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Abstract

We enhance Frobenius’ method for solving linear ordinary differential equations about regular
singular points. Key to Frobenius’ approach is the exploration of the derivative with respect to a single
parameter; this parameter is introduced through the powers of generalized power series. Extending
this approach, we discover that tandem recurrence relations can be derived. These relations render
coefficients for series occurring in logarithmic solutions. The method applies to the, practically
important, exceptional cases in which the roots of the indicial equation are equal, or differ by a
non-zero integer. We demonstrate the method on Bessel’s equation and derive previously unknown
tandem recurrence relations for coefficients of solutions of the second kind, for Bessel equations of all
integer and half-integer order.
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1 Introduction

1.1 Tandem Recurrence Relations for Solutions of Differential Equations

In this manuscript we significantly enhance Frobenius’ method for derivation of generalized power series
solutions of linear ordinary differential equations with variable, analytical coefficients, about their regular
singular points. As we shall explain, Frobenius’ method here refers to his method of exploring derivatives
d/dr, with respect to a parameter r that denotes the power of a prefactor to analytical series, as they occur
in generalized series solutions. The standing problem, that hitherto has prohibited practical applications
of Frobenius’ d/dr-method in important cases, but that we shall resolve in this paper, is the following.
The current, most practical, documented version [7, 5, 2] of Frobenius’ d/dr-method, as far as it
aims to calculate the coefficients ¢, of the correction series that may occur in generalized power series
solutions, cannot be evaluated recursively. Indeed, as we shall explain in detail in section 4.3, when
it comes to calculation of coefficient ¢,, the documented methods do not, and cannot, profit from the
fact that at that stage the ¢, for m < n are already known. Instead, the derivative d/dr is to be
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applied to intermediate quantities a,(r) that have to be explicitly calculated as functions of parameter
r and index n. This will usually have to be done explicitly for each subsequent integer value of n.
Because these explicit expressions for the quantities a,(r) tend to be very complicated, and hence their
subsequent derivations readily become enormously tedious, this strategy would render Frobenius’ d/dr-
method virtually intractible in practical cases. This may explain that Frobenius’ d/dr method, although
its idea once was recommended [14, sec 3.5]!, is usually no longer covered in modern textbooks [11, e.g.].

The aim of this manuscript is to develop and present the full power of Frobenius’ d/dr-method, for
practical applications. We focus on second order equations of which the indicial polynomial has only real
roots. The novelty of our approach has bearing on the two so-called “exceptional cases”. The first of
these concerns the second linearly independent solution in case the two roots of the indicial equation are
equal. The second case concerns the solution associated with the smallest of the two roots, in case the
two roots differ by a non-zero integer N.

The key result presented in this manuscript is the existence of tandem recurrence relations for the
coefficients of the second linearly independent solution of the differential equation in the two exceptional
cases just mentioned. We present a general method to construct these and this renders our new, enhanced
variant of Frobenius’ d/dr method to be a practically applicable and rather efficient, algorithmic method
to construct generalized power series solutions in all cases.

So as to provide a non-trivial example, we demonstrate our method on Bessel’s equation, obtaining
tandem recurrence relations for coefficients of solutions of the second kind, for Bessel equations of integer
or half-integer? order. To our best knowledge, this particular representation of Bessel functions has not
yet been documented in the literature.

1.2 Frobenius’ method
Frobenius’ method [8] is widely established in textbooks [7, 13, 5, 6, 4, 2, 3, 11] as a theory of solutions

of linear ordinary differential equations

about their regular singular points. To avoid the prolixity that comes with unneeded generality, in this
manuscript we shall restrict our presentation to cases of second order equations. Rephrased within the
limitations of this restriction, Frobenius [8] opened his 1873 paper introducing the linear operator L
(actually P in his notation) in (1) as

Lly(z),2] = 2 X2)y"(2) + ap(@)y'(2) + q(@)y(z) | (2)

with the restrictions that the functions A\(x), p(z) and ¢(z) be analytical functions in a neighborhood of
x = 0, so they have series expansions

o0 oo oo
Az) = Z Mz, plx) = an ", qx) = Z gz . (3)
n=0 n=0 n=0
A further restriction is that Ay # 0. These conditions together restrict = 0 to be what is now commonly

known as a regular singular point.
Proceeding from an Ansatz (through which parameter r is introduced)

0o
y(or) =3 e (4)
n=0

L.. be it without proper explanation about how to apply the method efficiently..
2We follow the convention that a half-integer is a number of the form n + %, where n is an integer.
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Frobenius recovered, in a more direct and simpler [8, 12] way, earlier results of Fuchs [9, 10]. An overview
was established of the solutions of (1) in the form of generalized power series (4) about the regular
singular point, possibly with an additional term involving a logarithmic factor. Frobenius [8] included a
proof of uniform convergence of all series involved, concluding the proof that solutions of the differential
equation had been achieved indeed [12]. One of the key merits of Frobenius’ method, from a modern
application point of view, is that it readily provides a characterization of the solutions about regular
singular points, in terms of whether or not their values are singular, whether or not their derivatives are
singular and whether or not they have terms that include a logarithmic factor. Moreover, Frobenius’
method is constructive, in the sense that it renders algorithms for computation of solutions of differential
equations; these algorithms indeed express the solutions in terms of converging series of operations of
elementary arithmetic, logarithms and power functions. The radius of convergence of the series involved
is also predicted by Frobenius’ theory.
In the works of Fuchs the indicial equation

p(r)=0 (5)

for r can already be found; in this, for second order equations, the indicial polynomial p(r) is defined as
p(r)=Xor(r—1)+por+qo - (6)

The complete overview of the possible solutions of (1) associated with the roots of the indicial equation (5)
had also been established by Fuchs [9, 10, 12]. This included the result that, in cases in which the two
roots 7, and 7y of the indicial equation ? differ by an integer IV, i.e. 11 — ro = N, a second independent
solution ya(x) of (1), with (2), (3) and (4), is of the form 4

ya(x) = ay(z,r)In(z) + Y _epa™t . (7)
n=0

The novelty in Frobenius’ approach (i.e. his method) was the exploration of r as a parameter. This
involved his derivation of especially the solutions of type (7), that possibly include logarithmic terms —
coefficient a may vanish — by means of differentiation with respect to r; in what follows, we shall briefly
refer to this as to the “d/dr-method”. It is this method that we shall enhance in the present manuscript.

1.3 Tandem recurrence relations emerging from the d/dr method

The d/dr method is relevant to cases in which the roots of the indicial equation (5) differ by an inte-
ger, including cases in which the roots are equal. A novel ® aspect that we shall present in the current
manuscript is the fact that by the “d/dr-method” it is possible to derive a tandem of two interlinked
recurrence relations. That is, two recurrence relations that combined allow for straightforward compu-
tation of the coefficients ¢, of (7). The first member, (16), of the tandem, (16) combined with (17), is
a recurrence relation for auxiliary coefficients a,(r2) analogous to the a, in (4), but associated with the
smallest root ro of the indicial equation. The second member of the tandem is recurrent in the c¢,, but
involves the a, (r2). We shall also obtain the value of the coefficient a of the logarithmic term in (7).

3In this manuscript we shall restrict to cases in which the roots 71 and ro of the indicial equation (5) are real and we
shall adhere to the convention that r1 and ro are ordered as ro < rj.

4In expression (7) we allow N to be either equal to zero or to be a positive integer. Later in the manuscript the case
N = 0 needs to be distinguished.

530 far, we have not been able to detect any documentation of this aspect of the d/dr-method in the existing literature.
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Our technique to derive a tandem of recurrence relations for ¢, seems to not be widely known, if at
all. The classic textbook by Boyce and DiPrima [2] does present formulae, partly without presenting the
underlying theory, for the d/dr-approach in connection with solutions of type (7). How to apply these
formulae is most explicitly outlined in Boyce and DiPrima’s [2] exercise about solving Bessel’s equation
of order 1 by their version of the d/dr-method. This exercise truthfully follows Forsyth’s [7, chap. VI|
solution of this problem, which was later recommended, but not covered in detail, by Watson [14, sec 3.5].
Earlier, Ince did include, in his extensive sections covering Frobenius’ method [13, sec. 16], a detailed
presentation of Forsyth’s solution of Bessel’s equation [13, sec. 16.32], acknowledging Forsyth for it.
Forsyth himself praised Frobenius’ process as being more general, simpler, and more direct [7, chap. VI],
than the more conventional ways to introduce Bessel functions.

Yet, along the route that apparently Forsyth paved, to obtain the coefficients of generalized power
series for Bessel functions of the second kind, it is required to solve the recurrence relation for the
coefficients a.,,, so as to obtain an explicit, non-recurrent expression for these. The tandem recurrence
relations that we shall introduce are fully outside the scope of the Forsyth route. Indeed, as we shall
discuss in section 4.3, the formulae implementing the d/dr-method as presented in Boyce and DiPrima
cannot be used to construct the tandem relations that we shall present. Actually, it seems that our
tandem relations have not yet been documented at all in the existing literature.

The fact that solving a recurrence relation is no longer needed in our tandem approach greatly enhances
the range and ease of application of the d/dr-method and indeed turns it into an algorithmic tool for
solving Fuchsian differential equations. Furthermore, the existence of the tandem relations, and their
structure, are of interest in their own right.

1.4 To normalize or not to normalize the coefficient of the highest order
derivative

In his 1873 paper Frobenius merely set himself the task to recover, in a more direct and simpler way,
results about the solutions of differential equations that Fuchs had published a decade earlier [9, 10]. Given
these aims, it is fully understandable that, to start with, Frobenius pointed out that the requirements
put on A(z), p(x) and ¢(x) (in our notation here) allow for division by A(xz). For a general theoretical
treatment this is simply equivalent to assuming that A(x) = 1 and redefining p(z) and ¢(z). And so, “Zur
Vereinfachung der Beweise” ( “To simplify the proofs”), Frobenius assumed A(z) = 1, indeed merely to
simplify the notation throughout his paper.

Textbooks [7, 13, 5, 6, 2, 4, 3] have followed this convention ever since. For theoretical purposes, no
generality is lost. In applications however, A(z), p(z) and g(x) are often polynomials. In such cases,
division by A(z) and redefining p(z) and ¢(x), such that the expansions (3) again apply, will turn p(x)
and ¢(z) from finite degree polynomials into infinite series. The theoretical results of Frobenius are not
sensitive to this. Indeed, his method is fully applicable to any analytical p(x) and g(x). Practically
speaking however, division by A(x) may have both subtle and dramatic consequences, as outlined in the
following paragraphs.

To further introduce this, we turn our attention to key ingredients in the theory, namely the recurrence
relations for the coefficients a,, of series (4). In the introduction of his 1873 paper Frobenius explicitly
documented to have found (“fand ich”) that for solutions of differential equations as defined by (1) to (3),
the coefficients of series solutions can be calculated easily (“einfach”). Apparently, by this he meant that,
once the Ansatz (4) is accepted, deriving recurrence relations for the a, turns out to be straightforward.
His subsequent proof of convergence, including the valuable proof that the radius of convergence is at
least that of the series for p(x) and ¢(x), is founded on his method to calculate the coefficients.

In general, the recurrence relations for the a, tend to involve the previous coefficients ag,...,an_1,
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the number of which is strictly increasing as a function of n. That is, the recurrence relations for the
an tend to change in form and grow in size, as a function of n. Accordingly, the computations of the
coefficients ¢, of solutions of type (7) will also increase in complexity as a function of n. The complexity
of the computation of the coefficient a of the logarithmic term in (7) is affected likewise.

The coefficient a¢ may vanish, and therefore its value is of considerable practical interest. As a criterion
for this coefficient of the logarithmic term to vanish, Frobenius [8] recovered Fuchs’ [10] conditions, in
terms of determinants of rows and columns representing the recurrence relations for the a,. If the recur-
rence relations grow in length with increasing n, the complexity of the determinants increases accordingly,
and as it concerns determinants, dramatically so.

These increases of complexities of the recurrence relations, and consequently of the determinants, are
induced when any of the functions A\(z), p(x) and ¢(z) needs to be represented by an infinite series. When
A(z), p(z) and g(z) all are polynomials however, of at most degree M, then for M < n, the recurrence
relations for the coefficients a,, of solutions of form (4) will at most depend on the M previous coefficients
An—M,---,0n—1. They will be functions of n, but, as we will highlight in the present manuscript, their
computational complexity will no longer depend on n. In practice, they can actually simply be conceived
as a single, fixed, closed form recurrence relation that depends on r, n and a fixed number of previous
coefficients a,,, m < n. As we shall see, this simplicity carries over to the calculation of the coefficients
¢n. As we indicated above, this simplicity may be lost, when A(x) is normalized to 1. Therefore, in
section 2 we shall avoid this normalization; this in itself evokes a slight generalization of Frobenius
original formulae [8] on the subject.

1.5 Outlook

The plan for this manuscript further is as follows. In section 2 we shall revisit, and further develop
understanding of, Frobenius’ approach to the solutions of linear second order differential equations as
specified by relations (1) to (3). The first of our results consists of the combination of expressions (16)
and (17). These relations form a tandem of two recurrence relations. From it, the coefficients of an, as
such well-known, series solution containing a logarithmic term, (19), can be obtained. In section 2.2.5 we
show that and how relation (17) can be derived by differentiation with respect to Frobenius’ parameter
T

In section 2.2.5 we obtain this result for the case of two equal roots of the indicial equation. In
section 2.3 we obtain a similar result for the more subtle case in which the two roots differ by a non-zero
integer N, r;1 —ro = N.

An important difference between the two cases is that, while for equal roots, i.e. if r; = ry, a logarith-
mic term always occurs in the second independent solution of the differential equation, in cases ri—ry = N
the logarithmic term may vanish. As we shall discuss in section 2.3.4, solutions of a differential equa-
tion about so-called ordinary points turn out to be an example of this. Another important example is
provided by Bessel functions of second kind and half-integer order, to be covered in appropriate detail in
section 3.5.3. Solving Bessel’s equation with our variant of Frobenius’ method also provides illustrative
and useful examples of tandem recurrence relations for series solutions. We derive such relations relevant
to Bessel functions of the second kind in the course of section 3; these tandem recurrence relations do
not seem to have been documented yet in the literature.

Section 4 provides a summary of the main results and a concise reflection on the history of key
ingredients of the material. The reason for postponing this reflection to section 4, instead of incorporating
it in this introductory section 1, is that we feel that a comprehensible reflection on these matters is really
only possible after the theory in sections 2 and 3 has been presented.

The historical reflection in section 4 is essentially an attempt to understand why the full power of
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the d/dr-method has only come to surface now, i.e. almost one and a half century after Frobenius first
introduced the approach of exploring d/dr.

2 Frobenius’ approach

2.1 Frobenius’ expansion of the image of the differential operator, first so-
lution of the differential equation and second solution when the roots of
the indicial equation are unequal and do not differ by an integer

2.1.1 General expansion of the image of the differential operator

As we mentioned in the introduction, Frobenius’ approach to construct solutions for equation (1), (2)
builds on the Ansatz (4). The existence and details of a first solution y; of this form readily follow
from substitution of (3) and (4) into (2) and expanding. As a first and founding step of his approach
however, Frobenius’ wrote down the result of such an expansion for general r. Following this initiative,
we arrive at the following expansion of the image of any function y(z,r) of the form (4), as produced by
the differential operator (2), with p(r) as in (6),

Lly(z,r),z] = p(r) ag =" + (®)

Z <p(n +7r)a, + z_: ((i+r)i+r =D i+ (@ +7)Pn—i + gn—i) ai> A
n=1

=0

we emphasize that this expansion is valid for any value of r.

2.1.2 Solution associated with the largest root of the indicial equation

From (8) it follows that y(z,r1), in which r; is the largest root of the indicial equation (5), so that
p(r1) =0, and with y(z,r) as given by (4), provides a first solution of (1) if its coefficients a,, satisfy

pn+m)a,+ 9)

n—1

+ > (i +r)i+r —DAp—i+ (i +r)pni+Gn-i)a; =0 , 1<n
=0

Since 1 is the largest of the roots r1 and 7o of the indicial equation p(r) = 0, it follows that p(n+7r1) # 0,
for all n, 1 < n. Relation (9) then provides a recurrence relation, which uniquely defines the values of all
of the coefficients a,,, given r; and any chosen value for ag.

2.1.3 Second linearly independent solution? Emergence of the so-called exceptional cases

A second independent solution ys(x, r2) of (1) of the form (4) exists, fully analogous to y(x,r1), if r1 # ro
and provided p(n + r3) # 0, for all n, 1 < n. The second condition is equivalent to 7y — r2 not being
equal to a positive integer.

Frobenius’ method [8] is especially distinguished when these latter conditions are violated, i.e. when
either 71 = r9 or 11 — r9 = N, in which N is a positive integer. These cases have been referred to as
to the exceptional cases [5], but precisely these have turned out to frequently be of great relevance in
mathematical physics.
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2.2 Conception of the d/dr method, general relations central to the method
and second linearly independent solution in case the roots of the indicial
equation are equal

2.2.1 Inspiration from the case in which the roots of the indicial equation are equal

In case the two roots r; and ro of the indicial equation p(r) = 0, (5), are equal, the graph of p(r) will
be a parabola tangent to the horizontal axis of the (r,p) plane. In that case, together with its value
p(r1) = p(ra) = 0, the derivative p/(r) of the function p(r) will also vanish for r = rq; i.e. we shall have
both p(r1) = 0 and p/(r1) = 0. In view of the fact that p(r) appears in the leading term at the right hand
side of expression (8), this coincidence can be taken as a hint to explore the derivatives of both sides of
expression (8) with respect to .

A step that will enable us to actually focus on the first term at the right hand side of expression (8),
is to introduce, and confine ourselves to, a class of functions, such that the nested sum in expression (8)
will vanish identically.

2.2.2 Frobenius’ class of functions g(z,r) and general relations central to the d/dr method

The right hand side of expression (8) can be simplified significantly, if, following an initiative that Frobe-
nius took on the fourth page of his 1873 paper, we introduce the notation g(x,r) for functions y(z,r) of
the form (4) while their coefficients a,, furthermore are required ° to satisfy
n—1
p(n+r7)an, + Z (((+r)+r—=DXi+ (G +7)pr—i+qu-i)ai=0 , 1<n ; (10)
i=0
this relation indeed ensures that the nested sum in expression (8) will vanish identically, whenever y(x, )
is of the type g(x,r).

Note that, again following Frobenius, we explicitly do not yet require r to be a solution of the indicial
equation; rather, r is explicitly kept as a parameter of the functions g(x,r). Note furthermore that
relation (10) then implies that the coefficients a,, will be functions of r. Once more following Frobenius,
we now also explicitly allow ag to depend on r 7.

The key advantage of the introduction of the functions g(x,r) is that, when expression (8) is applied
to this class of functions, the nested series on the right hand side of (8) will vanish regardless the value
of r, and hence so will its derivative with respect to r. Hence, provided it is allowed to interchange the
order of derivatives with respect to x and r respectively, taking the derivative with respect to r of the
both sides of expression (8) leads to

L[%”ﬂ - ((dagﬁ’") + ao(r) ln(m)) o(r) + ao(r)di’l@) o (11)

2.2.3 First application of the d/dr method: solutions in case the roots r; and 7, of the
indicial equation are equal

From relation (11) it follows that in case r; = ro we shall have

dy(x,r
LD =0
SNote that this is not prevented by occurrence of p(n + r2) = 0 for some value of n. Such occurrence would possibly
prevent (10) to have a unique solution for the ay, 1 < n, but it would not prevent it to have a solution at all.
7As we shall discuss in section 4, the possible dependence of ag on 7 does turn out to play a key role in the theory, be
it seemingly in a different way than originally anticipated by Frobenius.
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since, as we discussed, 1, = ro implies that together with p(r1) = 0 we shall have p’(r1) = 0. Hence the
function

dg(l‘,’l”) _ S da’n(r) n+r - n+r
e . prt + In(z) Z an (r)x , (12)

provided all series involved converge, after substitution r = r1 reduces to a second solution

yo(z) = dgj(da;, r) p— (13)

dan - r
= Z |rmry 21 4 In( )Zan(rl)x”+ Yo (=)

of the differential equation (1) in the exceptional case of equal roots of the indicial equation. Given the
occurrence of the singular factor In(zx), it is straightforward to show that yo(z) (13) and y(z,r1) will be
linearly independent.

2.2.4 The derivative of the first recurrence relation with respect to Frobenius’ parameter
r

An aspect that, to the best of the author’s knowledge, has not yet been mentioned in the existing literature
as yet, is the following. Relation (10) is considered to be an identity in r. From this it follows that the
derivative of the left hand side of relation (10) with respect to r must identically vanish. Consequently,

—

da;(r)
dr

p(n+r) dan(r) + i ((G+r)GE+r =D i + G+ 7)Pr—i + Gu—i)

ar 2 + (14)

+p'(n+7) an—i—z (i4+7r)—DI—i+Dn—i)a; =0 |, 1<n.

In this, p'(r) denotes the derivative of the indicial polynomial function (6).

We emphasize here that relation (14) is valid for any . We shall now first apply it in the case r1 = r5.
In section 2.3 we shall apply it to the other exceptional case, i.e. when r; —ro = N, in which N then will
be a positive integer.

2.2.5 Tandem recurrence relations for generalized power series coefficients in case r; =9

In the case of equal roots of the indicial equation, 1 = rq, relation (14), together with relation (10) itself,
will form a tandem of recurrence relations for the coefficients a,, and b,,, with

=220 (19
occurring in solution (13). Indeed, relation (10), with r; substituted for r, forms the first member of this
tandem:

p(n+r1)an(ri) + (16)
n—1
+ > (G+r) (i4+r =D Ausi + (i +7)Pai + @ni) ai(r) =0 , 1<n
i=0
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From this recurrence relation the coefficients a,,(r1) follow, given any choice of ag(r1). The second member
of the tandem follows from relation (14), using (15) and after substitution of r; for r:

n—1
p(n + 7"1) b, + Z ((Z + T1)(i +7r — 1) A—i + (7, + rl)pn—i + qn_i) b; + (17)
1=0
n—1
+ o (n+r)an(r) + > (26 +71) =D Ausi + pr—i)ai(r) =0 , 1<n.
=0

This relation provides a recurrence relation for the coefficients b, (15). Because, in case r = r1 = 7,
for 1 < n the coefficient p(n + r1) of b, will not vanish, the recurrence relations (17) uniquely define the
values of the coefficients by, for all 1 < n. Note that (17) takes the a,(r1), as calculated from relation (16)
as input. It is in this sense that (16) and (17) form a tandem.

The coefficients a,,(r1) in (17) were defined by recurrence relation (10) with r = ry, i.e. by (16)
actually, for any choice of ag(r). Using the conventional choice ag(r1) = 1, and reusing this for the
second solution, the a,(r1) are really the same coefficients as those of the solution y(z,71). With this

choice, according to (15),
dao(T‘)
bp = —= =0 18
) ( o >|T-n , (18)

so that in case r1 = rg, from (13) we recover the well-known result that

oo

yo(z) = In(x) y(x,r1) + Z bzt (19)

n=1

provides a second linearly independent solution of the differential equation.

2.2.6 The novelty of, and enhancement established by, the tandem technique

The novelty rendered by our reconstruction of (19), i.e. our enhancement of the underlying d/dr-method,
lies in the fact that the coefficients b, can be computed, algorithmically, from the tandem formed by
relations (16) and (17), starting from ag = 1 and by = 0. The decisive enhancement established by our
tandem method lies in the fact that it eliminates the need® to solve the recurrence relations (10) for the
an(r), so as to obtain all the coefficients a,(r) explicitly as functions of r. Indeed, solving recurrence
relations (10) for the a, as explicit functions of r can be forbiddingly complicated, or even difficult,
whereas recursive evaluation of our tandem (16) and (17) is merely a routine, in all cases. As a result,
once enhanced with our tandem technique, Frobenius’ d/dr-method becomes an efficient, algorithmic
method for routinely solving differential equations about their regular singular points.

2.3 Solutions associated with 5 in case r{ —r, = N

2.3.1 Structure of indicial polynomial

Because r1 and ry are the roots of the indicial polynomial p(r), we can rewrite p(r) (6) as

plr) = Xo(r—ry)(r—ra) . (20)

8This need is suggested by relation (15); indeed Boyce and DiPrima [2], in their discussion of application of relation (15),
mentioned the need to “first determine an (r)”.
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Hence, the pre-factor of ay according to (10) for n = N, which is the same as that of day /dr according
o (14) for n = N, is
PIN+7r)=X(r—=(r1=N))(r—(r2—N)) . (21)

In case the two roots 1 and 7o, of the indicial polynomial differ by a positive integer number N, r{ —ro =
N, expression (21) reduces to

p(N +7)=Xo(r —79) (r—(ro = N)) , incaser; —ro=N . (22)

Hence, in case r1 —ry = N, in which N is a positive integer, the pre-factor of an according to (10) and
that of day /dr according to (14), vanishes if r = ro. Hence, the coefficient a) and the quantity day/dr
remain free, as far as equations (10) and (14) are concerned. With respect to possible solutions y(z,r2)
of the form (4), i.e. without logarithm, with r» = ro and with the coefficients obeying (10), the situation
is then as outlined in the next subsection.

2.3.2 With » = r; and the free coefficient ay, a solution linearly dependent on y(z,r) is
associated

Since the coefficient of ay vanishes for r = ry, equation (10) for n = N reduces to a relation for
ag, a1, ..., ay—1. This implies that for n = 1,..., N, equation (10) provides a homogeneous system of
N coupled linear algebraic equations for the N coefficients ag, a1, ..., ay_1. The matrix of coefficients
of this system may be singular, in which case the system would allow for a non-trivial solution.

We insert two remarks, labeled for later reference:

Remark 2.1 From the recurrent structure of the equations, combined with the fact that the coefficient
of an in equation (10) will be non-zero forn =1,...,N — 1, it is clear that any non-trivial solution for
coefficients ag, a1, ..., ay_1 would have at most a single free parameter: all coefficients aq,...,an_1
could be expressed as functions of ag.

Remark 2.2 In any case, the system of N coupled linear algebraic equations will have the trivial solution

a0:O,...,aN_1:O

We shall refer back to the case of non-trivial solutions, remark 2.1, later. We shall now first further

explore the trivial solution ag =0, ..., ay—1 = 0, remark 2.2.
Proceeding — regardless of the matrix being singular or non-singular — with the trivial solution ag =
0,...,any—1 = 0, combined with free coefficient ay, expression (10) provides recurrence relations for all

am, N+1 < m. In this way it does provide a solution y(z, r2) of the form (4), with = r2. Rewriting (10),
for N < n, in terms of new indices of summation m = n — N and j = ¢ — N, using r; —rs = N, and
finally expressing the result in terms of new coefficients d,, = a,,+n reveals that the solution y(z,72)
thus obtained is the same as, or a multiple of, y(z, 7).

In summary, if 1 — ro = N, for any positive integer N, then through its solution initiated by
ap =0,...,ay—1 = 0 and its free parameter ay, when applied to construct solutions of the form (4) with
r = 1y, relation (10) renders a solution that is merely a multiple of y(z,r1).

10
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2.3.3 Second linearly independent solution in case r; —ry = N

In this subsection we continue to explore remark 2.2: we continue to explore the trivial solution

G,O:O,...,G,N,1:0 5 (23)
of the set of algebraic equations that is obtained from (10) for n = 1,...,N. In case r;1 —rs = N, an
independent second solution of differential equation (1) is associated with the smallest root r = 7 of the
indicial equation, combined with the trivial solution ay =0,...,anx_1 = 0, as follows.

Obviously, since 5 is a root of the indicial equation (5), we have p(re) = 0. Hence, since we have
ap = 0, when r = rq is substituted into expression (11), the right hand side of expression (11) will vanish.
This just shows that expression (12) will reduce to a solution of differential equation (1) if we substitute
r = 19 into it, while we have ag = 0. This solution takes the form

ya(x) = chm”‘”? + In(x) Zan(rg)x""’” . (24)
n=0 n=0

With ag(r2) = 0,...,any—1(r2) = 0 and the coefficients a,(r2) satisfying (10), we identify the second
series as ay(r2) y(x,r1), so we recover the familiar result [7, 13, 5, 2]

oo

yao(z) = chx”Jr” + an(re) In(z) y(z,r) . (25)

n=0

The coefficients ¢, in (24) or (25), defined fully analogously to (15), as

o= (2 | (20

must furthermore satisfy relation (14) for r = rq, so

n—1
p(n+r2)cn + Z (A +72)(i+r2 = DAy + (i +72)Pn—i + qn—i) & + (27)
=0
n—1
+ o (ntr) an(ra) + Y ((2(i+72) = DAuy +pa—i)ai(ra) =0, 1<n;
=0

the coefficients a,,(r2) in this are the solutions of relation (10), for » = ro and with starting values (23).
NB: immediately after the next paragraph, we shall consider ay(r2).

In the context of relation (27) with n = N, it is now ¢y which appears as a free, undetermined
coefficient. In view of r = rg, the form of the series in which ¢y appears and in the light of our discussion
above of how a free ay(rs) in the context of (4) merely produces a copy of y(x,r1), we recognize that
the free coefficient ¢y once more represents the possibility to add a multiple of y(z,71) to (24).

Note furthermore that in the new context of (24) and (27), the coefficient ay (r2) is no longer free: its
coefficient in relations (27), for n = N, does not vanish. Indeed, this coefficient is p'(N + r2) = p'(r1),
and since r1 # 1o, certainly p'(r1) # 0. Hence, given ag(rz) =0,...,an—1(r2) = 0, the coeflicient ax(r2)
is actually determined by (27) for n = N, i.e. by

p'(r1) an(re) + . ((i+mr)(i+re—DAn_i+ (@ +re)pN_i +an_i)c; =0 . (28)

2

-
Il
o

11
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The ¢; occurring in this equation are to be obtained from relations (27) forn=1,..., N — 1, i.e. from
n—1
pn+ra)en+ Y ((i+72)(i+ 12— DAns + (i +712)Pni + gni)ci = 0, (29)
i=0
1<n<N-1

7

so that ¢g is left as a free coeflicient; this represents the scaling freedom of solution y,(z), due to the
linearity of the differential equation.

2.3.4 Possibility of solutions associated with r, without a logarithmic term

We recall that in the previous subsection, we are aiming to construct a solution of type (25). The
procedure is to calculate coefficients ay, (r2) and ¢, using the tandem of recurrence relations (10) and (27),
starting from ag(r2) = 0,...,any—1(r2) = 0 and having ¢y as a non-zero, free coefficient. As a special case
of (27), namely for n = N, we have relation (28), which determines an(rz).

Depending on the values of the coefficients \;, p; and g; then, it may occur that (28) implies that
an(r9) vanishes, too. The logarithmic term in solution of type (25) then would vanish, i.e. in these cases
we find a second solution of type (4), with r = ro, without logarithmic term.

In such cases, it would furthermore follow from (10) that all ay(r2) vanish. An immediate consequence
of this is that relation (27) for the coefficients ¢; will essentially reduce to what relation (10) is for the
coefficients a;(rz).

In other words, in these cases it would have been possible ? to find these same solutions of type (25)
with vanishing logarithmic term, i.e. of type (4), associated with 79, directly from (10). Recalling that ¢y
is non-zero, this means that the corresponding solution of (10), with r = 75, has non-zero ag. Hence this
situation corresponds precisely to a possible non-trivial solution of (10) with » = ro (which, as we saw,
has at most a single free parameter, e.g. ag) as meant in remark 2.1.

Note that the solution y(z,r2) associated with ro thus found is linearly independent of y(x,r1). This
easily follows from the observation that the lowest powers of x occurring in the two solutions are precisely
ro and 7 respectively, and these powers differ, by N.

A unifying example of this case occurs when a differential equation, for which x = 0 is a so-called
ordinary point [2], is multiplied by 22. When the resulting equation, for which z = 0 is treated as a
regular singular point, then is solved about = 0 by the method discussed in this section, one finds
r1 = 1 and r9 = 0. The logarithmic term of the second independent solution, associated with ro = 0, can
subsequently be easily shown to always vanish.

A less trivial example is provided by Bessel equations of half-integer order, to be addressed in detail
as an example application in section 3.5.3. About a feature of Bessel functions that is relevant to our
study here, Watson [14, sec. 3.11] remarked in his Treatise:

“(..) no modification in the definition of J, (z) is necessary when v (is half-integer); the real
peculiarity of the solution in this case is that the negative root of the indicial equation gives
rise to a series containing two arbitrary constants, i.e. to the general solution of the differential
equation.”

As we revealed in the present section, this peculiarity of the Bessel functions of second kind and half-
integer order is an instance of a more general phenomenon.

9This neatly corresponds to a heuristic recommended by Boyce and DiPrima [2]: in case r; and ro differ by a positive
integer, one may still attempt to find a second linearly independent solution of type (4) using recurrence relation (10) with
r = ra. Only if such an attempt is unsuccessfull, one needs to proceed looking for a solution of form (25).

12
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2.3.5 Conclusion

The major new result achieved in section 2.3 lies in the fact that the combination of relations (27)
and (10), for r = ro, forms a tandem of interlinked recurrence relations, that as a whole renders the
coefficients ¢, of the solution (25). They are to be used with the condition ag(rz) = 0, while ¢ is to be a
free, but non-zero parameter of the final solution; it is actually a free constant of integration, reflecting
linearity of the differential equation (1).

Our formulation (27) reveals that, in case the second independent solution does have a non-vanishing
logarithmic term, the recurrence relations determining the ¢, change drastically at n = N: for n < N,
all a,, vanish, while for N < n they typically do not'°.

Relations (27) and (10) also show that, when A(x), p(z) and ¢(z) are all finite degree polynomials,
say of degree K, then for K < n the sum over i =0,...,n — 1 reducestoasumi=n—K,...,n— 1.
That is, the number of terms generated by this sum then becomes constant and equal to at most K, and
it is no longer increasing with n. Relations (27) and (10) then become closed form recurrence relations:
they will be functions of n, and of the coefficients of the polynomials A(x), p(x) and ¢(x), but they will
be the same in form (i.e. form invariant) for all a,, and ¢,, K < n. This advantage may be lost when
the differential equation (1) is divided by A(x), so as to normalize the coefficient of 3" and it is for this
reason that we avoided this normalization in our assessment of the subject.

3 Application: series solutions for Bessel’s equation

To highlight the novelty in our results, by way of an example, we shall apply essentially relations (10), (17)
and (27) to construct form invariant recurrence relations for coefficients of all solutions of Bessel’s
equation, for all positive real order '' v. Especially the tandem recurrence relations for the coefficients
an, b, and ¢, that we shall derive for solutions of Bessel’s equation of integer or half-integer order, as far
as the author has been able to verify, have not previously been documented in the literature.

3.1 Coefficients and indicial polynomial

Bessel’s equation of order v
a?y'(z) + ay + (@* =7y =0 , (30)

clearly is of form (1)-(3). The only non-zero coefficients of its series (3) are
M=1p =1,0=-1> and =1 |, (31)
so that the roots r1 and r9 of the associated indicial polynomial (6)
plr) =12 =12 (32)

are
T =v |, Tro = —V . (33)

10This explains why it is considered to be “usually impossible” [11, §9.5] to find closed form expressions for the coefficients
Cn, i.e. to have the coefficients ¢, as explicit functions of n.

HWe follow terminology that is common in the literature about Bessel functions: in this context, the order of a Bessel
equation is understood to refer to the value of the parameter v, not to the highest order of the derivatives that occur in the
equation. The order of a Bessel equation thus corresponds to the index of the Bessel functions that are its solutions.

13
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3.2 Minimal value of n for the recurrence relations to be form invariant

Due to (31), the sum over 4 in (10) only has non-vanishing terms for i = n — 2 and ¢ = n — 1, as far as
these values of i are allowed, given the value of n, since ¢ has to be at least zero. We conclude that for
every integer value of n larger than or equal to 2, the sum over ¢ in (10) will consist of precisely its terms
for i =n — 2 and i = n — 1. This means that the recurrence relations for the coefficients a,, for 2 < n,
all depend on at most a,_1 and a,_s, while the coefficients of these will be form invariant functions of
n and r; see further subsections 3.4 and 3.5.

For n = 1, the recurrence relation will not involve terms corresponding to ¢ = n — 2, so the recurrence
relation for a; will be of different functional form than the recurrence relation for a,, with 2 < n. The
same observations apply to the recurrence relations (17) and (27). For this reason we shall consider the
case of n =1, i.e. the recurrence relations for a;, b; and c;, separately in subsection 3.3.

3.3 Recurrence relations for n =1
From (10), (31) and (32) we find, for n =1
p(14+7r)ai(r) = (1+7r)*=vHar(r) = 0 . (34)
Substituting for r both cases of (33), i.e. r = £v, gives
1x2v)ai1(xv) = 0 . (35)

Likewise, for n = 1 and r = ry = —v, relation (27) (which, as we recall, is relevant to cases in which
r1 —r9 = 2v = N, in which N is a non-zero integer) reduces to

1-2v)es +2(1—v)ar(-v) = 0 . (36)

We observe that equation (35) implies a1(+v) = 0, except for v = 1. In this exceptional case v = 1
however, (35) still implies a;(4) = 0, while the same is implied for a;(—3) by equation (36), for v = 3.
Hence,

_1
2
a1(£v) = 0 for all v. (37)

With result (37), equation (36) implies ¢; = 0, except in case v = %, in which case
ri—ro=2v=1 |,

so that the prefactor of ¢; in (36) vanishes. Therefore, when v = %, c1 is a free coefficient. This is just
in accordance to the general theory of section 2.3.3; in that section we saw that in case r1 — ry equals
a non-zero integer N, cy is free. This corresponds to the freedom of adding y(x,r1) to the solution ys.
Hence, in the exceptional case v = %, coeflicient ¢; is free but we may choose ¢; to be zero, without risk
of loss of any independent solution of the differential equation. We will do so, so that, in summary, we
shall have

g = 0 , forallv#0. (38)

Lastly, for v = 0, so for the exceptional case r; = ry (see (33)) and n = 1, the relevant recurrence
relation (17) reduces to

p(D)b1 + p'(1)ar(0) = 0 . (39)
Combining (37) and (39) with the fact that surely, for v =0, r; = ry = 0, so that p(1) # 0, we conclude

bp = 0 , relevant to case v = 0. (40)

14
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3.4 Recurrence relations for y(z,v) and 2 <n

For 2 < n we find from (10), (31) and (32)
(n+7)? =vHan(r) +ano(r)=0 , 2<n . (41)

Substituting into this from (33) the case r = r; = v we find the recurrence relation for solutions y(z, 1)
of the form (4)
an_g(ll)
n = - 5 == == 5 2 S . 42
an (V) n(n 1 20) r=ry=v n (42)
With result (37), i.e. a1(v) = 0, and recurrence relation (42) for the further coefficients of (4), we have
recovered the Bessel functions J, (z) of the first kind, for all orders v. The standardized definition [14, 1]
of these functions corresponds to the choice ag(v) = (2¥ T'(1+ v))~ L.

3.5 Results relevant to Bessel functions of the second kind

In the literature about Bessel functions, Bessel functions the second kind are defined using normalizations
that transcend the topic of the present manuscript [14, 2]. Yet these Bessel functions are essentially linear
combinations of the solutions that we shall derive here. In what follows we shall focus on highlighting
aspects of our topic and disregard the link with standardized definitions of Bessel functions.

3.5.1 Distinct roots of the indicial equation, not differing by an integer

Associated with the second, smallest root r2 (33) of the indicial equation (32), i.e. r = ro = —v, rela-
tion (10) with (31) leads to

B ap—2(—V)

=y = — 2 < . 4
’I’L(’I’L—QV) ) r T2 v, =N (3)

an(—v) =

As expected, as a recurrence relation for the a,, relation (43) breaks down at ay if
rn—ro=2v=N

for any integer N larger than 1 (note that relation (43) only applies for 2 < n). Hence, a break-down of
relation (43) at n = N = 2v occurs if the order v of the Bessel equation is an integer multiple of 1/2,
for v larger than 1/2. The case v = % does not lead to a breakdown of relation (43), but it is still an
exceptional case in which 1 —ro = N. N =1 in this case and associated with that the coefficients a;
and c; need special consideration. We covered this in section 3.3.

In summary, all cases in which the order v is a positive integer multiple of 1/2 give rise to exceptions
in the recurrence relations, so far either relation (43) or (35) and (36). We shall continue to explore these
cases in subsection 3.5.3.

The other exception is v = 0, in which case r; = 72, relations (42) and (43) coincide and essentially
two copies of the same solution y(z,r) are produced. This case we shall explore in subsection 3.5.2.

In all other cases, so whenever v is not any integer multiple of 1/2, relation (43) specifies a second
independent solution y(x,r2) of form (4).

15
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3.5.2 Two equal roots: Bessel equation of order zero

In case 1 = ry = +v = 0 the second solution is of type (19). A tandem of recurrence relations rendering
its coefficients b,, could be written down directly by substituting the coefficients (31) of Bessel’s equation
into the general relations (16) and (17). Instead however, we choose to illustrate the theory behind (16)
and (17) by simply re-applying it here.

The counterpart, for Bessel’s equation, of relation (10) is relation (41). In this we substitute v = 0
and from the result we solve ay,(r), to find

_ an—2(r) "
an(r) = rrE 2< . (44)

Substitution of r = r; = ry = v = 0 into (44) just recovers (42) for v =0, i.e.

2<n ; (45)

2 )

this relation actually is the instance of relation (16) with (31) and r = r9 = v = 0, i.e. for Bessel’s
equation of order zero. Taking the derivative of (44) with respect to r gives

(= 2et) s g (46)

In this, we substitute r = r1 = ro = v = 0 and use (15) to identify coefficients b,, and b,,_s, to find

2 Qp—2 — N bn72

b, , 2<n . (47)

n3
For the first two coefficients by and by, we have from (18) by = 0 and from (40) b; = 0. From (37) we have
a1 = 0, while ag is a free coefficient, reflecting the linearity of the differential equation. With these initial
values for ag, a1, by and by, expressions (45) and (47) together form our first example of a tandem of
recurrence relations. This tandem of recurrence relations does not yet seem to be commonly documented,
if at all, in the existing literature about Bessel functions of the second kind and of order zero.

3.5.3 Bessel equations of integer or half-integer order larger than zero

For the case 11 — 9 = 2v = N, a second solution of Bessel’s equation is to be expected of the form (25).
The appropriate instance of relation (27) for 2 < n follows simply by differentiation of (41) with respect

tor,
(n+7r)?=vHa,(r) + d, 5(r) +2n+r)a(r) = 0 , 2<n |, (48)
followed by substitution of r = ro = —v, using (26) to identify ¢, and c¢,—2
nn—2v)e, + cna +2(n—v)a,(-v) = 0 , 2<n . (49)

As expected, we recognize that ¢y = ¢, will be a free parameter, according to this relation: for n =2v
its pre-factor vanishes. As we saw in our general analysis, it will be associated with a copy of y(x,r1), so
we can set cy equal to zero:

CN = 0 . (50)
Substitution of r = ro = —v into (41) gives the recurrence relations for a,(r2) = a,(—v), for 2 <n
n(n—2v)apy(—v) + an—2(—v)=0 , 2<n . (51)
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We recall from section 2.3.3 that, according to result (11), to construct a solution of the form (25), we
have to choose ap(—v) = 0. Furthermore, according to (37), we have a;(—v) = 0. Combining this
with (49), (50) and (51) we find, (all a,, and ¢, here are associated with r = r = —v, but we drop this
detail from our notation and write a,, instead of a,,(—v)):

an 0 ,
N=2v , 2<n<N . (52)
Cn = T n(n—-N)
ay = —wCN-2
n=N (53)
cCN = 0 s
___ _ap-2
N n = n(n—N) 54
<n cn—2+(2n—N)an, ( )
Cn = — n(n—N)

With (38) we found ¢; = 0. Coefficient ¢y is arbitrary and can be chosen equal to one. With these
initial values, relations (52) to (54) form tandem recurrence relations for solutions of type (25) of Bessel’s
equation for integer or half-integer order, i.e. 2v = N.

Note that, since ¢; = 0 in these cases, all ¢; for odd i smaller than 2 v vanish, as as result of (49). As
a consequence of (53) then, ay = ag, will vanish whenever 2v — 2 is odd, so for half-integer values of
v. Thus, as announced in section 2.3, we recover the well-known and distinctive characteristic of Bessel
functions of the second kind and of half-integer order, that, although they arise from the smallest root ro
of the indicial equation, and do so in a case of the two roots differing by an integer, they do not feature
a logarithmic term.

4 Discussion

4.1 Synopsis and Goal of Further Discussion

We have enhanced Frobenius’ method for solving linear differential equations with variable coefficients.
To avoid the kind of prolixity that tends to come with generality, we formulated our assessment in terms
of 27? order equations.

The enhancement consists of amending Frobenius’ method with essentially recursive algorithms for
straightforward calculation of the coefficients of the series that give the solutions in the, so-called excep-
tional, but practically important, cases in which the solutions may contain a so-called logarithmic term.
Our algorithms come in the form of tandems of interlinked recursive relations. This includes a straight-
forward method for calculation of the coefficient of the logarithmic term itself — which may vanish — and
hence an algorithmic, diagnostic tool for deciding whether or not such a logarithmic term will actually
be present.

Altogether these algorithms indeed offer a substantial enhancement of Frobenius’ method, as compared
to the traditional way of obtaining the series coefficients, i.e. by substitution of a template of the solution
into the original differential equation and extensive series manipulations; indeed the calculations involved
in this traditional way of working have recently been qualified as being “long and tedious” [11].

As we showed, the tandem of recurrence relations can be constructed by, essentially, performing
Frobenius’ original d/dr-method, but in an implicit manner. The idea that the coefficients b, (15) and
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¢n, (26) could be obtained by differentiation with respect to r, as such, is not new ([5, 2, e.g.]), but our
approach to take the derivatives only implicitly is novel.

This idea eliminates the need to “first determine a,(r)” [2], i.e. to solve the recurrence relations (10)
for the a,(r), so as to obtain all the coefficients a,(r) explicitly as functions of r. This elimination is a
great enhancement indeed, because solving recurrence relations (10) for the a,, as explicit functions of r
can be forbiddingly complicated, or even difficult.

In contrast with this, construction, and subsequent recursive evaluation of our tandems is merely a
routine, in all cases. As a result, once enhanced with our tandem technique, Frobenius’ d/dr-method
becomes an efficient, algorithmic method for routinely solving differential equations about their regular
singular points.

Apart from being efficient, our enhancement of Frobenius’ method is merely constructive and system-
atic. Hence, it provides additional insight in the structure of the sequence of series coefficients.

It may well be considered surprising that the significant enhancement that we reached was still possible
almost one and a half century after publication of Frobenius’ original [8] manuscript on the subject. In
the upcoming subsections we seek for an explanation of this remarkable historical fact, by a targeted
review of the history of the subject.

4.2 Historical origin and background

As a concise summary of the historical origin and background of the subject, that we shall subsequently
reflect on, we list six steps in Frobenius’ original manuscript [8]. For our further discussion it is of
importance to emphasize that the order of items in this list represents the order of the steps as they were
taken in the original publication of Frobenius.

1. The standardization of the differential equation by normalizing the pre-factor of y” to be 2.

2. The Ansatz (4), inspired by the earlier results of Fuchs, to look for solutions in the form of gen-
eralized power series, while this generalization introduces no more than only a single parameter r.
This parameter is used to shift the powers of the variable z in the power series, all by the same
amount.

3. Frobenius’ discovery that, at least for a first series solution, the coefficients a,, of the series obey a
recurrence relation that can be easily (in his words) derived.

4. The idea that then all coefficients a,(r) of the series may be conceived as functions of r, too.

5. As an attempt to construct solutions associated with a second root, ro, of the indicial equation, in
cases of roots 1 and 7y being equal or differing by an integer, Frobenius explored an initiative to
choose the leading coefficient ag(r) such that a division by zero in recurrence relations for the a,
would be replaced by a limit process, lim,_,.,, so as to obtain finite values for all coefficients a,.
That is, in our phrasing, Frobenius explored the option to have

ag(r)=co(r—rq) , (55)
instead of e.g. ag = 1.

6. Frobenius’ idea that by means of differentiation with respect to r, new solutions of the differential
equation can be obtained.
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In his original manuscript [8], Frobenius actually took steps 1 to 5 all on the third and fourth page,
immediately following his two-page introductory section. For what follows, it may be worth noting '2
that step 6 was physically separated from the earlier steps by no less than five pages devoted to the proof
of the convergence of solutions of type (4).

Step 5 was taken so as to obtain solutions of the differential equation, each of the form as proposed
in step 2. Furthermore, the goal was to have one such a solution associated with each root of the
indicial equation. The later discussion by Coddington [5] reflects the same purpose of step 5. Step 5 was
documented indeed as being aiming at solutions in cases in which two roots 2 and r; differ by an integer
number, so when ry —ro = N.

Essentially to the end of obtaining a finite value for lim, ., ay(r), step 5 introduces a factor r — rqy
in ag(r). Although Frobenius’ limit procedure is effective in obtaining a solution associated with ry of
the differential equation indeed, it actually only produces a solution that is linearly dependent on the
first solution, y(x,r1), i.e. on the solution that had already been obtained, associated with r;. This may
well be perceived as a failed attempt to complete the set of fundamental solutions. However, for the
overall understanding of the theory, the fact that in cases of ry — ro = N, the coefficient ay is in this
sense associated with y(z,71) is a key result. In our subsection 2.3.2, we showed that one may naturally
recover this result without Frobenius’ device, item 5 of our list, of choosing ag(r) ~ r — 7.

As we will document and discuss further in subsection 4.3, the factor r — ro introduced through ao(r)
in item 5, historically became a stowaway in the context of item 6, i.e. the technique of generating
linearly independent solutions through differentiation with respect to r. As we shall discuss shortly, the
introduction of the factor r — ro seems to have been in so far disadvantageous, that it seems to have
delayed development of the tandem recurrence relations for the coefficients of solutions that we have
developed and presented in the present manuscript.

In section 3 we presented an illustration in support of this interpretation of the history of the subject,
by deriving tandem recurrence relations for the coefficients of solutions of the second kind and integer and
half-integer order of Bessel’s equation. Bessel functions of course are very well-known and vast amounts
of results have been documented about them [14, 1]. The tandem recurrence relations we presented here
however, elementary as they seem to be, seem to not be widely known, if at all.

Lastly, we should mention consequences of the first item of our list, the normalization A\(x) = 1 used
by Frobenius and in textbooks on the subject ever since. As we highlighted in our exploration, whenever
A(z), p(x) and g(x) are polynomials, as they often are in practical applications, we arrive at recurrence
relations the number of terms of which are bounded, as a function of n. This boundedness is typically
lost when A(z) is normalized.

4.3 The role and history of the factor » — r in the literature

To search for solutions associated with ro and in case 11 — ro = N, for non-zero integer N, Frobenius [8]
took the initiative to set ag(r) proportional to a factor r — ry. It is interesting that in our variant of
the approach, we may recover this same proportionality of ag(r) to r — ro, but only as a by-catch, after
deriving the solutions of the differential equation. Indeed, along our approach, in first instance, according
to relation (11) combined with p’(r2) # 0, to obtain a solution of the differential equation associated with
r = 19 no more is required than ag(rz) = 0. To obtain more than a trivial solution from relation (27)
then, we need ¢y # 0. Combined with expression (26), finally this leads to the conclusion that ag(r) must
depend on r, e.g. at its simplest,

ap(r) =co(r—ra) . (55)

12This may perhaps help to understand why, in the history of the method, step 6 was never before fully explored without
first taking step 5, like we essentially did in our version of applying Frobenius’ method.
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Frobenius’ motivation for setting this from the onset was that, from expression (22) it is clear that,
using (10) as a recurrence relation to obtain all the coefficients a,, 0 < n, is problematic for r = rs.
Indeed, in case n = N, so to calculate ay, the division by p(n + r2) needed to calculate the a,,, evokes
division by p(N + r2) = p(r1). That is, it would evoke a division by zero.

It was to remedy this division by zero that Frobenius [8] proposed to choose ag to be proportional to
r —ry. For then the recurrence relation (10) would imply all the a; to share this factor. The strategy was
then to divide (10) by p(n+7) to solve all the a,, including ay, as a function of r and then essentially to
take the limit » — r5. Common factors r — ry in the a; and p(N + r) would cancel, and a finite value for
ay would be obtained. This procedure is also documented in detail by Coddington [5] and it seems to be
the origin of the factors r — ro in the formulae proposed by Boyce and DiPrima in their presentation of
these matters in their textbook on differential equations [2]. Indeed, instead of our relation (26), Boyce
and DiPrima have

cn(ra) = % [(r =72) an(r)] |r=r, ; NB: with ag =1 and a,(r) must be explicit. (56)
We have added the warning that a,(r) here must be an explicit function of r, so it may no longer
recurrently depend on previous coefficients a;, ¢ < n. This will be explained shortly but it is usually
prohibitive to application of relation (56). Indeed, it would be required to actually solve the recurrence
relation for the a,(r), which is usually insurmountable [11].

Boyce and DiPrima did actually not include a derivation of their formula (56) in their textbook; for
this they referred to Coddington [5]. Coddington did actually not present equation (56) at all, but his
textbook does contain relation (12), with r = ro. With (25) however, this suggests our (26), rather
than (56).

The difference between our (26) and Boyce and DiPrima’s (56), i.e. the factor r —rg, can be explained
by interpreting a,(r) in (56), like the a,(r1), to have been calculated from (10) with the standard choice
ap(r) = 1; this latter value for ag is indeed documented, by Boyce and DiPrima. For any choice of ag(r2)
however, all a,,(r2) would be proportional to ag(rs2), and so the factor » —ry can be included after solving
the a,(re) from (10) with ag(r2) = 1. This apparently was done and therefore the factor r — ro appears
in formula (56).

Boyce and DiPrima’s substitution of (r — ) ag for their original ag = 1, in the limit r — 7y effectively
implements our ag(r2) = 0 of (23). And thus, Boyce and DiPrima’s expression (56) is correct. They
have documented how to successfully apply it indeed, to derive the coefficients for a second independent
solution of Bessel’s equation of order one: this is one of the exercises in their section on this Bessel
equation. Watson [14] recommended, but did not document, this approach to obtain these solutions of
Bessel’s equation of order one; Watson identified the approach as being essentially Frobenius’ method and
attributed application of it to Bessel’s equation to Forsyth [7]. The presentation by Boyce and DiPrima
truthfully follows these originals. In this approach, the a,(r) are indeed first explicitly solved from (10).
Application of (56) directly to such an intermediate result would indeed give correct coefficients ¢,,.

At this point we need to emphasize however, that the factor r — ro in (56) does prohibit a recursive
interpretation of the ¢, of (56): indeed, with a recursive interpretation, the ¢, would be multiplied by
r—r9 once again at each recursive step. This is clearly not intended and would obviously lead to erroneous
results.

In contrast to this, our formulation, relations (27) and (10) can be applied fully recursively, without
any need to obtain a non-recursive, explicit expression for the a, (r). This renders our approach generally
applicable, i.e. a genuine method. Along this route we naturally find the tandem recurrence relations
for the coefficients of the so-called exceptional, but practically important solutions of the differential
equation, a result that, following the procedure as suggested by relation (56), hitherto seems to have
been beyond reach.
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4.4 Conclusion

The key result of the work presented here is the following. We enhanced Frobenius’ method by augmenting
it with tandem recurrence relations that render all coefficients for those solutions of linear, second order
differential equations about their regular singular points that may involve logarithmic terms. These
tandem recurrence relations can be constructed by our enhanced variant of Frobenius’ method, exploring
derivatives with respect to a parameter r. This parameter r corresponds to a shift of all the powers of
the variable x in generalized power series, (4): Frobenius’ Ansatz.

Besides generalized power series, a logarithmic term may indeed appear in the solutions of a differential
equation; the coefficient of this logarithmic term may vanish in certain cases. Hence this coefficient is of
significant interest for applications in e.g. physics. Our enhanced variant of the theory naturally enables
calculation of this coefficient of the logarithmic term, i.e. it provides a diagnostic tool to decide whether
or not there does appear a logarithmic term.

Our avoiding of a normalization of the coefficient of the highest order derivative in the differential
equation, A(x), led to a slight generalization of Frobenius’ original central formulae. As we showed
however, in practical applications, the implied simplification of the recurrence relations can be very
substantial.

The historical fact that these results seem not to have been established earlier seems surprising and
calls for an explanation. As we discussed, it may well be that Frobenius’ initiative [8] to explicitly
introduce a factor r — ro, through ag(r), in his first attempt to derive a second independent solution of
the form (4) through a limit procedure, may in the end have raised a stumbling block that has persisted
in the subsequent literature for a long time. Frobenius’ idea that a way forward was to let the coefficients
an depend on r was priceless. In as far as we have derived any new result in the present manuscript, still
it was derived from this powerful idea. Frobenius also proposed the correct required dependence of ag
on r, in the exceptional cases r;1 — ro = N: we did in the end recover Frobenius’ factor r — ro in ag(r).
However, this factor turns out not to play the role Frobenius seems to have had in mind. In Frobenius’
manuscript, the purpose of the factor » —ry was to cancel a division by zero, so as to obtain a finite value
for ay or c¢y. In our variant of Frobenius’ method, the role of the factor r — r9 is to reconcile the facts
that to support a second independent solution of the differential equation, associated with ro, ag needs
to vanish and ¢y should not vanish, while ¢q is the derivative of ag with respect to r.
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