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Abstract: Machine learning (ML) has found increasing use in research on energy conversion and 
storage technologies, in particular, so-called sustainable technologies. While often ML is used to 
directly optimize the parameters or phenomena of interest in the space of features, in this 
perspective, we focus on using ML to construct objects and methods that help in or enable the 
modeling of the underlying phenomena. We highlight the need for machine learning from very 
sparse and unevenly distributed numeric data in multidimensional spaces in these applications. 
After a brief introduction of some common regression-type machine learning techniques, we will 
focus on more advanced ML techniques which use these known methods as building blocks of more 
complex schemes and thereby allow working with extremely sparse data and also allow generating 
insight. Specifically, we will highlight the utility of using representations with sub-dimensional 
functions by combining the high-dimensional model representation ansatz with machine learning 
methods like neural networks or Gaussian process regressions in applications ranging from 
heterogeneous catalysis to nuclear energy. 

Keywords: machine learning; neural network; Gaussian process regression; curse of dimensionality; 
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1. Introduction 

Machine learning (ML) as well more complex techniques of artificial intelligence (AI) have been 
finding increasing use in research and development for novel technologies [1,1–7]. Whenever one can 
identify an input-output mapping whose construction is helpful in achieving a research or 
engineering goal, ML techniques are often of assistance. One can cast a research problem as a problem 
of constructing such a mapping and then searching in the space of the descriptors (features or inputs) 
[8,9] for a desirable optimal point. One area where ML is gaining more and more traction are novel 
energy conversion and storage technologies. These techniques are, in particular, intensely explored 
for application to the development of technologies typically associated with sustainable generation 
and use of energy such as advanced types (organic and inorganic materials based) of solar cells and 
LED (light-emitting diodes) [10–22], inorganic and organic metal ion batteries [23,24], fuel cells and 
generally heterogeneous catalysis including electro- and photocatalysis [25–34]. This is natural in the 
sense that the development of these technologies often passes through optimization and balancing of 
multiple factors acting simultaneously and to opposite ends; for example, in the case of organic solar 
cells, there is an optimum to be sought between the donor’s bandgap, the band offset between the 
donor and the acceptor, the reorganization energies of both the donor and the acceptor, the charge 
transfer integral etc. [12,15,16]. These properties themselves are a function of the structure of the 
molecules which can be encoded through multiple descriptors [9]. In principle, most of these 
properties can be computed and or measured experimentally but doing so for each candidate 
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molecule is expensive. It is enticing, based on a limited number of measurements and or calculations, 
to build a mapping – with the help of machine learning – between the chosen descriptors and the 
properties of interest, and then search the map for an optimal point (such as maximum power 
conversion efficiency in the case of a solar cell). Similarly, optima need to be sought in the design of 
battery materials (balancing thermodynamics and kinetics of cation insertion, stability etc.), catalysts 
(balancing adsorption energies of key species, kinetics and stability) and other types of functional 
materials. Some examples will be given in Section 2. 

Functional materials and interfaces are key to the design of novel energy technologies. As 
compositional space is too vast to be explored by brute-force and trial-and-error approaches, rational 
guidance of design is necessary. Such rational guidance comes, in particular, from simulations at 
various scales (from atomistic and electronic structure levels to macroscopic). Specifically, for 
technologies such as fuel cells, batteries, or solar cells, electronic properties are key to functionality, 
and it is atomistic-scale, and in particular ab initio, simulations that are providing insight into the 
mechanism at the material level and thereby can guide rational design. Bandgaps and 
bandstructures, absorption spectra, molecular adsorption energies etc are today routinely 
computable at the DFT (density functional theory) [35,36] level. Further, structural information is 
obtainable with techniques such as molecular dynamics [37], Monte Carlo [38] and others which can 
operate at larger scales than DFT. Such calculations, however, remain costly, in particular, DFT with 
which routine calculations are still typically limited to about 103 atoms. It is therefore enticing to 
deploy ML methods to replace such calculations or at least to reduce the required number of such 
calculations. Of course, ML can boost the development not only of the so-called sustainable or 
“green” energy technologies; we will provide an example in this perspective where it can be used to 
advance research useful for the future of nuclear energy.  

The purpose of this perspective is not a comprehensive or even brief review of ML uses in 
materials science and energy technologies nor is it to review staple ML methods – there is already 
ample literature on these topics [1–34]. Novel energy technologies are very knowledge-deep i.e. they 
require multiple steps in understanding and development; specifically, they require insight at the 
electronic structure level. Many aspects are being addressed with machine learning not just 
predicting material or device properties from descriptors - much is being done at the backend or 
upstream by using machine learning in the workflow of understanding modeling of materials and 
phenomena for these technologies, or to improve modeling capabilities [1,39–44]. This in particular 
requires ML methods and tools capable of working with extremely sparse and unevenly distributed data in 
multidimensional spaces beyond the capabilities of standard methods. That is the focus of this perspective. 

We will first show illustrative examples of how machine learning can be used to help improve 
the way we produce and use energy, especially used for the benefit of so-called sustainable 
technologies. We will highlight the fact that in these applications, one usually has to deal with 
multiple variables i.e. to operate in multidimensional spaces, and we will see that there are properties 
of multidimensional spaces with which one typically does not have to deal with in one-, two-, or 
three-dimensional problems. We will show why ML techniques are effective when working with 
such data. We will briefly introduce neural networks (NN) and Gaussian process regressions (GPR) 
and their pros and cons. We will then focus on using the so-called high-dimensional model 
representations to structure the functional representation, in conjunction with NN or GPR used to 
build components of those representations. We will see that this is especially useful when trying to 
recover trends or functional forms from sparse data and to gain insight on the examples from catalysis 
and a perspective nuclear technology as well as provide an example how ML can revolutionize ab 
initio modeling capabilities which are critical for the modeling and mechanistic understanding of 
novel energy technologies.  

2. High dimensionality of and extremely low data density in the space of descriptors 

2.1. Examples of input-output mappings used in ML for energy technologies 
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The humanity is trying to develop more sustainable ways to produce and use energy. Currently 
the world still largely relies on fossil fuels which are believed to be the result of absorption of sun 
energy [45]. The use of fossil fuels generates many pollutants, including poisonous gases and heavy 
metals, and it also generates large amounts of CO2. CO2 can be recycled through vegetation but 
unfortunately the timeframe from dead vegetation to fossil fuels is too long to rely on such a natural 
carbon cycle with current and projected levels of energy consumption. There is a quest for what can 
be called an anthropogenic chemical carbon cycle [46]. In it, one does not rely on burning of fossil 
fuels but on a set of technologies which either generate electricity directly from the sun with solar 
cells [47] and from other sustainable sources such as wind [48], or synthesize, using sunlight and CO2 
and other inputs, fuels which can be utilized in a clean way, such as hydrogen or liquids which can 
be used with cleaner exhaust in fuel cells or even burnt directly [49–51].  

Solar and wind technologies are of course intermittent, and to match their output schedule to 
the demand schedule, storage is necessary [52], in particular with batteries ([53] and references 
therein). Batteries are also needed for road transport electrification. At the same time, novel and safer 
types of safer nuclear reactors are being developed for reliable low-carbon footprint baseload [54–
56]. All these technologies become an energy mix. Multiple technologies are used, and in each of these 
technologies there are multiple scientific, engineering, and technological problems that need to be 
addressed. Also bringing these technologies together to work in one system is a challenge. Machine 
learning can help resolve many of these problems, and we will now show some examples. 

The reader will have heard about “hydrogen economy” and about fuel cells which allow 
“burning” in a clean way either hydrogen or other fuels. At the core of these capabilities is 
heterogeneous catalysis, i.e. reactions happening at and catalyzed by surfaces. Some of the key 
reactions relevant for energy production and use are driven by solid catalysts including the oxygen 
reduction reaction [57] which is a critical and still problematic step in fuel cells, the Fischer-Tropsch 
process [58] which allows producing synthetic fuels from a mixture of hydrogen and CO (so-called 
syngas); water-gas shift [59] and steam and dry reforming [60,61] are also very important reactions. 
These reactions permit transformation between hydrocarbons, water, hydrogen, and carbon oxides. 
Their efficiency depends on the quality of the catalyst. Many efficient catalysts are rare and or 
expensive such as platinum widely used in commercial fuel cells, e.g. those used in Toyota Mirai, in 
particular, due to the lack of non-expensive alternatives. 

Design of better catalysts is therefore a major bottleneck on the way to wide deployment of more 
sustainable energy technologies. Recently, machine learning has found increasing use in rational 
design of catalysts [25–34]. Typically, one considers a set of descriptors of catalytic activity which 
include reaction thermodynamics and kinetics, adsorption energies of key reactants and 
intermediates, as well as structure and electronic structure descriptors of the catalyst [26,33]; some 
are shown in Figure 1. To sieve through candidate materials, one encodes them into a set of 
compositional and structural variables such as atomic numbers and positions, crystal structure and 
surface cut, and adsorption site. Structures and many of the properties such as adsorption and 
reaction energies and kinetic barriers as well as electronic structure descriptors are routinely 
computed, typically with density functional theory [36,62]. Computations play a key role in rational 
design of catalysts with or without machine learning, as many properties are either not directly 
accessible experimentally or cannot be measured with high throughput and modest cost. All together 
this makes a lot of variables on which catalytic activity depends and one needs to perform searches 
and uncover relations in multidimensional spaces, which can be done with the help of machine 
learning [25–29].  
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Figure 1. Left: Schematic of the SQL data structure of Catalysis‐Hub.org, used to store reaction 
energies (Reactions table, green) and DFT calculations (ASE database, blue). Since each reaction 
energy involves several DFT calculations (and the same DFT calculations can potentially be used for 
several reactions), a many‐to‐many mapping schema is used to preserve connections between the 
table rows. Right: Machine learning‐enhanced catalyst candidate prediction: Bulk and surface 
structures retrieved from structure databases like materialsproject.org, OQMD, catalysis‐hub.org, etc. 
are used for automated slab generation and enumeration of possible adsorption sites. In an iterative 
process, limited numbers of DFT‐calculated adsorption energies and machine‐learning‐predicted 
adsorption energies are used to inform microkinetic models to eventually suggest promising catalyst 
candidates that should be investigated by experiment. Adapted with permission from Ref. [26]. 
Copyright 2019 Wiley-VCH Verlag GmbH. 

To model directly a catalyzed reaction from reactants to products, one would need an 
interatomic potential energy function, and those potentials also pose a bottleneck in the modeling of 
heterogeneous catalysis and are more and more often constructed with machine learning [1,40,63,64]. 
There is a key difference between the traditional fossil fuel based energy technologies and the newer 
technologies based on solar cells, fuel cells, batteries etc.: the fossil fuel based technologies can be 
understood based on classical thermodynamics and mechanics, while these newer technologies critically depend 
on quantum phenomena, ultimately on electronic states energies, occupancies, and localizations. Quantum 
mechanics based modeling therefore takes center stage. Such modeling is difficult and costly, and machine 
learning is also used to facilitate it; we will show a couple examples thereof below. This is most 
obvious in solar cells where details of the electronic structure such as the bandgap, the effective mass 
etc. determine directly solar cell performance. Machine learning is now more and more often used to 
help design better solar cells and specifically materials for solar cells and other optoelectronic 
applications [12–15,65,66]. It is used to predict better active materials, to optimize device performance 
or even optimize fabrication processes [15]. Figure 2 shows main uses of ML for solar cell design as 
well as most widely used ML methods summarized in a recent review [15]. Artificial neural networks 
(ANN) remain the most widely used method, also widely used are genetic algorithms (GA), random 
forest (RF), particle swarm optimization (PSO), simulated annealing (SA), support vector machines 
(SVM), kernel ridge regression (KRR) and Gaussian process regression (GPR), externally randomized 
trees (ERT), clustering methods such as K nearest neighbors, principal component analysis - these are 
just some methods from by now very many machine learning methods. That is, all three major classes 
of ML – classification, regression, and clustering – are finding use in solar cell research as well as in 
catalysis research [26]. 
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Figure 2. Left: Distribution of types of ML techniques applied in design and fabrication of solar cells. 
Right: Distribution of applications in design and fabrication of solar cells assisted by ML techniques. 
Adapted with permission from Ref. [15]. Copyright 2019 Wiley-VCH Verlag GmbH. 

These examples from the fields catalysis and solar cells are barely illustrative. Machine learning 
(and the same methods as mentioned above) is also used to help design battery materials [23,24,67,68] 
and for other energy technologies as indicated above, but ML is in demand not just at the material or 
device level but also at the system level [69–72]. In an energy mix containing solar farms, wind farms, 
and other intermittent technologies alongside more established generation methods such as nuclear 
or natural gas powered stations, one needs to constantly balance supply and demand. Predicting 
demand and predicting possible supply from solar and wind and choosing how to palliate any excess 
or shortfall with either battery storage or call on nuclear or hydrocarbon based generation is an 
important problem where there is much potential for machine learning which is yet to be fully 
realized [73,74]. It also requires working with multidimensional datasets. 

To illustrate specifically the challenge posed by the dimensionality of the feature space, in ML 
for materials for novel energy technologies, consider one recent example from the literature [10] of 
how ML is applied to design better materials for perovskite solar cells [75], in which the main active 
material and light absorber is a (typically organic-inorganic hybrid) perovskite material. The 
composition of the perovskite can be changed by different choices of atoms placed in different sites 
of the crystal lattice. The perovskites most widely used in labs today contain lead which is not 
desirable. Moreover, different structural choices also in principle allow one to modulate the bandgap 
and other properties which could better match with specific electron and hole transporting materials 
[76] which are in contact with the perovskite in a solar cell. In the example of Ref. [10], candidate 
compositions were encoded with 32 features which included properties of constituent atoms such as 
ionization potential, orbital radii etc. as well as properties of the crystal. We will see below that this 
dimensionality, which from the point of view of applications does not appear to be high (indeed, 
hundreds to thousands of features are sometimes available), is in fact very high from the point of 
view of data density.  

We pointed out that in all of the above mentioned applications of machine learning, a multitude 
of methods are used: classification methods, regression methods, clustering methods; supervised and 
unsupervised method. In what follows, we will narrowly focus on specific regression type methods 
based on neural networks and Gaussian process regressions and on composite methods using them 
as building blocks to enable ML in high dimensional spaces from extremely sparse data.  

2.2. New technologies and challengies require new simulation methods – a large scope for machine learning 

Machine learning is also useful to improve simulation methods. The example of machine 
learning interatomic potentials was cited above; ML is also used to improve the widely used DFT 
method by learning better exchange correlation functionals, dispersion corrections, corrections to 
computed excitation energies etc. ([39] and references therein). We will draw attention here to only 
one but critically important example which allows to showcase the power of ML. We start with a 
seemingly purely mathematical problem: consider a function of space ρ(x), where x is a vector of 
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Cartesian coordinates x, y, z. The function is positively definite and integrates to N: ∫ 𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙 = 𝑁𝑁. 
We represent ρ as a sum of N positively definite pieces each integrating to 1:  

𝜌𝜌(𝒙𝒙) = �𝜌𝜌𝑖𝑖(𝒙𝒙) =
𝑁𝑁

𝑛𝑛=1

�|𝜙𝜙𝑖𝑖(𝒙𝒙)|2
𝑁𝑁

𝑛𝑛=1

 

�𝜌𝜌𝑖𝑖(𝒙𝒙)𝑑𝑑𝒙𝒙 = 1 

(2.2.1) 

Because they are positive definite, they are squares of some functions 𝜙𝜙𝑖𝑖. It is known that this 
decomposition can be done so that 𝜙𝜙𝑖𝑖 are orthonormal: ∫𝜙𝜙𝑖𝑖(𝒙𝒙)𝜙𝜙𝑗𝑗(𝒙𝒙)𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑖𝑖𝑖𝑖. 

We are interested in this quantity T or the corresponding integrand τ(x) which can take two 
alternative forms: 

𝑇𝑇 = −
1
2
��𝜙𝜙𝑖𝑖Δ𝜙𝜙𝑖𝑖

𝑁𝑁

𝑛𝑛=1

𝑑𝑑𝒙𝒙 = �𝜏𝜏(𝐾𝐾𝐾𝐾)(𝒙𝒙)𝑑𝑑𝒙𝒙 

𝑇𝑇 =
1
2
��|∇𝜙𝜙𝑖𝑖|2

𝑁𝑁

𝑛𝑛=1

𝑑𝑑𝒙𝒙 = �𝜏𝜏+(𝒙𝒙)𝑑𝑑𝒙𝒙 

(2.2.2) 

We want to express T without explicit reference to 𝜙𝜙𝑖𝑖, as a function of ρ -dependent quantities 
only. It could be any derivative of ρ, any power of ρ, but only of ρ without explicit reference to 𝜙𝜙𝑖𝑖.  

The reason why this example is important is that a solution to this problem opens the way to 
routine, linear-scaling large-scale ab initio modeling of materials with the so-called orbital-free DFT 
(OF-DFT) [77]. We mentioned above that quantum mechanics based modeling is critical for 
understanding and design of novel energy technologies, yet the commonly used Kohn-Sham DFT in 
unwieldy for system with more than 101-102 atoms. Large scale modeling means more realistic 
modeling and is required to properly account for a range of phenomena which are intrinsically large-
scale (e.g. microstructure-driven properties). In OF-DFT, ρ takes the meaning of the electron density, 
N is the number of electrons, 𝜙𝜙𝑖𝑖 are single-electron (Kohn-Sham) orbitals [36], T is the kinetic energy, 
and 𝜏𝜏(𝒙𝒙) is the kinetic energy density (KED) (we neglect spins and partial orbital occupancy without 
the loss of generality). The mapping 𝑇𝑇 = 𝑇𝑇[𝜌𝜌(𝒙𝒙)] is the kinetic energy functional (KEF). Approximate 
formulas for such an expression (𝑇𝑇[𝑓𝑓(𝒙𝒙)]) exist but they are not accurate enough for use in most 
applications where ab initio modeling is needed, including (organic and inorganic) semiconductors 
and transition metal containing functional materials of novel energy technologies. In the last several 
years, substantial progress is being made on this problem with the help of machine learning using, 
in particular, techniques like neural networks and kernel methods [41,78–82]. We will return to this 
example later in the context of deep learning. Some uses of ML to improve quantum mechanics based 
modeling methods are reviewed in Ref. [39]. 

2.3. The curse of dimensionality and why ML techniques are effective 

We mentioned in an example above 32 features used to describe perovskite materials [10]. Are 
32 dimensions high or low? – it is (very) high. In multidimensional spaces one is hit by the so-called 
curse of dimensionality. Imagine we sample a simple univariate function with M points sufficient to 
recover the function to a desired accuracy with a common method (e.g. splines). If one wants to 
maintain the same density of sampling in D dimensions, the number of sampling points would grow 
exponentially: MD. With M as small as 10 and D as small as 10, one would need 1010 data. This is the 
curse of dimensionality. Moreover, when one constructs a function with polynomials or Fourier 
expansions not only the number of required samples grows exponentially but the number of terms 
in the representation as well. The result of this is that it is impossible to achieve good density of 
sampling just by adding more data. For example, already in 20 dimensions, a million data points is 
equivalent to only about 2 data per degree of freedom (of an equivalent direct product grid). If we 
somehow managed to get 10 times more data, it would only increase the density of sampling to about 
2.2 data per degree of freedom. Practically, one therefore always works with extremely sparse data. 
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That is why 32 dimensions in the example above is in fact very high. In practice, one starts feeling 
this curse of dimensionality from about 6 dimensions and up. 

However, this debilitating scaling strictly speaking only holds for direct product 
representations. One reason why various machine learning methods work well in multidimensional 
spaces is because they avoid direct product representations and thereby alleviate the problem of the 
curse of dimensionality. We will illustrate this point in section 3.1. 

In multidimensional spaces, some intuitions break down. For example, what is local in low-D 

may not be in high-D. An example is the Gaussian function, 𝑔𝑔(𝒙𝒙) = ∏ (2𝜋𝜋𝜎𝜎𝑖𝑖2)−
1
2𝐷𝐷

𝑖𝑖=1 𝑒𝑒𝑒𝑒𝑒𝑒 �(𝑥𝑥𝑖𝑖−𝑥𝑥𝚤𝚤���)2

2𝜎𝜎𝑖𝑖
2 �, 

which is localized around the mean 𝒙𝒙� in the sense that about 70% of the quadrature of this function 
is within one standard deviation σ from the mean in the one-dimensional case (D = 1). In six 
dimensions (D = 6), for example, only 10% of the quadrature is from within one standard deviation 
(in each respective dimension). That is, a multidimensional Gaussian function is no longer a localized 
function by this measure. Working in high dimensionality has also its advantages. For example, there 
is the concentration of measure whereby as dimension is increased, the width of the distribution of 
distances between data points collapses: 𝑙𝑙𝑙𝑙𝑙𝑙

𝐷𝐷→∞
𝐸𝐸 �𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥(𝐷𝐷)−𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷)

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷)
� → 0 , where 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  and 

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 are maximum and minimum distances between the data points. We observed in our own 
experience that, for example, neural networks perform better in high-dimensional spaces than in 1, 
2, 3 dimensions. This ultimately relates to growing advantages of non-direct product representations 
in high dimensions. 

One important consequence of the low density of sampling is that the intrinsic dimensionality 
of the data set is less than the dimensionality of the space [83,84]. This is obvious when the data are 
confined to lower-dimensional hypersurfaces or other shapes, but even if the data are not confined 
to such a sub-dimensional shape, simply by the virtue of low density, the intrinsic dimensionality of 
the dataset is lowered. This ultimately justifies representations with lower-dimensional functions 
which will be described below.  

3. Advanced techniques for working with sparse data 

3.1. Brief introduction to neural networks and Gaussian process regression 

3.1.1. Neural networks (NN) 

Artificial neural networks [85] are an example of a representation of a multivariate function with 
univariate functions which are adapted to the problem by the choice of parameters. They are often 
presented with the help of an analogy with a biologic neural network, but for regression problems 
we find more useful the following interpretation. We expand a function 𝑓𝑓(𝒙𝒙),𝒙𝒙 ∈ 𝑅𝑅𝐷𝐷 in a basis of 
univariate functions 𝜎𝜎𝑛𝑛 with coefficients 𝑐𝑐𝑛𝑛: 

𝑓𝑓𝑘𝑘(𝒙𝒙) = �𝑐𝑐𝑛𝑛𝑛𝑛𝜎𝜎𝑛𝑛(
𝑁𝑁

𝑛𝑛=0

𝒘𝒘𝒏𝒏𝒙𝒙 + 𝑏𝑏𝑛𝑛) (3.1.1.1) 

Here we added a subscript k to indicate that several outputs can be computed from the same 
basis. The basis functions depend on all components of x but their arguments are scalars dependent 
on x as well as on weights w and biases b. This parameterization by w and b makes a flexible, non-
direct product basis. This representation goes back to the Kolmogorov theorem of 1957 [86], and since 
then, in a series of papers restrictions on σ have been relaxed [87–95]. This expression is a universal 
approximator even when σ is the same for all n and as long as σ is smooth and nonlinear [96]. In 
applications, typically σ is the same for all n and typically it is the sigmoid function, 𝜎𝜎(𝑥𝑥) =
(𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥) (𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥)⁄ , but it does not have to be. The parameters w and b and the coefficients c are 
fitted to reproduce a set of known samples of f, 𝑓𝑓𝑗𝑗 = 𝑓𝑓(𝒙𝒙𝑗𝑗), j = 1, …, M. The fit is nonlinear because 
σ is nonlinear.  
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The equation (3.1.1.1) (which is often written as 𝑓𝑓(𝒙𝒙) = 𝜎𝜎(∑ 𝑐𝑐𝑛𝑛𝜎𝜎(𝑁𝑁
𝑛𝑛=0 𝒘𝒘𝒏𝒏𝒙𝒙 + 𝑏𝑏𝑛𝑛)) i.e. with a so-

called output neuron, which, however, can be subsumed in the definition of f, without loss of 
generality) expresses a so-called single hidden layer neural network, it is graphically represented in 
Figure 3, where the arrows to each σ, which are called neurons, reflect the formation a single scalar 
input. These neurons form a hidden later. The outputs are collected in a sum to one or more outputs 
in the output layer, i.e. one can fit a multi-sheet function or a function and its derivatives, by the same 
NN. These are called output neurons.  

 

 
Figure 3. Schematic representation of a single-hidden layer neural network. 

One can collect the outputs of this last layer of neurons and feed them to yet another layer of 
neurons and so on, obtaining a multilayer or deep neural network: 

𝑓𝑓𝑙𝑙 = 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 �� 𝑤𝑤𝑙𝑙,𝑘𝑘𝑛𝑛
(𝑛𝑛)𝜎𝜎𝑛𝑛, 𝑘𝑘𝑛𝑛

� � 𝑤𝑤𝑘𝑘𝑛𝑛,𝑘𝑘𝑛𝑛−1
(𝑛𝑛−1) 𝜎𝜎𝑛𝑛−1,𝑘𝑘𝑛𝑛−1 �… � 𝑤𝑤𝑘𝑘2𝑘𝑘1

(2) 𝜎𝜎1,𝑘𝑘1 ��𝑤𝑤𝑘𝑘1𝑖𝑖
(1)𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=0

�
𝑁𝑁1

𝑘𝑘1=0

�
𝑁𝑁𝑛𝑛−1

𝑘𝑘𝑛𝑛−1=0

�
𝑁𝑁𝑛𝑛

𝑘𝑘𝑛𝑛=0

� (3.1.1.2) 

We stress that a single hidden layer network is already a universal approximator. In many 
applications, one layer would be sufficient and one needs to be sure if one actually needs a deep NN 
as it comes at a price of a large number of non-linear parameters. We will show examples later when 
one actually needs a deep NN. 

The fact that σ can be any smooth function opens new possibilities. We showed, for example, 
that with exponential neurons one easily obtains a sum of products representation with a relatively 
small number of terms [97]: 𝑓𝑓(𝒙𝒙) = ∑ 𝑤𝑤𝑖𝑖

(2) ∏ 𝑒𝑒𝑤𝑤𝑖𝑖𝑖𝑖
(1)𝑥𝑥𝑘𝑘𝑑𝑑

𝑘𝑘=0
𝑀𝑀
𝑖𝑖=0 . Sum of products representations are very 

useful because they greatly simplify integration of the function (multidimensional integrals over the 
function f can be computed as sums of products of one-dimensional integrals), which is a major 
advantage when the dimensionality is high. In fact, sum of product representations are required in 
certain computational methods, for example is some powerful quantum dynamics methods [98]. A 
more complicated way to get a sum of products are multiplicative neural networks which use error 
function type of neurons [99]: 𝑓𝑓(𝒙𝒙) = 𝜇𝜇1

(2) + ∑ 𝑤𝑤1,𝑘𝑘1
(2) ∏ 𝑒𝑒𝑒𝑒𝑒𝑒�𝜇𝜇𝑘𝑘1𝑘𝑘0

(1) + 𝑤𝑤𝑘𝑘11𝑘𝑘𝑜𝑜
(1) 𝑥𝑥𝑘𝑘0�

𝐽𝐽
𝑘𝑘0=1

𝑛𝑛1
𝑘𝑘1=1 . These are 

examples of a departure from the orthodox network designs which bring significant advantages. We 
will show below how with even more drastic changes in the architecture one can realize significant 
advantages.  

3.1.2. Gaussian process regression (GPR) 
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Another method we briefly highlight is Gaussian process regression (GPR) [100]. GPR answers 
the question “given the set of samples 𝑓𝑓𝑗𝑗 of a function f(x) at certain points in space xj, what are the 
expectation values f(x) and their variance ∆f(x) for function values at other points in space x?” One 
assumes that correlation between data can be described with a kernel, a chosen type of the covariance 
function k(x1, x2). The answer is given by  

𝑓𝑓(𝒙𝒙) = 𝑲𝑲∗𝑲𝑲−1𝒇𝒇 

Δ𝑓𝑓(𝒙𝒙) = 𝐾𝐾∗∗ − 𝑲𝑲∗𝑲𝑲−𝟏𝟏𝑲𝑲∗𝑻𝑻 
(3.1.2.1) 

where f is a vector of all 𝑓𝑓𝑗𝑗  values, and the matrices K and K* are computed from pairwise 
covariances among the data:  

𝑲𝑲 =

⎝

⎜
⎛
𝑘𝑘�𝒙𝒙(1),𝒙𝒙(1)� + 𝛿𝛿 𝑘𝑘(𝒙𝒙(1),𝒙𝒙(2)�
𝑘𝑘(𝒙𝒙(2),𝒙𝒙(1)� 𝑘𝑘(𝒙𝒙(2),𝒙𝒙(2)) + 𝛿𝛿

⋯
𝑘𝑘(𝒙𝒙(1),𝒙𝒙(𝑀𝑀)�
𝑘𝑘(𝒙𝒙(2),𝒙𝒙(𝑀𝑀)�

⋮ ⋱ ⋮
𝑘𝑘(𝒙𝒙(𝑀𝑀),𝒙𝒙(1)� 𝑘𝑘(𝒙𝒙(𝑀𝑀),𝒙𝒙(2)� ⋯ 𝑘𝑘(𝒙𝒙(𝑀𝑀),𝒙𝒙(𝑀𝑀)) + 𝛿𝛿⎠

⎟
⎞

 

𝑲𝑲∗ = �𝑘𝑘�𝒙𝒙,𝒙𝒙(𝟏𝟏)� 𝑘𝑘�𝒙𝒙,𝒙𝒙(𝟐𝟐)� … 𝑘𝑘�𝒙𝒙,𝒙𝒙(𝑴𝑴)��,      𝐾𝐾∗∗ = 𝑘𝑘(𝒙𝒙,𝒙𝒙) 

(3.1.2.2) 

The optional δ on the diagonal has the meaning of the magnitude of Gaussian noise and it helps 
generalization. Note that Eq. (3.1.2.1) as written (and as it commonly appears in the literature) holds 
for data (the set of 𝑓𝑓𝑗𝑗) normalized to unit variance, otherwise the left hand side should be multiplied 
by the variance of f. 

The covariance function is usually chosen as one of the Matern family of functions [101] given 
by  

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = 𝜎𝜎2
21−𝜈𝜈

𝛤𝛤(𝜈𝜈)
�√2𝜈𝜈

|𝒙𝒙 − 𝒙𝒙′|
𝑙𝑙

�
𝜈𝜈

𝐾𝐾𝜈𝜈 �√2𝜈𝜈
|𝒙𝒙 − 𝒙𝒙′|

𝑙𝑙
� (3.1.2.3) 

At different values of ν this function becomes a Gaussian (𝜈𝜈 → ∞), a simple exponential (𝜈𝜈 = 1/2) and 
various other widely used functions (such as Matern3/2 and Matern5/2 for ν = 3/2 and 5/2, 
respectively). The parameters of the covariance function are the only parameters, they are hyper-
parameters and they are few, as few as one (for an isotropic kernel at fixed ν). This is therefore a non-
parametric method, which is an advantage. While hyper-parameters still need to be chosen, the 
performance is usually about equally good as long as hyper-parameters are in some reasonable range. 
In Eq. (3.1.2.3), the critical parameter is the length parameter l; the prefactor 𝜎𝜎2 is fully correlated 
with δ in Eq. (3.1.2.2). Note that Eq. (3.1.2.1) is a non-direct product representation. 

3.1.3. Relative pros and cons of GPR vs NN 

Because in GPR one has to wield matrices and inverses of the matrices of the size 𝑀𝑀 × 𝑀𝑀, where 
M is number of data, this method becomes increasingly costly as the dataset size grows. In fact, it 
quickly becomes prohibitively expensive for datasets as small as tens of thousands of data unless 
additional approximations are made [102]. But the method is very accurate. In fact, GPR is the only 
method which we have seen beat NN in controlled comparisons and on the quality of observables, 
i.e. not just various fitting error measures, but controlled tests of the quality of observables computed 
with functions constructed using NN or GPR [103]. GPR has been shown to be equivalent to an 
infinitely large neural network [104]. Contrary to NN, it provides estimates of uncertainty (we caution 
however that ∆f in Eq. (3.1.2.1) should not be directly used to compute an error bar of the mode; it is 
the uncertainty of the expectation value, which can be higher or lower than the fitting error [105,106]). 
It is quite costly not just to build but also to evaluate a GPR model when the datasets are more than 
a few thousand data. The matrix inverse also means instability when data points are close to each 
other, although it can be handled e.g. by using pseudoinverses and appropriate values of δ. We also 
recently proposed a rectangular GPR which achieves numeric stability and good generalization 
without δ [107]. 
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Neural networks, on the contrary, work well when some points are close, they work well with 
millions of data even on a desktop computer [78]. Their disadvantage is a large number of parameters 
that need to be determined in a non-linear fit. There is therefore danger of overfitting and one needs 
to carefully control for it by a judicious choice of architecture and also by using test sets. Often as few 
as 5 to 20% of the available data are reserved for testing with the rest used for training. In our 
experience, this is grossly insufficient, and we recommend using test sets which are at least as large 
as training sets. This is a disadvantage as this requires more data. In general, with the same number 
of training points, an NN achieves a lower accuracy than GPR; alternatively, one needs more data to 
reach the same accuracy with NN as with GPR [103]. 

Given the advantages of GPR, it would be desirable to have a scheme in which GPR is used in a 
regime where it is most efficient i.e. with few data. The approach which we introduce next allows 
doing just that.  

3.2. High-dimensional model representation (HDMR) 

We now briefly introduce high-dimensional model representation (HDMR) [108–110]. HDMR is 
an expansion over orders of coupling. Its form is similar to the ANOVA decomposition [111,112]. The 
idea is to represent the function 𝑓𝑓(𝒙𝒙) as a sum of first an uncoupled approximation, then terms due 
to collective action of couples of variables, then triples etc, until the last term that describes the 
coupling term among all D variables: 

𝑓𝑓(𝒙𝒙) = 𝑓𝑓0 + �𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝐷𝐷

𝑖𝑖=1

+ 

+ � 𝑓𝑓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
𝐷𝐷

𝑖𝑖=1,
𝑗𝑗=𝑖𝑖+1

+ ⋯+ � 𝑓𝑓𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑(𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑑𝑑�
𝐷𝐷

𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑

+ ⋯+ 𝑓𝑓1,2, …,𝐷𝐷(𝒙𝒙) 
(3.2.1) 

If taken to this last term, the expansion is exact. If the expression is truncated at some lower-
order d terms, it is approximate. In most physical phenomena, the relative importance of these 
coupling terms drops rapidly with the order of coupling d. Depending on the application, one can 
stop at e.g. 3rd order or 2nd order or even 1st order, i.e. uncoupled approximation, without making 
much error [108]. 

When one has stopped at some relatively small order of coupling d, one works only with low-
dimensional component functions 𝑓𝑓𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑(𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑑𝑑� . All these component functions can be 
obtained from one and the same set of training points distributed in full D-dimensional space (in 
which case one obtains the so-called RS (random-sampling)-HDMR [113,114]). This is advantageous 
on several counts: low-dimensional functions are generally easier to build, they can be built from 
fewer data e.g. with sparse data, and not suffer from overfitting [115]. We indicated above that sparse 
data are a key problem and that e.g. the Gaussian process regression does not work well with large 
dataset. One can use HDMR to build a multivariate function from sparse data and stay in the 
“comfort zone” of the method which is used to build the component functions. A representation with 
lower-dimensional functions is also easier to use in applications particularly when f needs to be 
integrated. HDMR in that case allows computing only low-dimensional quadratures. 

In the original HDMR formulation, all component functions are mutually orthogonal, i.e. 

� 𝑓𝑓𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑�𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑑𝑑�𝑓𝑓𝑗𝑗1𝑗𝑗2…𝑗𝑗𝑚𝑚�𝑥𝑥𝑗𝑗1 , 𝑥𝑥𝑗𝑗2 , … , 𝑥𝑥𝑗𝑗𝑚𝑚�𝑑𝑑𝒙𝒙
𝐷𝐷

= 0 

{𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑} ≠ {𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑚𝑚} 

(3.2.2) 

and are equal to multidimensional integrals (specifically, (D – d) dimensional integrals need to be 
computed for d-dimensional component functions) which are quite difficult to compute [113,114]; 
further, any lower-dimensional component functions need to be constructed first before constructing 
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d-dimensional functions. We proposed an extension of HMDR whereby we do not build the entire 
expansion but directly represent the function f with d-dimensional functions [105,116–119].  

𝑓𝑓(𝒙𝒙) ≈�𝑓𝑓𝑖𝑖(𝑥𝑥1 , 𝑥𝑥2 , … , 𝑥𝑥𝑑𝑑 �
𝑁𝑁

𝑖𝑖=𝑖𝑖

 (3.2.3) 
 

This is achieved by dropping the orthogonality requirement. One need not build the entire HDMR 
expansion; it is possible to use only the terms of the desired dimensionality d that provides a desired 
accuracy. The lower-order terms are effectively subsumed into d-dimensional terms. Most 
importantly, when using machine learning to represent the component functions, no integrals need 
to be computed, and it is possible to alleviate the issue of combinatorial growth of the number of 
HDMR terms with d and D.  

3.3. Combining HDMR with ML for learning from sparse data 

3.3.1. Machine learning of HDMR terms 

HDMR component functions can be built with machine learning methods like neural networks 
[116,118,120] or Gaussian process regressions [105,106,119]. Practically this can be done by fitting 
component functions one at a time to the difference of the value of the function f at the training points 
and the sum of all other component functions: 

𝑓𝑓𝑘𝑘1𝑘𝑘2…𝑘𝑘𝑑𝑑
(𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺)�𝑥𝑥𝑘𝑘1 , 𝑥𝑥𝑘𝑘2 , … , 𝑥𝑥𝑘𝑘𝑑𝑑� = 𝑓𝑓(𝒙𝒙) − � 𝑓𝑓𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑

(𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺)(𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑑𝑑�
𝐷𝐷

{𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑}∈{12…𝐷𝐷}
{𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑}≠{𝑘𝑘1𝑘𝑘2…𝑘𝑘3}

 (3.3.1.1) 

One then cycles through all functions in a sort of a self-consistency loop until convergence. We called 
the resulting methods (RS-)HDMR-NN and (RS-)HDMR-GPR, respectively [105,120]. In Eq. (3.3.1.1) 
a single NN or GPR instance is used for each component function. In the case of NN, the entire HDMR 
representation can also be encored into the architecture of one NN. In practice, we found this to be 
rather cumbersome; the advantage of Eq. (3.3.1.1) is that existing NN engines with simple architecture 
can be used and work well. When using GPR, one can achieve an HDMR form of also by using an 
HDMR-type kernel [119,121]: 

𝑘𝑘(𝒙𝒙,𝒙𝒙′) = � 𝑘𝑘𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑�𝒙𝒙𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 ,𝒙𝒙′𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑�
{𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑}∈{12…𝐷𝐷}

 (3.3.1.2) 

where 𝒙𝒙𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 ≡ �𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑑𝑑�. There is in that case the disadvantage over Eq. (3.3.1.1) in that a 
custom kernel has to be defined, but one uses a single GPR instance and the 𝑓𝑓𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑

𝐺𝐺𝐺𝐺𝐺𝐺 (𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , … , 𝑥𝑥𝑖𝑖𝑑𝑑� 
are optimal in the least squares sense without the need for fitting cycles of Eq. (3.3.1.1). The individual 
component functions are then 

𝑓𝑓𝑘𝑘1𝑘𝑘2…𝑘𝑘𝑑𝑑�𝑥𝑥𝑘𝑘1 ,𝑥𝑥𝑘𝑘2 , … , 𝑥𝑥𝑘𝑘𝑑𝑑� = 𝑲𝑲𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑
∗ 𝒄𝒄 (3.3.1.3) 

where 𝒄𝒄 = 𝑲𝑲−𝟏𝟏𝒇𝒇 and 𝑲𝑲𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑
∗  is a row vector with elements 𝑘𝑘𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 �𝒙𝒙𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 ,𝒙𝒙𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑

(𝑛𝑛) �. The values of 
the component functions at the training set are then 𝒇𝒇𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 = 𝑲𝑲𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑𝒄𝒄. The relative importance of 
different component functions can be evaluated by computing the variance of 𝑲𝑲𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑𝒄𝒄, where the 
(m,n) elements of the matrix 𝑲𝑲𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 are 𝑘𝑘𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑 �𝒙𝒙𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑

(𝑚𝑚) ,𝒙𝒙𝑖𝑖1𝑖𝑖2…𝑖𝑖𝑑𝑑
(𝑛𝑛) �. It can be used, in particular, to 

prune unnecessary component functions and thereby alleviate the issue of combinatorial scaling of 
the number of HDMR terms with D and d [106,119]. This scaling is a major bottleneck in high-
dimensional problems. It arises because in HDMR the number and dimensionality of terms are 
hardwired to each other: the number of d-dimensional terms is the binomial coefficient Cd(D) and can 
be quite high. An even further extension that we proposed is to represent f(x) as a sum of lower-
dimensional functions in new coordinates x(i) which are linear combination of the original 
coordinates: 
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𝒙𝒙(𝑖𝑖) = 𝑨𝑨(𝑖𝑖)𝒙𝒙 + 𝒃𝒃(𝑖𝑖) 

𝑓𝑓(𝒙𝒙) ≈�𝑓𝑓𝑖𝑖(𝑥𝑥1
(𝑖𝑖), 𝑥𝑥2

(𝑖𝑖), … , 𝑥𝑥𝑑𝑑
(𝑖𝑖)�

𝑁𝑁

𝑖𝑖=𝑖𝑖

 
(3.3.1.4) 

The full set of is generally redundant, and the method, when using with NN component functions, 
was called Red-RS-HDMR-NN [117]. This has the advantage that the number of terms and their 
dimensionality are uncoupled, and one can achieve good accuracy with a small number N of low-
dimensional terms by varying independently N and d. This is illustrated in Figure 4 where the error 
in the interatomic potential of vinyl bromide is plotted as function of both the number and the 
dimensionality of terms. For comparison, in the standard HDMR, there would be about 3000 5-
dimensional terms. The coordinate transformation itself can be conveniently done automatically 
(during the fit) by introduction of an additional NN layer with linear neurons. A non-linear layer can 
also be used, but we showed that the universal approximator property of the form of Eq. (3.3.4) holds 
even with a linear coordinate transformation [117]. 

 

 
Figure 4. Test set root mean square error (rmse) of the interatomic potential of vinyl bromide as 
function of both the number and the dimensionality of terms of Red-RS-HDMR-NN. Reproduced 
with permission from Ref. [117]. Copyright 2010 American Institute of Physics. 

3.3.2. RS-HDMR-NN (random sampling high-dimensional model representation neural network) 

When the product of N and d in the representation of Eq. (3.3.1.1) is smaller than the 
dimensionality of the space D, one obtains dimensionality reduction. Specifically, if the coordinate 
transformation and the component functions are built with neural networks, one obtains effectively 
a simple version of an autoencoder. An autoencoder is a type of neural network that performs 
dimensionality reduction, typically by using layers with diminishing numbers of neurons [122].  

Dimensionality reduction can be used to find intrinsic dimensionality of the data, which may be 
different from the dimensionality of the space. We highlighted above that heterogeneous catalysis is 
an important pillar of emerging energy technologies. Modeling of catalyzed reactions with either 
classical or quantum dynamics requires interatomic potentials. We used this type of HDMR-inspired 
dimensionality reduction to construct interatomic potentials. For example, in Ref. [123] the authors 
constructed with this approach a potential for catalytic decomposition of nitrous oxide on copper, in 
the frozen surface approximation, and computed dissociation probabilities with it. This was the first 
ab initio based interatomic potential for a polyatomic molecule-surface catalytic reaction with full 
account of all molecular degrees of freedom (intramolecular as well as orientational with respect to 
the surface). The interatomic potential was built in a 15-dimensional configuration space that allowed 
preserving symmetries and asymptotic behavior even though the intrinsic dimensionality of this 
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problem was nine. Figure 5 plots the error (on a test set) in the interatomic potential as a function of 
dimensionality of a single used component function (i.e. N=1). The method allows correctly 
identifying intrinsic dimensionality as a value of d beyond which there is no improvement, and it 
allows building the function f sampled with only about 2 data per degree of freedom, with no 
overfitting [123].  

 
Figure 5. Test set mean absolute error (mae) of the interatomic potential of N2O over Cu (the system 
shown on the right) as a function of the dimensionality of a single component function of Red-RS-
HDMR-NN. Reproduced with permission from Ref. [123]. Copyright 2010 Elsevier. 

3.3.3. RS-HDMR-GPR (random sampling high-dimensional model representation Gaussian process 
regression) 

The previous example was about using a combination of HDMR with neural networks. Here we 
give examples of using a combination of HDMR with Gaussian process regression. The first example 
has to do with the future of nuclear energy. Another example of HMDR-NN will be cited in the next 
section. Nuclear energy remains a great source of stable baseload electricity which is needed in the 
context of intermittent sources such as solar and wind. A typical nuclear fuel cycle includes uranium 
mining (of uranium oxides), conversion to UF6 gas, enrichment of the 235UF6 fraction, conversion to 
solid uranium oxide and then production of nuclear fuel assemblies. A key step in this cycle is 
uranium enrichment to bring the fraction of uranium-235 from the naturally occurring 0.7% to 3-5% 
(about 00.3% of naturally occurring U is 238U) [124]. Not all reactor types require enrichment but most 
reactors in the world do, while other applications (defense) require much higher enrichment degrees. 
The enrichment is typically done in the gaseous phase, by enriching UF6 gas in centrifuges. This is a 
costly process, the enrichment cost can account for about 10% of the electricity cost [125]. For many 
years now, researchers and the industry have been studying laser-driven enrichment whereby one 
excites isotope-sensitive hyperfine transitions either of uranium or uranium hexafluoride [126,127]. 
This requires very high laser coherency (on the order of 105) and brings with it various issues. If one 
could use instead vibrational transitions in UF6 some of which are isotopomer-selective (such as the 
mode at around 628 cm-1 which is different by about 0.6 cm-1 between 235UF6 and 238UF6 implying 
necessary coherency on the order of 103) [128], one could use cheaper and less coherent IR lasers.  

One of us recently proposed the concept of IR laser-driven isotopomer selective desorption of 
UF6 [129]. We computed that UF6 can be adsorbed on different graphene derivatives with tunable 
adsorption energy depending on the derivative, and that in the adsorbed state there exists an 
isotopomer unique vibrational mode which can be used to heat and make desorb the molecules in an 
isotopomer-selective way, as illustrated in Figure 9. 
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Figure 6. Principle of IR laser-driven isotopomer-selective desorption of UF6 proposed in Ref. [129]. 

Vibrational dynamics of UF6 would be critical for such a technique, and accurate modeling of 
vibrational properties and dynamics critical for ability to simulate this process [130]. Unfortunately, 
good, well-resolved vibrational spectra of UF6 are not even found in the experimental literature 
[128,131], and to compute accurate vibrational spectra or vibrational dynamics, one requires a good 
interatomic potential function (potential energy surface, PES), which for a UF6 molecule is a 15-
dimensional function. Accurate PESs for UF6 are still unavailable, in particular, due to difficulty of 
building a 15-dimensional function from sparse data.  

In Ref. [105], we applied the HDMR based approach with Gaussian process regression 
component functions to construct the 15-dimensional interatomic potential of UF6 as 𝐸𝐸𝑈𝑈𝐹𝐹6(𝒙𝒙) ≈
∑ 𝑓𝑓𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥1

(𝑖𝑖), 𝑥𝑥2
(𝑖𝑖), … , 𝑥𝑥𝑑𝑑

(𝑖𝑖)�𝑁𝑁𝑐𝑐𝑐𝑐
𝑖𝑖=𝑖𝑖  from samples computed with density functional theory [130]. We trained 

the model on 2, 3, and 5 thousand data and tested its quality on 50,000 data, i.e. we used a test set 
much larger that the training set. The results of test set errors obtained with different orders d of 
HDMR and different numbers of training data are summarized in Table 1. More details of the 
calculations are given in Ref. [105]. 

Table 1. Test set root mean square error (rmse) when fitting the potential energy surface of UF6 with 
HDMR-GPR of different orders d for different numbers of training points Ntrain. For comparison, the 
results with a full 15-dimensional GPR are also shown. The numbers of component functions Ncf at 
each d are also shown. 

rmse1 Ncf \ Ntrain: 5,000 3,000 2,000 
Full-D (d = D) 1 42.2 75.4 106.7 

d = 1 15 234.6 236.4 237.3 
d = 2 105 168.1 178.6 190.3 
d = 3 455 65.6 78.0 97.4 

1 On the test set of 50,000 points. 

If we first look at the fit results with 5,000 data, we see something quite expected: the higher the 
considered order of coupling, d, the smaller the test error. The smallest error is achieved with a full-
dimensional GPR (i.e. d = D, Ncf = 1). Consider now the results obtained with only 2,000 training data. 
This is a very sparse dataset, with sampling density of only about 1.7 data per dimension. What we 
observe here is that the fit with three-dimensional functions gives a better test error than the full-
dimensional fit. This is because with low density of sampling, it is impossible to recover the full D-
dimensional function [120]. The data points were sampled quasi-randomly [132] in the 15-
dimensional space, they do not lie on sub-dimensional manifolds. But the information to recover the 
full D-dimensional terms is just not there. Low data density also increases the danger of overfitting. 
All this together argues for representations with lower-dimensional functions such as those based on 
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HDMR. Ultimately this has to do with the fact that a finite-size dataset in a D-dimensional space is 
not a D-dimensional object but has a dimension anywhere between 0 and D [83,84].  

3.4. When are deep NNs useful? 

Finally let us touch on the subject of so-called deep neural networks which have now been 
widely popularized (“deep learning”). We consider again the problem of kinetic energy functionals 
for orbital-free DFT, of which a good solution would significantly enhance researchers’ capabilities 
to perform large-scale ab initio simulations materials. We are interested in the electronic kinetic 
energy or kinetic energy density which we know how to express through the orbitals 𝜙𝜙𝑖𝑖, with the 
expression of Eq. (2.2.2), but want to express as a function of density only. We can use any derivatives 
or powers of ρ or any other functions of ρ but without reference to 𝜙𝜙𝑖𝑖: 𝑇𝑇 = 𝑇𝑇�𝜌𝜌(𝒙𝒙)|𝛻𝛻𝛻𝛻,𝛥𝛥𝛥𝛥,  𝜌𝜌𝑛𝑛, … � or 
𝜏𝜏 = 𝜏𝜏�𝜌𝜌(𝒙𝒙)|𝛻𝛻𝛻𝛻,𝛥𝛥𝛥𝛥,  𝜌𝜌𝑛𝑛 , … �. As an example, we show in Figure 7 how the kinetic energy density τ(x) 
looks like for aluminum, magnesium, and silicon crystals:  

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7.  Kinetic energy densities within the unit cells of (a) fcc Al, (b) hcp Mg, and (c) cubic 
diamond Si crystals. 

It is very difficult or impossible to derive analytically an expression for the KEF accurate enough 
for use in applied simulations of most materials [77]. There is now much progress in machine learning 
this dependence, in particular, with neural networks but also with other methods, including GPR and 
some of the methods mentioned earlier [41,78–82]. This problem is a very stringent test for machine 
learning methods because the accuracy required here is very high, on the order of a thousandth of a 
per cent unless there is significant error cancellation. We consider NN-based learning of 𝜏𝜏[𝜌𝜌(𝒙𝒙)]. 

Figure 8 shows one-dimensional cuts of the kinetic energy densities of bcc Li, hcp Mg, fcc Al, 
and cubic diamond Si along selection directions in these crystals, computed in Ref. [78]. The black 
lines are for Kohn-Sham kinetic energy density that we want to machine-learn. Neural networks were 
trained in a five-dimensional space of density dependent variables which were terms of the fourth-
order gradient expansion [133]: 

𝑇𝑇4 = 𝑇𝑇(0) + 𝑇𝑇(2) + 𝑇𝑇(4) 

𝑇𝑇(0) ≡ �𝜏𝜏0(𝒓𝒓)𝑑𝑑𝒓𝒓 =
3

10
(3𝜋𝜋2)

2
3 �𝜌𝜌

5
3(𝒓𝒓)𝑑𝑑𝒓𝒓 

𝑇𝑇(2) ≡ �𝜏𝜏2(𝒓𝒓)𝑑𝑑𝒓𝒓 =
1

72
�

|∇𝜌𝜌(𝒓𝒓)|2

𝜌𝜌(𝒓𝒓)
𝑑𝑑𝒓𝒓 

𝑇𝑇(4) ≡ �𝜏𝜏4(𝒓𝒓)𝑑𝑑𝒓𝒓 =
(3𝜋𝜋2)−

2
3

540
�𝜌𝜌

1
3 ��

Δ𝜌𝜌
𝜌𝜌
�
2

−
9
8
�
Δ𝜌𝜌
𝜌𝜌
� �
∇𝜌𝜌
𝜌𝜌
�
2

+
1
3
�
∇𝜌𝜌
𝜌𝜌
�
4

� 𝑑𝑑𝒓𝒓 

(3.4.1) 

The five summands in the integrands served as density-dependent variables (hence “T4” in Figure 
8).  
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Figure 8. One-dimensional cuts of the kinetic energy densities of bcc Li (top left), hcp Mg (top right), 
fcc Al (bottom left), and cubic diamond Si (bottom right) along selected directions in the crystal lattice. 
The target Kohn-Sham kinetic energy density is shown as a black line, results of a single-hidden layer 
NN fit of the KEDs of all materials simultaneously with a red line (“[80] NN”, where 80 is the number 
of neurons in the hidden layer), and the results of a four-hidden hidden layer NN fit of the KEDs of 
all materials simultaneously with a turquoise line (“[20 20 20 20] NN”, where 20 is the number of 
neurons in each hidden layer). See Ref. [78] for details. 

With single hidden layer neural networks, we could fit accurately the data for each of the 
materials separately, visually overlapping with the black curve [78]. The red lines are from attempts 
to fit the kinetic energy densities of all four materials simultaneously with a single hidden layer NN. 
It is important to be able to do so to make sure that the resulting expression of the kinetic energy as 
a function of density has certain portability across many materials. The result is obviously not good. 
With a multilayer neural network, however, we could get a good fit simultaneously for all materials, 
shown in Figure 8 by the turquoise lines for a four-hidden layer NN with 20 neurons per layer [78]. 
This difference in the quality of the fit is not due to an inadequate number of neurons – no single-
hidden layer NN was able to learn the KED of all the materials simultaneously.   

A single hidden layer NN is a universal approximator, and indeed we saw no advantage of using 
multilayer networks when fitting individual materials, and we also saw no such advantage in our 
prior works on interatomic potentials [134,135]. One difference between those works and this case is 
the extremely uneven distribution of data. To illustrate this, we show in Figure 9 distributions 
(histograms) of the target function values, i.e. kinetic energy density τ  (and τ+, see Eq. (2.2.2)) and of 
some of the density dependent variables we used [41]. In Figure 9, 𝑝𝑝 = |∇𝜌𝜌|2

4(3𝜋𝜋2)2/3𝜌𝜌8/3 is the scaled (to 

satisfy the so-called exact conditions [136]) squared gradient and 𝑞𝑞 = Δ𝜌𝜌
4(3𝜋𝜋2)2/3𝜌𝜌5/3  is the scaled 

Laplacian of the density, TF is for 𝜏𝜏𝑇𝑇𝑇𝑇(𝒓𝒓) = 3
10

(3𝜋𝜋2)2/3𝜌𝜌5/3(𝒓𝒓) - the Thomas-Fermi KED [137], and 

vW is for 𝜏𝜏𝑣𝑣𝑣𝑣(r) = 1
8

|∇𝜌𝜌(𝒓𝒓)|2

𝜌𝜌(𝒓𝒓)
 – the von Weiszacker KED [138]. The KED distribution is very uneven. 
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The distributions of the density-dependent variables are in some cases extremely uneven. What it 
means is that there are vast parts of the space which are extremely sparsely sampled, but which are 
still important for the quality of the model. And here we clearly see the advantage of a deep NN. 
Data distribution is an issue that still needs to be better addressed in machine learning. Just using 
weighted fitting is not sufficient, as we also saw in our research [41,78].  

 

 
Figure 9. Distributions (histograms) of the kinetic energy densities and density dependent variables 
in a dataset combining data from Al, Mg, and Si at equilibrium geometry as well as under uniform 
compression and extension. Adapted with permission from Ref. [41]. Copyright 2020 American 
Institute of Physics. 

When machine learning the KED from the data whose distribution is shown in Figure 9, we also 
confirmed that the HDMR-GPR combination is able to inform on relative importance of different 
combinations of variables (based on Eq. (3.3.1.3)) [106]. This is a capability which goes beyond the 
automated relevance determination (ARD) used with GPR, whereby the inverse of the optimal length 
scale parameter in GPR (l in Eq. (3.1.2.3)) with a squared exponential kernel can be used to determine 
the importance of different variables [100]. With HDMR-GPR, it is the relative importance of different 
variable combinations which can be estimated. As non-important variable combinations can be 
omitted, this provides a possibility to prune the number of HDMR terms, which is important to 
address a key disadvantage of HDMR (i.e. the combinatorial scaling of the number of terms). The 
knowledge of relative importance of different combinations of descriptors can be used for KEF 
development with other methods, not necessarily ML-based, including analytic methods. 

4. Discussion and conclusions 
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Machine learning today is very widely used to assist in the development of different 
technologies, including energy technologies. Especially novel technologies based on fuel cells, 
advanced solar cells etc. are very “knowledge-deep” i.e. they require multiple steps in understanding 
and development. This includes modeling at the materials level, device level, and system level, and 
at all these levels machine learning is useful, usually for prediction of material or device properties 
and performance parameters from descriptors. What we attempted to showcase in this perspective is 
that as far as the uses of ML for the benefit of energy technologies are concerned, there is more than 
meets the eye in: many more aspects are being addressed with machine learning than just predicting 
material or device properties from descriptors. Much is being done at the back-end by using machine 
learning to construct objects – such as interatomic potentials – which are part of the workflow of 
understanding and modeling of materials and phenomena for these technologies, or to improve 
modeling capabilities. This is important in particular for emergent energy technologies, as they 
require quantum mechanics-based understanding and modeling which is difficult and costly but can 
be helped with machine learning.  

We saw that when one learns dependences in multidimensional spaces, one always works with 
sparse data, and in this regime machine learning methods are effective because they avoid direct 
product representations. We used neural networks and Gaussian process regressions in our work. 
When one uses (regression type) NNs, there is no need to be restricted to the commonly used sigmoid 
neurons, one can get some useful properties like sum-of-products with other types of activation 
functions. When the sampling is sparse, the dimensionality of the data is typically lower than the 
dimensionality of the space, and it may be impossible to reconstruct the full-dimensional function. 
The danger of overfitting is also then increased. We reviewed combined methods which represent a 
multidimensional function with low-dimensional functions of any desired dimensionality, and those 
component functions are built with either NN or GPR and potentially could be built with other 
methods. This allows working with very sparse datasets without overfitting and it allows using 
machine learning methods within their “comfort zone”. 

Much is being talked about deep learning and deep networks. One should not forget that a single 
hidden layer NN is already a universal approximator. In practice though, when the distribution of 
the data is very uneven, we found that deep NNs are very useful. In other applications, where data 
were more uniformly distributed, we did not see an advantage with deep NN. In general, the issue 
of extremely uneven data distributions in some applications is a problem that is yet to be solved in 
substance. Going forward, we therefore expect methods that go beyond commonly used tools like 
NN and GPR and use them instead as building blocks of more involved and powerful methods to 
gain increased attention and use, as well as methods which are specifically tailored to address the 
issues of data distribution and sparsity, and the issue of missing data. 
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