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Abstract: The brain’s ability to create a unified conscious representation of an object by integrating information from 

multiple perception pathways is called perceptual binding. Binding is crucial for normal cognitive function. Some 

perceptual binding errors and disorders have been linked to certain neurological conditions, brain lesions, and con-

ditions that give rise to illusory conjunctions. However, the mechanism of perceptual binding remains elusive. Here, 

we present a computational model of binding using two sets of coupled oscillatory processes that are assumed to 

occur in response to two different percepts. We use the model to study the dynamic behavior of coupled processes to 

characterize how these processes can modulate each other and reach a temporal synchrony. We identify different 

oscillatory dynamic regimes that depend on coupling mechanisms and parameter values. The model can also dis-

criminate different combinations of initial inputs that are set by initial states of coupled processes. Decoding brain 

signals that are formed through perceptual binding is a challenging task, but our modeling results demonstrate how 

crosstalk between two systems of processes can possibly modulate their outputs. Therefore, our mechanistic model 

can help one gain a better understanding of how crosstalk between perception pathways can affect the dynamic be-

havior of the systems that involve perceptual binding. 
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1. Introduction 

Perceptual binding provides a unified conscious representation of an object that is described by sev-

eral different perceptual features such as the object’s shape, color, and location [1, 2]. Importantly, accu-

mulated empirical evidence suggests that binding is critical for normal cognitive operation. Binding dis-

order occurs in damaged brains when patients cannot perceive more than one object at a time, have dis-

sociations between different perception pathways, and have problems solving a discrimination task ac-

cording to different percepts [3, 4]. Also, illusory conjunctions are often referred to as examples of binding 

errors [5, 6]. Thus, a normal cognitive operation requires appropriate integration of neural signals from 

different perception pathways. 

Building binding models could help us better understand how our brain integrates information from 

different perception pathways to provide us with a unified and coherent conscious experience. Several 

models have been proposed to explain the mechanism of perceptual binding, among which the most fre-

quently discussed is based on the neuronal synchrony or temporal correlation hypothesis [2, 7-9]. In Op-

erational Architectonics, an operational synchrony among neuronal processes initiated in different brain 

regions is postulated to play a central role in binding spatially dispersed phenomenal features into a uni-

fied phenomenal object [10-12]. A temporal alignment that permits binding between a stimulus and on-

going spontaneous neural activity is a core assumption of Temporo-spatial Theory of Consciousness [13, 

14]. Furthermore, an interdependence between information integration and consciousness has been pos-

tulated in several theories of consciousness [15-18]. For example, the Integrated Information Theory iden-

tifies consciousness as the ability of the neuronal system to integrate information to the level at which 

information is consciously accessible [19-21]. In addition, some attempts to give a computational expla-

nation of binding have been made within the framework of classical neural networks [2]. However, much 

remains to be understood about the neuronal processes involved in perceptual binding. Moreover, many 

works have been devoted to provide a critical evaluation of the temporal synchrony hypothesis as well 

as arguments against the existence of the binding problem in principle [22-24].  

In this work, we present a mathematical model of binding, which is based on our previous model of 

oscillatory processes, that exhibits the dynamic behavior isomorphic to a specific percept [25-27]. To study 
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the binding mechanism, we used two sets of oscillatory processes that are bound via negative feedback 

loops. Two different binding interaction wiring schemes were analyzed. We studied how the sets of os-

cillatory processes modulated each other and found different regimes of modulated oscillations, which 

are represented in a two-parameter bifurcation diagram. Furthermore, we investigated how the system 

in these different regimes was capable of distinguishing different combinations of initial inputs (stimuli). 

We intend our dynamic model to help us understand how a possible mechanism of perceptual binding 

can be deduced from observable oscillating signals. 

 

2. Model and Methods 

Perceptual experiences of two individuals can be synchronized by the same stimulus; therefore, in 

principle, temporally correlated neuronal signals can be recorded in two non-interacting brains. In that 

case, however, the temporal synchronization is not sufficient to provide a unified conscious representa-

tion because the stimulus is still independently processed by each individual. Therefore, binding can oc-

cur only if there is a crosstalk between perception pathways that can interact and exchange information. 

Binding is thus detectable because the crosstalk between pathways may result in modulation and super-

position of signals that can be analyzed. Here, we assume that direct interaction among perception path-

ways or corresponding processes is a necessary condition for binding, which can, in turn, induce temporal 

correlation, synchronization, or modulation among oscillating processes.  

We use our previous framework in which a set of oscillating processes is used to represent a percept 

[25] such as a space or a position in the space. The spatial position is encoded in the relationships among 

processes denoted as �⃗� , which is closely analogous to an intrinsic space as defined in the temporo-spatial 

theory of consciousness [13, 14]. We also consider an attribute associated with the position in space such 

as brightness of a source at that position, which is assumed to be similarly encoded in the relationships 

among processes denoted as �⃗� . Thus, to study binding, we use two closed sets of processes: �⃗� =

(𝑝1, 𝑝2, 𝑥1, 𝑥2) and �⃗� = (𝑞1, 𝑞2, 𝑦1, 𝑦2), which are described by the following system of equations: 

𝑑𝑝1

𝑑𝑡
= 𝑝2 − 𝑝1 − 𝑥1 + 𝑓1(𝑞1, 𝑞2) 

𝑑𝑝2

𝑑𝑡
= 𝑝1 − 𝑝2 − 𝑥2 + 𝑓2(𝑞1, 𝑞2) 

𝑑𝑥1

𝑑𝑡
= 𝑝1,

𝑑𝑥2

𝑑𝑡
= 𝑝2 

 

𝑑𝑞1

𝑑𝑡
= 𝛼𝑞2 − 𝑞1 − 𝑦1 + 𝑔1(𝑝1, 𝑝2) 

𝑑𝑞2

𝑑𝑡
= 𝛼𝑞1 − 𝑞2 − 𝑦2 + 𝑔2(𝑝1, 𝑝2) 

𝑑𝑦1

𝑑𝑡
= 𝑞1,

𝑑𝑦2

𝑑𝑡
= 𝑞2 

 

(1) 

Where  and 𝛼  are parameters describing the mutual interactions between p-processes and be-

tween q-processes correspondingly, see Figure 1a, b. The 𝑓1(𝑞1, 𝑞2), 𝑓1(𝑞1, 𝑞2) and 𝑔1(𝑝1, 𝑝2), 𝑔1(𝑝1, 𝑝2) 

functions describe the binding between the �⃗�  and �⃗�  sets of processes. Generally, a function that depends 

on a difference between oscillating variables can be used to achieve a synchronization of two oscillators 

[28] (pp. 123-136). Two oscillators that communicate the phase to one another can be drawn into syn-

chrony over time. In System (1), we assume that the interaction among processes is realized via negative 

feedback loops (see Figures 1a, b that show two possible coupling mechanisms between the �⃗�  and �⃗�  

sets of processes). Mathematically, we consider the following two interaction schemes: (a) 𝑓1(𝑞1, 𝑞2) = 𝑞1, 
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𝑓2(𝑞1, 𝑞2) = 𝑞2, 𝑔1(𝑝1, 𝑝2) = −𝑝1, 𝑔2(𝑝1 , 𝑝2) = −𝑝2, where this formulation corresponds to the mechanism 

shown in Figure 1a and (b) 𝑓1(𝑞1, 𝑞2) = 𝑞1 − 𝑞2 , 𝑓2(𝑞1, 𝑞2) = 𝑞2 − 𝑞1 , 𝑔1(𝑝1 , 𝑝2) = 𝑝2 − 𝑝1 , 𝑔2(𝑝1, 𝑝2) =

𝑝1 − 𝑝2 is according to the mechanism shown in Figure 1b. 

 

Figure 1. Two different influence schemes for processes described by the system equations (1). (a) Binding between 

�⃗�  and �⃗�  sets of processes is gained through interaction of 𝑝1 with 𝑞1 and 𝑝2 with 𝑞2 processes. In neural systems 

such specific winning links can be established via training in response to different combinations of input stimuli. 

Here, negative feedback loops are used to realize connections between 𝑝1 and 𝑞1 as well as between 𝑝2 and 𝑞2. (b) 

Binding between �⃗�  and �⃗�  sets of processes in which all 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes are mutually interconnected via 

negative feedback loops. Arrow-headed lines represent a positive influence and bar-headed lines represent a negative 

influence. The dot-headed lines represent positive or negative influence depending on the sign of the  and  param-

eters. 

We assume that the �⃗�  and �⃗�  processes occur in response to two different percepts. For example, 

the state of (𝑝1, 𝑝2) can represent the processes in response to the specific position selected by attention, 

which is indicated by a blue circle in Figure 2, and the state of (𝑞1, 𝑞2) can represent the processes in 

response to the presence or absence of a light stimulus at the selected location (shown by a star sign or 

black dot in Figure 2). Hence, we distinguish the position of a spot that can be either dark or bright by 

focusing our attention either on the bright spot (e.g., case (i) in Figure 2) or on the dark spot (e.g., case (ii) 

in Figure 2). Therefore, our model represents perceptual binding occurring for two percepts that include 

the position in space and an attribute that is assigned to each position. The position selection is repre-

sented by the 𝑝1 and 𝑝2 processes. The initial value for the 𝑝1 or 𝑝2 variable is set to 1 if the correspond-

ing position is selected or to zero otherwise (see Figure 2). Similarly, the initial value for the process 𝑞1 

or 𝑞2 is set to 1 if a light stimulus is present, otherwise the initial value for 𝑞1 or 𝑞2 is set to zero. All 
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corresponding initial values for 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes for cases (i)-(viii) are shown in Figure 2. Simula-

tion results of these cases are provided in the Results section of this manuscript.  

 

Figure 2. Seven different combinations of two distinct types of inputs representing percepts and the corresponding 

initial values of (𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes. Each combination consists of two possible positions and the pres-

ence/absence of a light stimulus at these positions. The presence of a light stimulus at a position is indicated by the 

star sign and the absence of light is indicated by the black dot. A specific position is assumed to be selected by atten-

tion, which is indicated by the blue circle. For example, for case (i), the focus is on the bright spot, while for case (ii), 

the focus is on the dark spot. 

System (1) consists of a system of linear differential equations that has a solution that can be, in prin-

ciple, expressed in algebraic form. However, eight eigenvalues and eigenvectors cannot be written in a 

concise form to fit into this text and be easily analyzed. Therefore, here, we present numerical solutions 

obtained for different initial conditions and parameter values that produce distinct numerical results. 

XPP/XPPAUT software (http://www.math.pitt.edu/~bard/xpp/xpp.html, accessed on 12th January 2022) 

was used to solve System (1) and compute two-parameter bifurcation diagrams. XPP codes that were 

used to produce all results presented in this work are provided in Appendix A. 

3. Results 

First, we analyzed System (1) by considering the interaction scheme shown in Figure 1a. We explored 

solutions of System (1) for different values of  and 𝛼 parameters to identify distinct dynamic regimes 

that the system of coupled processes can exhibit. Thus,  and 𝛼 serve as bifurcation parameters of the 

system. As shown in Figure 3, the dynamic behavior of the �⃗�  and �⃗�  processes depended on  and 𝛼 

parameter values. The feedback loops connecting the two sets of processes induced a complex mutual 

modulation among the interacting processes. Variations in amplitude, frequency, and temporal relation-

ships among processes depending on parameter values were observed. Amplitude modulation or distor-

tion was also observed for two coupled oscillators when the coupling was not strong enough to bring the 

phases of two oscillators into synchrony over time [28] (pp. 123-136). Similarly, the strong amplitude 

modulation in System (1) occurred when one parameter, either  or 𝛼, was much smaller than the other 

(see Figure 3e, f). Therefore, amplitude distortion is likely to be observed in a system that is composed of 

two interacting subsystems such that one subsystem is described by weak internal coupling parameters 

and the other is described by strong internal coupling parameters. Interestingly, we also observed small 

amplitude variations when both  and 𝛼 had values close to −1. These variations also occurred due to 

interactions between the �⃗�  and �⃗�  processes. When the �⃗�  and �⃗�  processes are decoupled, the ampli-

tude variations disappear. Thus, the amplitude distortion in recoded signals could indicate binding. 
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Figure 3. Oscillatory behavior observed in the dynamic system of coupled processes. Oscillations of (𝑝1, 𝑝2) and (𝑞1, 

𝑞2) processes are obtained using the following parameter values: (a)  = 1,  = −1.5;  (b)  = −1.8,  = 0.25; (c) and (d) 

 = −0.1,  = −1.9, where the (𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes are shown on separate figure panels for better visualization; 

(e)  = 1.99,  = 0.01, note that shortly after the starting values the (𝑝1, 𝑝2) and (𝑞1, 𝑞2) processes begin and continue 

to overlap over time; (f)  = −0.01,  = −1.99. All simulations are obtained using the same initial conditions: (𝑝1, 𝑝2, 

𝑞1, 𝑞2) = (1, 0, 1, 0) that corresponds to case (i) in Figure 2, and (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0, 0, 0, 0). 

Here, we only present periodic solutions with sustained oscillations; however, our system also ex-

hibits damped oscillations and unstable sources or oscillations with growing amplitude as well. The pe-

riodic solutions of System (1) with sustained oscillations were found for the following ranges of parame-

ters: 

𝛼 = −
𝜀 + 2

𝜀 + 1
    for − 2 < 𝜀 ≤ −√2 and 0 < 𝜀 ≤ √2 

𝛼 =
𝜀 − 2

𝜀 − 1
    for − √2 ≤ 𝜀 < 0 and √2 ≤ 𝜀 < 2 

𝛼 = −𝜀 − 2    for − 2 < 𝜀 < 0  

𝛼 = −𝜀 + 2    for 0 < 𝜀 < 2 . 

(2) 

The corresponding two-parameter bifurcation diagram is shown in Figure 4. The diagram is obtained 

numerically as explained in the Methods section and agrees with the analytical solutions described by the 

System of Equations (2). The parameter ranges marked as (i) and (iii) in Figure 4 correspond to the first 
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equation in System (2); the regions marked as (iv) and (vi) in Figure 4 correspond to the second equation 

in System (2); the line marked as (ii) in Figure 4 corresponds to the third equation in System (2) and the 

line labeled with (v) in Figure 4 corresponds to the last equation in System (2). Oscillations were observed 

with varying amplitudes for parameter values along the (ii) and (v) lines shown in Figure 4. Figures 3c, 

d, and f provide examples of oscillations obtained using parameter values from region (ii) and Figure 3e 

shows simulations obtained using parameter values from region (v). Oscillations produced using param-

eter values from regions (i) and (iii) are shown in Figure 3a and Figure 3b, respectively. Oscillations for 

parameter values taken in regions (iv) and (vi) have constant amplitude similar to those shown in Figures 

3a, b but 𝑝1  and 𝑞1  oscillate in phase with 𝑝2  and 𝑞2, respectively (not shown). Overall, System (1) 

combined with the interaction scheme shown in Figure 1a produces a diverse repertoire of periodic solu-

tions with sustained oscillations that depend on the system’s parameters.  

 

Figure 4. Two-parameter bifurcation diagram for the interaction scheme shown in Figure 1a. Oscillations occur for  

and  parameter values along solid curves marked as (i)-(v). To demonstrate agreement between numerical and an-

alytical solutions, the dotted curves are drawn by plotting the following functions:  = −( + 2)/( + 1) and  = ( − 2)/( 

− 1), which overlap with solid curves (iii), (i) and (iv), (vi) obtained numerically in corresponding regions. 

Next, we fixed the  and  parameter values and investigated the solutions of System (1) depending 

on the different initial conditions that are shown in Figure 2.  and  parameter values were taken from 

region (ii), shown in Figure 4, which are also described by the third equation in System (2). For these 

parameter values, the system of processes exhibits sustained oscillations for both interaction schemes 

shown in Figures 1a and b. Thus, we can compare how different interaction schemes perform in solving 

a discrimination task by differentiating inputs shown in Figure 2. 

Six conditions (i)-(vi) shown in Figure 2 produce distinct dynamic relationships among 𝑝1, 𝑝2, 𝑞1, 

𝑞2 processes (see Figure 5). However, two conditions (vii) and (viii), shown in Figure 2, produce the same 

dynamic relationships among processes as obtained for the (v) and (vi) conditions, respectively. There-

fore, the system can discriminate (i)-(vi) initial inputs but cannot discriminate (vii) and (viii) from (v) and 

(vi) inputs. The latter means that the position in space that is homogeneously bright is identical to the 

same position in space that is homogeneously dark. Perhaps, these inputs can be discriminated if more 

complex interactions representing binding or a system with more states and hierarchical levels of binding 

interactions between these states are used. 
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Figure 5. The change in dynamic relationships among 𝑝1, 𝑝2, 𝑞1, 𝑞2 processes depend on initial conditions. Six ini-

tial conditions (i)-(vi) shown in Figure 2 are used to produce these simulation results. These conditions induce distinct 

dynamic relationships among processes and, thereby, can be discriminated by the system. The initial conditions are 

indicated in the figures as two pairs of digits corresponding to initial values of (𝑝1, 𝑝2; 𝑞1, 𝑞2) shown in parenthesis 

at the upper left corner of each figure panel. All simulations are obtained using the interaction scheme shown in 

Figure 1a and the following parameter values:  = −1,  = −1.  

Solving and analyzing System (1) for the second interaction scheme shown in Figure 1b, we also 

identified  and  parameter values for which the periodic solutions with sustained oscillations are ob-

tained. A two-parameter bifurcation diagram that summarizes parameter ranges with periodic solutions 

is shown in Figure 6. Oscillations for parameter values along the solid line in Figure 6 are qualitatively 

similar to those that are shown in Figure 5 and obtained for the same range of parameters:  = −  − 2 for 

−2 <  < 0, however, the frequency of oscillations is higher (see Figure S1 in Supplementary Materials). 

Also, System (1) combined with the interaction scheme in Figure 1b performs equally well to that of the 

scheme shown in Figure 1a on the task to discriminate different inputs that are shown in Figure 2. How-

ever, comparing two-parameter bifurcation diagrams in Figures 5 and 6, the diagram in Figure 6 shows 

significantly more parameter ranges where the system exhibits sustained oscillations. Therefore, despite 

the fact that the interaction scheme in Figure 1b has more interactions than the interaction scheme shown 

in Figure 1a, the latter, simpler interaction scheme produces a more diverse dynamic behavior of the sys-

tem. Thus, the more comprehensive interaction network that integrates information from many network 

nodes does not necessarily result in a more diverse dynamic repertoire.  
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Figure 6. Two-parameter bifurcation diagram for the interaction scheme shown in Figure 1b. The solid line,  = −  − 

2 for −2 <  < 0, shows the parameter values where both �⃗� = (𝑝1, 𝑝2, 𝑥1, 𝑥2) and �⃗� = (𝑞1, 𝑞2, 𝑦1, 𝑦2) oscillate and the 

relationships between 𝑝1 and 𝑝2 and 𝑞1 and 𝑞2 are maintained over time. For these parameter values, �⃗�  and �⃗�  

oscillate out of phase and with varying amplitudes. Dashed lines show the parameter values where oscillations exist 

but either the relationships between p-processes or q-processes are no longer maintained (diagonal dashed lines), or 

only one set of processes oscillate while another set of processes does not exhibit oscillatory dynamics (vertical and 

horizontal dashed lines). Dotted lines show parameter ranges where oscillations exist only if either �⃗�  or �⃗�  starts 

with zero initial conditions and, thus, only p-processes or q-processes oscillate, which is equivalent to the situation 

when �⃗�  and �⃗�  are decoupled and independent. At the point ( = 1,  = 1), both p-processes and q-processes oscillate 

in phase with constant amplitudes. 

 

4. Discussion 

Mechanistic modeling has become a very popular tool that allows one to not simply describe the 

system components but to also analyze, understand, and explain the dynamic behavior of the system. 

This mechanistic approach has been successfully applied to modelling nerve action potential [29], neuro-

dynamics in the olfactory system [30], dynamics of ecological networks [31], molecular signaling path-

ways [32], and complex molecular mechanisms determining cell fate [28, 33-36]. However, building mech-

anistic models of consciousness is undoubtedly one of the most challenging tasks. By using our previous 

dynamic modeling framework to describe a percept [25-27], here, we developed a dynamic mechanistic 

model of perceptual binding. 

The perceptual binding concept is compatible with the Integrated Information and Temporo-Spatial 

theories of consciousness as well as with some classical neural network models [2, 9, 13-16]. However, as 

put forward by von der Malsburg, for example, the classical neural network models interpret a brain state 

as a static vector ignoring the fact that recorded neural signals are not constant over any fixed time scale 

[2]. By contrast, in our model, the states are encoded in the dynamical processes that continuously 
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alternate, yet their specific relationships that encode information are maintained over time. This continu-

ous realization of specific relationships among processes in the system is an important concept in our 

modeling framework. The main assumption of our approach is that consciousness is a dynamical process, 

not a capacity, memory, or information, as elaborated in Ref. [37]. 

Our dynamic approach is comparable to Freeman’s framework developed to describe population 

neurodynamics in the olfactory system [30]. His system of ordinary differential equations constructed in 

conformance with the anatomical and physiological properties of the olfactory system has been successful 

in explaining electrophysiological recordings of impulse responses. Different oscillations have been ob-

served including complex and highly dimensional oscillations with varying amplitudes and a pattern that 

repeats itself (see Figure 6 on page 301 in Ref. [30]). While our simulation results may not be directly 

comparable with the dynamic behavior of neuronal systems or with electroencephalographic brain re-

cordings, our model provides a qualitative representation of how binding can influence and change neu-

ral oscillations. Although, we analyzed a simple system in which the space is represented by two points 

described by the (𝑝1, 𝑝2) processes and each point was characterized only by two states (𝑞1, 𝑞2), the system 

can be scaled to n-points each with m-states (n, m > 2) as shown in Refs. [25, 26]. However, the application 

of sets with many states to investigate binding would only complicate the analysis and interpretation of 

results.  

We analyzed a system of two sets of processes representing two different percepts and found that 

the system exhibits different dynamic behavior depending on initial conditions (see Figure 5) and is ca-

pable of distinguishing different combinations of initial inputs shown in Figure 2. Therefore, our approach 

can be an alternative to classical neural networks that fail to solve a discrimination task in Frank Rosen-

blatt’s example with four neurons where two neurons learn to recognize the object shape and the other 

two indicate the position of objects [2, 38]. The output reads of such a four-neuron classical network in-

clude two shapes (e.g., square, triangle) and two positions (left, right), however, whether a specific shape 

is on the left side or on the right side remains indistinguishable.  

We investigated two interaction schemes (see Figure 1a, b) describing binding between the sets of 

processes. For both wiring schemes, different dynamic oscillatory regimes were identified. Remarkably, 

despite the comprehensive level of interactions among processes and, therefore, a higher level of infor-

mation integration, the interaction scheme shown in Figure 1b does not result in overly complex dynamic 

behavior, as opposed to the interaction scheme in Figure 1a, which produces a more diverse repertoire of 

oscillating regimes (see Figures 3, 4, and 6). This result appears to be opposite to what would be expected 

in Integrated Information Theory, which identifies consciousness with the ability of the system to inte-

grate information. 

In conclusion, our mechanistic model can help one gain a better understanding of how binding can 

affect the dynamic behavior of the systems that involve perceptual binding. For example, our results sug-

gest that amplitude modulation or distortion in recoded signals could be used to detect binding and reveal 

some properties of interacting subsystems. Furthermore, binding cannot be merely the result of synchro-

nization of signals or temporal correlation that can spontaneously occur or be set in two non-interacting 

systems; binding may only occur when processes interact, resulting in modulation and superposition of 

signals. 
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Supplementary Materials: 

  

Figure S1: Dynamic relationships among processes depending on the initial conditions. Simulations are obtained 

using the interaction scheme shown in Figure 1b and the following parameter values:  = −1,  = −1. 
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Appendix A 

The XPPAUT code A was used to simulate results in Figures 3, 4, and 5. 

 
# code A 

init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0 

par eps=-1.0, alpha=-1.0 

 

p1'=eps*p2-p1-x1+q1 

x1'=p1 

p2'=eps*p1-p2-x2+q2 

x2'=p2 

q1'=alpha*q2-q1-y1-p1 

y1'=q1 

q2'=alpha*q1-q2-y2-p2 

y2'=q2 

 

@ dt=.025, total=100, xplot=t,yplot=p1 

@ xmin=0,xmax=100,ymin=-1,ymax=1 

done 

 

The XPPAUT code B was used to simulate results in Figure 6 and Figure S1 in the Supplementary 

Materials. 

 
# code B 

 

init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0 

par eps=-1.0, alpha=-1.0 

 

p1'=eps*p2-p1-x1+q1-q2 

x1'=p1 

p2'=eps*p1-p2-x2-q1+q2 

x2'=p2 

q1'=alpha*q2-q1-y1-p1+p2 

y1'=q1 

q2'=alpha*q1-q2-y2+p1-p2 

y2'=q2 

 

  

@ dt=.025, total=100, xplot=t,yplot=p1 

@ xmin=0,xmax=100,ymin=-1,ymax=1 

done 
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