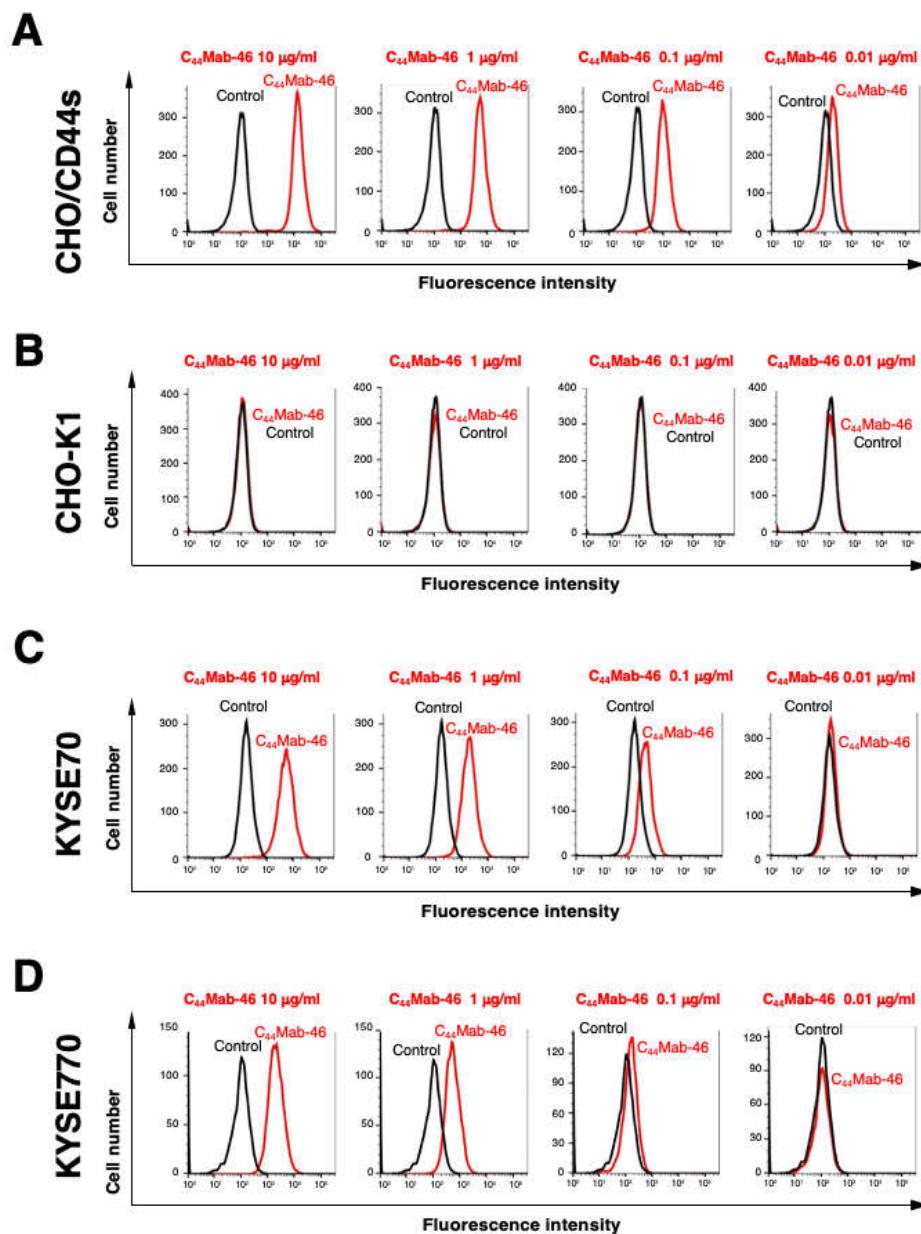
2.8. Immunohistochemical analysis




Paraffin-embedded ESCC tissue microarray (Product Code: BC02011, US Biomax Inc.) were deparaffinized in xylene and rehydrated. Then, they were autoclaved in citrate buffer (pH 6.0; Agilent Technologies Inc.) for 20 min. After blocking with SuperBlock T20 (Thermo Fisher Scientific, Inc.), sections were incubated with C₄₄Mab-46 (5 µg/mL) for 1h at room temperature and then treated with the EnVision+ Kit for mouse (Agilent Technologies Inc.) for 30 min. Color was developed using 3,3'-diaminobenzidine tetrahydrochloride (DAB; Agilent Technologies Inc.) for 2 min. Counterstaining was performed with hematoxylin (FUJIFILM Wako Pure Chemical Corporation). Hematoxylin & eosin (HE) staining (FUJIFILM Wako Pure Chemical Corporation) was performed using consecutive tissue sections. Leica DMD108 (Leica Microsystems GmbH, Wetzlar, Germany) was used to examine the sections and obtain images.

3. Results

3.1. Flow cytometric analysis of C₄₄Mab-46 to CD44 expressing cells

In this study, C₄₄Mab-46 was established by immunizing one mouse with CD44v3-10 ectodomain (Fig. 1). We have already confirmed the epitope of C₄₄Mab-46 as ₁₇₄-TDDDV-₁₇₈ [30,31] encoded within the first five exons, indicating that C₄₄Mab-46 recognizes CD44 standard isoforms (CD44s). Therefore, we confirmed the reactivity of C₄₄Mab-46 against CHO/CD44s by flow cytometry. As shown in Fig. 2A, C₄₄Mab-46 recognized CHO/CD44s cells in a dose dependent manner, but not CHO-K1 cells (Fig. 2B). We next examined whether C₄₄Mab-46 could recognize endogenous CD44 in ESCC cell lines. C₄₄Mab-46 reacted with both KYSE 70 and KYSE770 in a dose dependent manner (Fig. 2C and 2D).


Next, we assessed the binding affinity of C₄₄Mab-46 with CHO/CD44s, KYSE70, and KYSE770 using flow cytometry. The K_D of C₄₄Mab-46 for CHO/CD44s, KYSE70, and KYSE770 was 1.1×10^{-8} M, 4.9×10^{-8} M, and 4.1×10^{-8} M, respectively, indicating that C₄₄Mab-46 possesses moderate affinity for CD44s-expressing cells (Fig. 3).

1. Immunization of purified CD44ec (CD44v3-10 ectodomain)**2. Hybridomas production****3. Screening of supernatants****4. Cloning of Hybridomas**

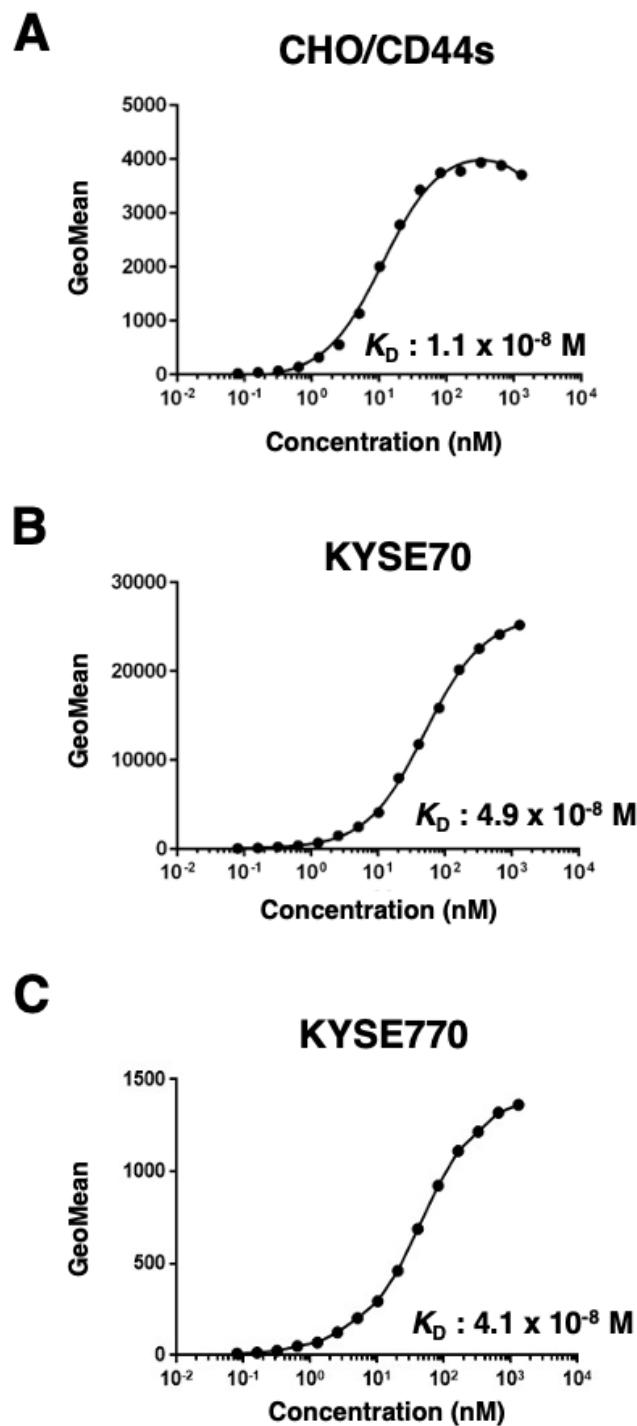

Establishment of anti-CD44 mAb-producing clones

Figure 1. A schematic procedure of anti-CD44 mAbs production. Mice were intraperitoneally immunized with the purified CD44v3-10 ectodomain. The screening was then conducted by ELISA using the purified CD44v3-10 ectodomain, flow cytometry using parental cells, and CD44v3-10-overexpressed CHO-K1 cells.

Figure 2. Flow cytometry to CD44 expressing cells using C44Mab-46. CHO/CD44s (A), CHO-K1 (B), KYSE70 (C) and KYSE770 (D) cells were treated with 0.01–10 µg/mL of C44Mab-46, followed by treatment with Alexa Fluor 488-conjugated anti-mouse IgG. Black line represents the negative control.

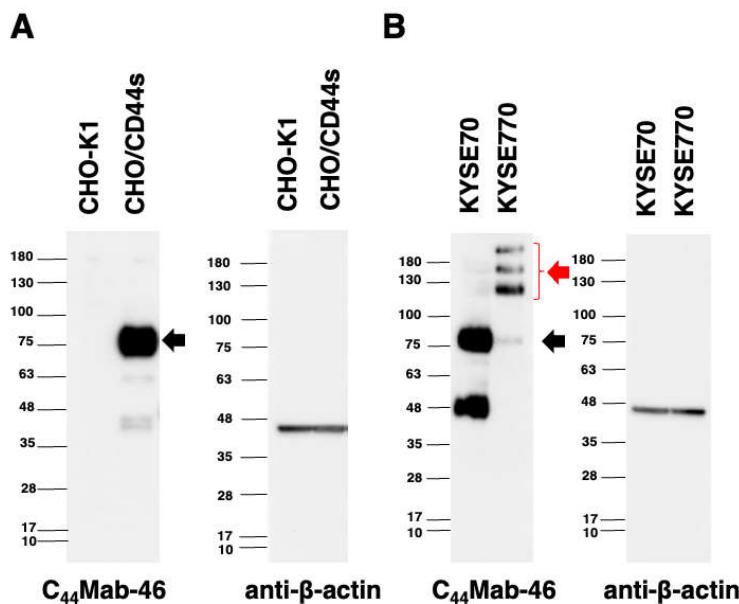


Figure 3. The determination of the binding affinity of C₄₄Mab-46. CHO/CD44s (A), KYSE70 (B), and KYSE770 (C) cells were suspended in 100 μ L serially diluted C₄₄Mab-46 (6 ng/mL to 100 μ g/mL). Then, cells were treated with Alexa Fluor 488-conjugated anti-mouse IgG. Fluorescence data were subsequently collected using a BD FACSLyric, following the calculation of the dissociation constant (K_D) by GraphPad PRISM 8.

3.2. Western blot analysis

Western blotting was performed to further assess the sensitivity of C₄₄Mab-46. Lysates of CHO-K1 and CHO/CD44s cells were probed. As shown in Fig. 4A, C₄₄Mab-46 detected CD44s as a ~85kDa band. However, C₄₄Mab-46 did not detect any band from lysates of CHO-K1 cells. These results indicated that C₄₄Mab-46 specifically detect exogenous CD44s.

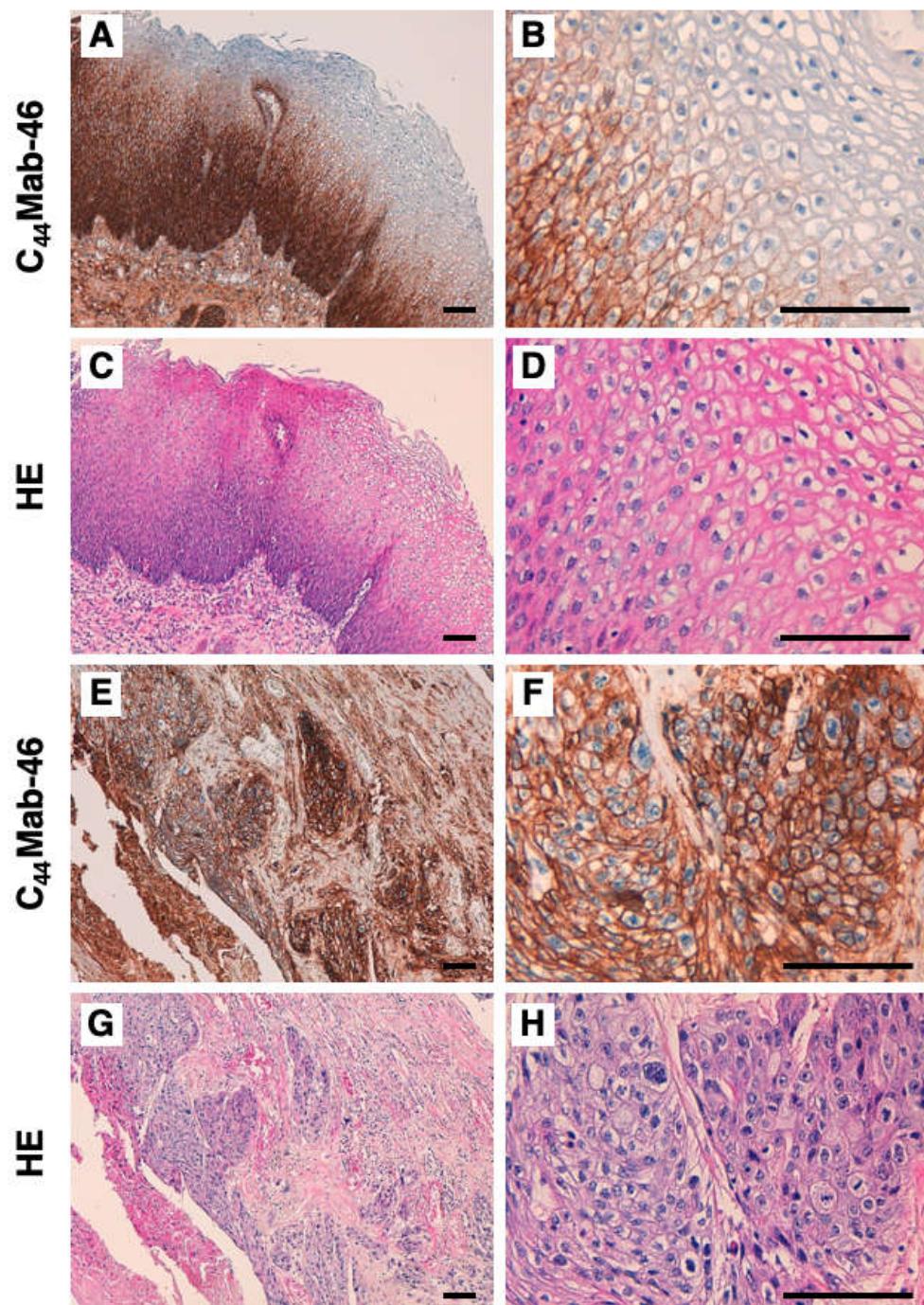

Next, we examined the detection of endogenous CD44 using lysates from KYSE70 and KYSE770 cells. As shown in Fig. 4B, C₄₄Mab-46 could detect CD44 as 85 and 48kDa double bands from lysates of KYSE70 cells. In contrast, C₄₄Mab-46 could detect CD44 as more than 100 kDa triplet bands, probably CD44v isoforms, from lysates of KYSE770 cells. These results suggest that C₄₄Mab-46 recognizes endogenous CD44s and CD44v(s) in the esophageal cancer cell lines.

Figure 4. Western blotting by C₄₄Mab-46. (A) Cell lysates of CHO-K1 and CHO CD44s (10 µg) were electrophoresed and transferred onto polyvinylidene fluoride (PVDF) membranes. The membranes were incubated with 1 µg/mL of C₄₄Mab-46 and 1 µg/mL of anti-β-actin and subsequently with peroxidase-conjugated anti-mouse immunoglobulins. (B) Cell lysates of KYSE70 and KYSE770 (10 µg) were electrophoresed and transferred onto PVDF membranes. The membranes were incubated with 1 µg/mL of C₄₄Mab-46 and 1 µg/mL of anti-β-actin and subsequently with peroxidase-conjugated anti-mouse immunoglobulins. Black arrows indicate the predicted size of CD44s (~85 kDa). Red arrow indicates the CD44 variants.

3.3. Immunohistochemical analysis using C₄₄Mab-46 against ESCC tissues.

To investigate whether C₄₄Mab-46 can be used for immunohistochemical analyses using paraffin-embedded tumor sections, we used tissue microarray of ESCC. In a well differentiated ESCC section (Fig. 5A~D), C₄₄Mab-46 strongly stained ESCC cells (Fig. 5A). A clear membrane-staining in ESCC was observed (Fig. 5B). Hematoxylin and eosin (HE) staining was performed using the serial sections (Fig. 5C and 5D). In an ESCC section with stromal invaded phenotype (Fig. 5E~H), C₄₄Mab-46 strongly stained stromal invaded ESCC (Fig. 5E and 5F). HE staining was also performed using the serial sections (Fig. 5G and 5H). In immunohistochemical analyses using C₄₄Mab-46 against ESCC tissue micro-arrays (Table 1), C₄₄Mab-46 stained 63 of 67 (94.0%) cases of ESCC. These results indicated that C₄₄Mab-46 is useful for immunohistochemical analysis of paraffin-embedded tumor sections.

Figure 5. Immunohistochemical analysis using C44Mab-46 against ESCC tissues. (A, B, E, F) After antigen retrieval, sections were incubated with 5 μ g/mL of C44Mab-46 followed by treatment with the Envision+ kit. Color was developed using DAB for 2min, and sections were counter-stained with hematoxylin. (C, D, G, H) Hematoxylin and eosin (HE) staining. Scale bar = 100 μ m.

Table 1 Immunohistochemical analysis using C44Mab-46 against ESCC tissues

Case No.	Age	Sex	Organ/Anatomic Site	Pathology diagnosis	Grade	Type	Intensity
1	52	M	Esophagus	Squamous cell carcinoma	I	malignant	++
2	62	F	Esophagus	Squamous cell carcinoma	I	malignant	++
3	54	M	Esophagus	Squamous cell carcinoma	I	malignant	++
4	59	M	Esophagus	Squamous cell carcinoma	I	malignant	+
5	60	M	Esophagus	Squamous cell carcinoma	II	malignant	++
6	66	M	Esophagus	Squamous cell carcinoma	-	malignant	+
7	36	M	Esophagus	Squamous cell carcinoma	I	malignant	++
8	55	F	Esophagus	Squamous cell carcinoma	I	malignant	-
9	59	F	Esophagus	Squamous cell carcinoma	I-II	malignant	++
10	48	M	Esophagus	Squamous cell carcinoma	I-II	malignant	++
11	41	M	Esophagus	Squamous cell carcinoma	I	malignant	++
12	58	M	Esophagus	Squamous cell carcinoma	I	malignant	++
13	56	M	Esophagus	Squamous cell carcinoma	I	malignant	++
14 (Fig. 5E-H)	72	F	Esophagus	Squamous cell carcinoma	I	malignant	+++
15	41	M	Esophagus	Squamous cell carcinoma	I-II	malignant	+++
16	50	M	Esophagus	Squamous cell carcinoma	I	malignant	-
17	48	M	Esophagus	Squamous cell carcinoma	I	malignant	+
18	55	M	Esophagus	Squamous cell carcinoma	I-II	malignant	-
19	61	F	Esophagus	Squamous cell carcinoma	II	malignant	+
20	35	M	Esophagus	Squamous cell carcinoma	I	malignant	++
21	72	M	Esophagus	Squamous cell carcinoma	I	malignant	++
22	70	M	Esophagus	Squamous cell carcinoma	-	malignant	+++
23	42	F	Esophagus	Squamous cell carcinoma	I	malignant	++
24	53	M	Esophagus	Squamous cell carcinoma	I	malignant	++
25	54	M	Esophagus	Squamous cell carcinoma	I-II	malignant	++
26 (Fig. 5A-D)	54	F	Esophagus	Squamous cell carcinoma	I-II	malignant	+++
27	65	F	Esophagus	Squamous cell carcinoma	I-II	malignant	++
28	63	F	Esophagus	Squamous cell carcinoma	I-II	malignant	+++
29	62	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
30	63	M	Esophagus	Squamous cell carcinoma	II	malignant	++
31	65	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
32	64	F	Esophagus	Squamous cell carcinoma	II	malignant	++
33	71	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
34	55	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
35	57	F	Esophagus	Squamous cell carcinoma	II	malignant	+++
36	56	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
37	60	M	Esophagus	Squamous cell carcinoma	II-III	malignant	+++
38	61	F	Esophagus	Squamous cell carcinoma	II	malignant	++
39	61	M	Esophagus	Squamous cell carcinoma	II-III	malignant	+++
40	50	M	Esophagus	Smooth muscle and fatty tissue	-	malignant	+++
41	66	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
42	45	M	Esophagus	Squamous cell carcinoma	II	malignant	++
43	68	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
44	58	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
45	57	M	Esophagus	Squamous cell carcinoma	II-III	malignant	++
46	54	F	Esophagus	Squamous cell carcinoma	II	malignant	+
47	48	M	Esophagus	Squamous cell carcinoma	II	malignant	++
48	68	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
49	54	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
50	70	M	Esophagus	Squamous cell carcinoma	III	malignant	+++
51	72	M	Esophagus	Squamous cell carcinoma	III	malignant	++
52	62	M	Esophagus	Squamous cell carcinoma	III	malignant	-
53	63	M	Esophagus	Squamous cell carcinoma	II-III	malignant	++
54	49	F	Esophagus	Squamous cell carcinoma	II-III	malignant	++
55	53	F	Esophagus	Squamous cell carcinoma	II-III	malignant	++
56	61	M	Esophagus	Squamous cell carcinoma	III	malignant	+++
57	61	M	Esophagus	Squamous cell carcinoma	II	malignant	+++
58	59	F	Esophagus	Squamous cell carcinoma	III	malignant	+++
59	62	M	Esophagus	Squamous cell carcinoma	II-III	malignant	+++
60	56	M	Esophagus	Squamous cell carcinoma	III	malignant	+++
61	73	F	Esophagus	Squamous cell carcinoma	II-III	malignant	+++
62	57	M	Esophagus	Squamous cell carcinoma	II-III	malignant	++
63	64	M	Esophagus	Squamous cell carcinoma	III	malignant	+++
64	60	M	Esophagus	Squamous cell carcinoma	II-III	malignant	+++
65	66	M	Esophagus	Squamous cell carcinoma	III	malignant	+++
66	67	M	Esophagus	Squamous cell carcinoma	II-III	malignant	+++
67	75	M	Esophagus	Squamous cell carcinoma	III	malignant	+++

4. Discussion

CD44 have functions in many processes in normal cells (hematopoietic, immune system, and organogenesis), and in pathological situations (inflammation and cancer) [32]. CD44 exhibits passive ligand binding including adhesion to hyaluronan and other components of the extracellular matrix. Furthermore, CD44 acts as a co-receptor for growth factors and as a scaffold for enzymes. Therefore, establishment and characterization of

anti-CD44 mAbs are thought to be important for development of CD44 targeting therapy and diagnosis.

In this study, we developed C₄₄Mab-46 which can recognize all isoforms of CD44, and show the usefulness for flow cytometry (Fig. 2 and Fig. 3), western blotting (Fig. 4), and immunohistochemistry (Fig. 5). As shown in Fig. 2, C₄₄Mab-46 similarly recognized endogenous CD44 of KYSE70 and KYSE770 cells by flow cytometry; however, the expression pattern of CD44s and CD44v was different in western blot analysis (Fig. 4). Furthermore, we found the 48-kDa band in KYSE70 cells. By the radio labelled CD44s pulse chasing assay, a CD44s precursor form (about 48 kDa) was first translated, after which the precursor received N- and O-glycosylation and reached 85kDa mature form [33]. This result suggests that the 48-kDa band is a non-glycosylated precursor form of CD44 in KYSE70 cells. We previously determined the epitope of C₄₄Mab-46 as ¹⁷⁴TDDDV₁₇₈ by enzyme-linked immunosorbent assay using synthetic peptides [31]. Although the Thr174 of CD44 have been confirmed as an O-glycan site [34], C₄₄Mab-46 could recognize the epitope in the absence of glycosylation. In the future, it should be determined whether the 48-kDa CD44 is exposed on cell surface, and O-glycosylation at Thr174 affect the recognition by C₄₄Mab-46.

CD44s and CD44v interact with various proliferation-, migration-, and invasion-promoting membrane proteins. CD44s binds to platelet-derived growth factor β -receptor and transforming growth factor- β type I receptor [35], and modulate their functions. CD44s also interacts with podoplanin (PDPN) and colocalize at cell-surface protrusions. PDPN-induced migration requires CD44 in MDCK cells, and knockdown of CD44 and PDPN in oral SCC cells affect cell spreading, suggesting that CD44 directly interacts PDPN with and modulates the intracellular signaling and cell migration [36]. It is interesting whether C₄₄Mab-46 inhibits these protein-protein interactions and influence their functions.

CD44v6 is highly expressed in many cancers, and act as co-receptor for at least three receptor tyrosine kinases (c-Met [37,38], EGFR [39], and VEGFR-2 [40]), which contribute to the oncogenic functions of CD44v6. Therefore, humanized anti-CD44v6 mAb BIWA4 (bivatuzumab)-mertansine drug conjugate, was evaluated in clinical trials [41]. However, the clinical trials were discontinued because of the severe skin toxicities [42,43]. A first-in-human phase I clinical trial with RG7356, targeting to the constant region of CD44, showed an acceptable safety profile in patients with advanced CD44-expressing solid tumors. However, the study was terminated due to no evidence of a clinical and/or pharmacodynamic dose-response relationship with RG7356, but not due to safety concerns [44]. Therefore, the development of anti-CD44 targeting mAbs with more potent and fewer side effects is desired.

We previously established cancer-specific mAbs (CasMabs) targeting to PDPN [45-48] and podocalyxin [49], which are expressed on many cancers including ESCC [50-53]. It is worthwhile to develop a cancer-specific anti-CD44 antibody using CasMab method. We previously converted the IgG₁ subclass of C₄₄Mab-5 into a mouse IgG_{2a}, named 5-mG_{2a}, and produced a defucosylated version, 5-mG_{2a}-f. The 5-mG_{2a}-f exhibited ADCC/ CDC activities *in vitro* significantly reduced tumor growth in oral cancer cells [54]. Therefore, the production of a class switched and defucosylated version of C₄₄Mab-46 is warranted to evaluate the *in vivo* anti-tumor activity. Since KYSE70, used in this study, was reported to be tumorigenic in athymic nude mice [55], the cell line can be used to evaluate the anti-tumor activity as *in vivo* model.

Author Contributions: N.G., T.T., and T.A. performed the experiments. M.K.K and Y.K. designed the experiments. N.G. analyzed the data. N.G., H.S. and Y.K. wrote the manuscript.

Funding: This research was supported in part by AMED [grant numbers: JP21am0401013, JP21am0101078] (Y.K.)

Institutional Review Board Statement: The animal study protocol was approved by the Animal Care and Use Committee of Tohoku University (Permit number: 2019NiA-001) for studies involving animals.

Conflicts of Interest: The authors declare no conflicts of interest involving this article.

References

1. Fox, S.B.; Fawcett, J.; Jackson, D.G.; Collins, I.; Gatter, K.C.; Harris, A.L.; Gearing, A.; Simmons, D.L. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. *Cancer Res* **1994**, *54*, 4539-4546.
2. Yan, Y.; Zuo, X.; Wei, D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. *Stem Cells Transl Med* **2015**, *4*, 1033-1043, doi:10.5966/sctm.2015-0048.
3. Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: therapeutic implications. *J Hematol Oncol* **2018**, *11*, 64, doi:10.1186/s13045-018-0605-5.
4. Slevin, M.; Krupinski, J.; Gaffney, J.; Matou, S.; West, D.; Delisser, H.; Savani, R.C.; Kumar, S. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. *Matrix Biol* **2007**, *26*, 58-68, doi:10.1016/j.matbio.2006.08.261.
5. Morath, I.; Hartmann, T.N.; Orian-Rousseau, V. CD44: More than a mere stem cell marker. *Int J Biochem Cell Biol* **2016**, *81*, 166-173, doi:10.1016/j.biocel.2016.09.009.
6. Hassn Mesrati, M.; Syafruddin, S.E.; Mohtar, M.A.; Syahir, A. CD44: A Multifunctional Mediator of Cancer Progression. *Biomolecules* **2021**, *11*, doi:10.3390/biom11121850.
7. Murphy, J.F.; Lennon, F.; Steele, C.; Kelleher, D.; Fitzgerald, D.; Long, A.C. Engagement of CD44 modulates cyclooxygenase induction, VEGF generation, and proliferation in human vascular endothelial cells. *Faseb J* **2005**, *19*, 446-448, doi:10.1096/fj.03-1376fje.
8. Uchino, M.; Kojima, H.; Wada, K.; Imada, M.; Onoda, F.; Satofuka, H.; Utsugi, T.; Murakami, Y. Nuclear beta-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells. *BMC Cancer* **2010**, *10*, 414, doi:10.1186/1471-2407-10-414.
9. Li, L.; Hao, X.; Qin, J.; Tang, W.; He, F.; Smith, A.; Zhang, M.; Simeone, D.M.; Qiao, X.T.; Chen, Z.N.; et al. Antibody against CD44s inhibits pancreatic tumor initiation and postradiation recurrence in mice. *Gastroenterology* **2014**, *146*, 1108-1118, doi:10.1053/j.gastro.2013.12.035.
10. Zhang, S.; Wu, C.C.; Fecteau, J.F.; Cui, B.; Chen, L.; Zhang, L.; Wu, R.; Rassenti, L.; Lao, F.; Weigand, S.; et al. Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. *Proc Natl Acad Sci U S A* **2013**, *110*, 6127-6132, doi:10.1073/pnas.1221841110.
11. Verel, I.; Heider, K.H.; Siegmund, M.; Ostermann, E.; Patzelt, E.; Sproll, M.; Snow, G.B.; Adolf, G.R.; van Dongen, G.A. Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing head-and-neck cancer xenografts. *Int J Cancer* **2002**, *99*, 396-402, doi:10.1002/ijc.10369.
12. Nagano, O.; Okazaki, S.; Saya, H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. *Oncogene* **2013**, *32*, 5191-5198, doi:10.1038/onc.2012.638.
13. Ishimoto, T.; Nagano, O.; Yae, T.; Tamada, M.; Motohara, T.; Oshima, H.; Oshima, M.; Ikeda, T.; Asaba, R.; Yagi, H.; et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. *Cancer Cell* **2011**, *19*, 387-400, doi:10.1016/j.ccr.2011.01.038.
14. Shitara, K.; Doi, T.; Nagano, O.; Fukutani, M.; Hasegawa, H.; Nomura, S.; Sato, A.; Kuwata, T.; Asai, K.; Einaga, Y.; et al. Phase 1 study of sulfasalazine and cisplatin for patients with CD44v-positive gastric cancer refractory to cisplatin (EPOC1407). *Gastric Cancer* **2017**, *20*, 1004-1009, doi:10.1007/s10120-017-0720-y.
15. Shitara, K.; Doi, T.; Nagano, O.; Imamura, C.K.; Ozeki, T.; Ishii, Y.; Tsuchihashi, K.; Takahashi, S.; Nakajima, T.E.; Hironaka, S.; et al. Dose-escalation study for the targeting of CD44v(+) cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). *Gastric Cancer* **2017**, *20*, 341-349, doi:10.1007/s10120-016-0610-8.
16. Yamada, S.; Itai, S.; Nakamura, T.; Yanaka, M.; Kaneko, M.K.; Kato, Y. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C(44)Mab-5. *Biochem Biophys Rep* **2018**, *14*, 64-68, doi:10.1016/j.bbrep.2018.03.007.
17. Hayatsu, N.; Ogasawara, S.; Kaneko, M.K.; Kato, Y.; Narimatsu, H. Expression of highly sulfated keratan sulfate synthesized in human glioblastoma cells. *Biochem Biophys Res Commun* **2008**, *368*, 217-222, doi:10.1016/j.bbrc.2008.01.058.
18. Furusawa, Y.; Yamada, S.; Itai, S.; Sano, M.; Nakamura, T.; Yanaka, M.; Handa, S.; Mizuno, T.; Maeda, K.; Fukui, M.; et al. Establishment of Monoclonal Antibody PMab-202 Against Horse Podoplanin. *Monoclon Antib Immunodiagn Immunother* **2018**, *37*, 233-237, doi:10.1089/mab.2018.0030.
19. Furusawa, Y.; Yamada, S.; Itai, S.; Sano, M.; Nakamura, T.; Yanaka, M.; Fukui, M.; Harada, H.; Mizuno, T.; Sakai, Y.; et al. PMab-210: A Monoclonal Antibody Against Pig Podoplanin. *Monoclon Antib Immunodiagn Immunother* **2019**, *38*, 30-36, doi:10.1089/mab.2018.0038.
20. Kato, Y.; Yamada, S.; Furusawa, Y.; Itai, S.; Nakamura, T.; Yanaka, M.; Sano, M.; Harada, H.; Fukui, M.; Kaneko, M.K. PMab-213: A Monoclonal Antibody for Immunohistochemical Analysis Against Pig Podoplanin. *Monoclon Antib Immunodiagn Immunother* **2019**, *38*, 18-24, doi:10.1089/mab.2018.0048.
21. Furusawa, Y.; Yamada, S.; Itai, S.; Nakamura, T.; Yanaka, M.; Sano, M.; Harada, H.; Fukui, M.; Kaneko, M.K.; Kato, Y. PMab-219: A monoclonal antibody for the immunohistochemical analysis of horse podoplanin. *Biochem Biophys Rep* **2019**, *18*, 100616, doi:10.1016/j.bbrep.2019.01.009.

22. Furusawa, Y.; Yamada, S.; Itai, S.; Nakamura, T.; Takei, J.; Sano, M.; Harada, H.; Fukui, M.; Kaneko, M.K.; Kato, Y. Establishment of a monoclonal antibody PMab-233 for immunohistochemical analysis against Tasmanian devil podoplanin. *Biochem Biophys Rep* **2019**, *18*, 100631, doi:10.1016/j.bbrep.2019.100631.

23. Tamura, R.; Oi, R.; Akashi, S.; Kaneko, M.K.; Kato, Y.; Nogi, T. Application of the NZ-1 Fab as a crystallization chaperone for PA tag-inserted target proteins. *Protein Sci* **2019**, *28*, 823-836, doi:10.1002/pro.3580.

24. Fujii, Y.; Matsunaga, Y.; Arimori, T.; Kitago, Y.; Ogasawara, S.; Kaneko, M.K.; Kato, Y.; Takagi, J. Tailored placement of a turn-forming PA tag into the structured domain of a protein to probe its conformational state. *J Cell Sci* **2016**, *129*, 1512-1522, doi:10.1242/jcs.176685.

25. Fujii, Y.; Kaneko, M.; Neyazaki, M.; Nogi, T.; Kato, Y.; Takagi, J. PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. *Protein Expr Purif* **2014**, *95*, 240-247, doi:10.1016/j.pep.2014.01.009.

26. Miura, K.; Yoshida, H.; Nosaki, S.; Kaneko, M.K.; Kato, Y. RAP Tag and PMab-2 Antibody: A Tagging System for Detecting and Purifying Proteins in Plant Cells. *Front Plant Sci* **2020**, *11*, 510444, doi:10.3389/fpls.2020.510444.

27. Fujii, Y.; Kaneko, M.K.; Ogasawara, S.; Yamada, S.; Yanaka, M.; Nakamura, T.; Saidoh, N.; Yoshida, K.; Honma, R.; Kato, Y. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification. *Monoclon Antib Immunodiagn Immunother* **2017**, *36*, 68-71, doi:10.1089/mab.2016.0052.

28. Fujii, Y.; Kaneko, M.K.; Kato, Y. MAP Tag: A Novel Tagging System for Protein Purification and Detection. *Monoclon Antib Immunodiagn Immunother* **2016**, *35*, 293-299, doi:10.1089/mab.2016.0039.

29. Wakasa, A.; Kaneko, M.K.; Kato, Y.; Takagi, J.; Arimori, T. Site-specific epitope insertion into recombinant proteins using the MAP tag system. *J Biochem* **2020**, *168*, 375-384, doi:10.1093/jb/mvaa054.

30. Asano, T.; Kaneko, M.K.; Takei, J.; Tateyama, N.; Kato, Y. Epitope Mapping of the Anti-CD44 Monoclonal Antibody (C44Mab-46) Using the REMAP Method. *Monoclon Antib Immunodiagn Immunother* **2021**, *40*, 156-161, doi:10.1089/mab.2021.0012.

31. Takei, J.; Asano, T.; Suzuki, H.; Kaneko, M.K.; Kato, Y. Epitope Mapping of the Anti-CD44 Monoclonal Antibody (C44Mab-46) Using Alanine-Scanning Mutagenesis and Surface Plasmon Resonance. *Monoclon Antib Immunodiagn Immunother* **2021**, *40*, 219-226, doi:10.1089/mab.2021.0028.

32. Ponta, H.; Sherman, L.; Herrlich, P.A. CD44: from adhesion molecules to signalling regulators. *Nat Rev Mol Cell Biol* **2003**, *4*, 33-45, doi:10.1038/nrm1004.

33. Lokeshwar, V.B.; Bourguignon, L.Y. Post-translational protein modification and expression of ankyrin-binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. *J Biol Chem* **1991**, *266*, 17983-17989.

34. Mereiter, S.; Martins Á, M.; Gomes, C.; Balmaña, M.; Macedo, J.A.; Polom, K.; Roviello, F.; Magalhães, A.; Reis, C.A. O-glycan truncation enhances cancer-related functions of CD44 in gastric cancer. *FEBS Lett* **2019**, *593*, 1675-1689, doi:10.1002/1873-3468.13432.

35. Porsch, H.; Mehić, M.; Olofsson, B.; Heldin, P.; Heldin, C.H. Platelet-derived growth factor β -receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other's signaling and stability. *J Biol Chem* **2014**, *289*, 19747-19757, doi:10.1074/jbc.M114.547273.

36. Martín-Villar, E.; Fernández-Muñoz, B.; Parsons, M.; Yurrita, M.M.; Megías, D.; Pérez-Gómez, E.; Jones, G.E.; Quintanilla, M. Podoplanin associates with CD44 to promote directional cell migration. *Mol Biol Cell* **2010**, *21*, 4387-4399, doi:10.1091/mbc.E10-06-0489.

37. Orian-Rousseau, V.; Morrison, H.; Matzke, A.; Kastilan, T.; Pace, G.; Herrlich, P.; Ponta, H. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. *Mol Biol Cell* **2007**, *18*, 76-83, doi:10.1091/mbc.e06-08-0674.

38. van der Voort, R.; Taher, T.E.; Wielenga, V.J.; Spaargaren, M.; Prevo, R.; Smit, L.; David, G.; Hartmann, G.; Gherardi, E.; Pals, S.T. Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. *J Biol Chem* **1999**, *274*, 6499-6506, doi:10.1074/jbc.274.10.6499.

39. Wang, S.J.; Bourguignon, L.Y. Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. *Am J Pathol* **2011**, *178*, 956-963, doi:10.1016/j.ajpath.2010.11.077.

40. Tremmel, M.; Matzke, A.; Albrecht, I.; Laib, A.M.; Olaku, V.; Ballmer-Hofer, K.; Christofori, G.; Héroult, M.; Augustin, H.G.; Ponta, H.; et al. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. *Blood* **2009**, *114*, 5236-5244, doi:10.1182/blood-2009-04-219204.

41. Orian-Rousseau, V.; Ponta, H. Perspectives of CD44 targeting therapies. *Arch Toxicol* **2015**, *89*, 3-14, doi:10.1007/s00204-014-1424-2.

42. Riechelmann, H.; Sauter, A.; Golze, W.; Hanft, G.; Schroen, C.; Hoermann, K.; Erhardt, T.; Gronau, S. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. *Oral Oncol* **2008**, *44*, 823-829, doi:10.1016/j.oraloncology.2007.10.009.

43. Tijink, B.M.; Buter, J.; de Bree, R.; Giaccone, G.; Lang, M.S.; Staab, A.; Leemans, C.R.; van Dongen, G.A. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. *Clin Cancer Res* **2006**, *12*, 6064-6072, doi:10.1158/1078-0432.Ccr-06-0910.

44. Menke-van der Houven van Oordt, C.W.; Gomez-Roca, C.; van Herpen, C.; Coveler, A.L.; Mahalingam, D.; Verheul, H.M.; van der Graaf, W.T.; Christen, R.; Rüttinger, D.; Weigand, S.; et al. First-in-human phase I clinical trial of RG7356, an anti-

CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. *Oncotarget* **2016**, *7*, 80046-80058, doi:10.18632/oncotarget.11098.

45. Kaneko, M.K.; Nakamura, T.; Kunita, A.; Fukayama, M.; Abe, S.; Nishioka, Y.; Yamada, S.; Yanaka, M.; Saidoh, N.; Yoshida, K.; et al. ChLpMab-23: Cancer-Specific Human-Mouse Chimeric Anti-Podoplanin Antibody Exhibits Antitumor Activity via Antibody-Dependent Cellular Cytotoxicity. *Monoclon Antib Immunodiagn Immunother* **2017**, *36*, 104-112, doi:10.1089/mab.2017.0014.

46. Kaneko, M.K.; Yamada, S.; Nakamura, T.; Abe, S.; Nishioka, Y.; Kunita, A.; Fukayama, M.; Fujii, Y.; Ogasawara, S.; Kato, Y. Antitumor activity of chLpMab-2, a human-mouse chimeric cancer-specific antihuman podoplanin antibody, via antibody-dependent cellular cytotoxicity. *Cancer Med* **2017**, *6*, 768-777, doi:10.1002/cam4.1049.

47. Kato, Y.; Kaneko, M.K. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. *Sci Rep* **2014**, *4*, 5924, doi:10.1038/srep05924.

48. Miyazaki, A.; Nakai, H.; Sonoda, T.; Hirohashi, Y.; Kaneko, M.K.; Kato, Y.; Sawa, Y.; Hiratsuka, H. LpMab-23-recognizing cancer-type podoplanin is a novel predictor for a poor prognosis of early stage tongue cancer. *Oncotarget* **2018**, *9*, 21156-21165, doi:10.18632/oncotarget.24986.

49. Kaneko, M.K.; Ohishi, T.; Kawada, M.; Kato, Y. A cancer-specific anti-podocalyxin monoclonal antibody (60-mG(2a)-f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma. *Biochem Biophys Rep* **2020**, *24*, 100826, doi:10.1016/j.bbrep.2020.100826.

50. Kaneko, M.K.; Itai, S.; Yamada, S.; Kato, Y. 47-mG(2a): A Mouse IgG(2a)-Type of Pcmab-47 Useful for Detecting Podocalyxin in Esophageal Cancers by Immunohistochemistry. *Monoclon Antib Immunodiagn Immunother* **2018**, *37*, 158-161, doi:10.1089/mab.2018.0003.

51. Tanaka, M.; Kijima, H.; Shimada, H.; Makuuchi, H.; Ozawa, S.; Inokuchi, S. Expression of podoplanin and vimentin is correlated with prognosis in esophageal squamous cell carcinoma. *Mol Med Rep* **2015**, *12*, 4029-4036, doi:10.3892/mmr.2015.3966.

52. Nakashima, Y.; Yoshinaga, K.; Kitao, H.; Ando, K.; Kimura, Y.; Saeki, H.; Oki, E.; Morita, M.; Kakeji, Y.; Hirahashi, M.; et al. Podoplanin is expressed at the invasive front of esophageal squamous cell carcinomas and is involved in collective cell invasion. *Cancer Sci* **2013**, *104*, 1718-1725, doi:10.1111/cas.12286.

53. Rahadiani, N.; Ikeda, J.; Makino, T.; Tian, T.; Qiu, Y.; Mamat, S.; Wang, Y.; Doki, Y.; Aozasa, K.; Morii, E. Tumorigenic role of podoplanin in esophageal squamous-cell carcinoma. *Ann Surg Oncol* **2010**, *17*, 1311-1323, doi:10.1245/s10434-009-0895-5.

54. Takei, J.; Kaneko, M.K.; Ohishi, T.; Hosono, H.; Nakamura, T.; Yanaka, M.; Sano, M.; Asano, T.; Sayama, Y.; Kawada, M.; et al. A defucosylated antiCD44 monoclonal antibody 5mG2af exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. *Oncol Rep* **2020**, *44*, 1949-1960, doi:10.3892/or.2020.7735.

55. Shimada, Y.; Imamura, M.; Wagata, T.; Yamaguchi, N.; Tobe, T. Characterization of 21 newly established esophageal cancer cell lines. *Cancer* **1992**, *69*, 277-284, doi:10.1002/1097-0142(19920115)69:2<277::aid-cncr2820690202>3.0.co;2-c.