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Abstract: The Multi-Level Model (=MLM) was suggested by A. Levichev as a description of quarks and 
gluons. The review recalls MLM-terminology while MLM-findings (for quarks and leptons) are compared to 
the theoretical and experimental data as accepted by the Standard Model (=SM). MLM is based on Segal’s 
compact space-time U(2) and on the sequence of embeddings: U(2) into U(3), U(2) into U(4), etc. These 
groups were called the levels (of matter): U(2) - the 0th  (that is, our mundane world), U(3) - the 1st, U(4) - the 
2nd, etc. Such a convention matches the SM-quarks' generations list. Each SM-quark is viewed either as a 
sunken proton, or as a captured proton. The MLM-proton is elementary and indestructible (hence no need for 
confinement). For MLM-quarks, in terms of the notion of a ruling group, flavor and color are defined 
mathematically. The number of colors (and of flavors) is level-dependent. For levels U(3) through U(6) the 
correspondence with the SM-quarks is established. Three new quarks and two new leptons are predicted. The 
SM-puzzle of quark and lepton generations is solved. Using the Han-Nambu scheme, the notion of the quark’s 
electric charge is expressed in terms of color charges. The original part of the review suggests studying the 
proton’s properties (like mass, shape and inner pressure) on the basis of its wave function.     
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1. Introduction 

In [1], with a goal of understanding the quark-gluon media, the Multi-Level Model (MLM, for 
short) was suggested. Below, starting with the next section, MLM’s main tenets and terminology 
are recalled (mostly from [1, 2]). To mathematically model elementary particles, the Chronometric 
Theory is applied throughout (see, especially, the section Indecomposable Elementary Particle 
Associations in [3]). The method of [3] can be interpreted as the one generalizing the suggestion by 
Wigner [4] to model particles on the basis of certain Poincare group (denote this group by P) 
representations. In [3] Segal treats certain representations of G = SU(2,2). This latter group 
(sometimes called the conformal group) contains both the (11-dimensional) extended Poincare 
group P+ and its (10-dimensional) subgroup P. In [5] it was suggested to name the approach of [3] 
as the Wigner-Segal method. The abbreviation SM stands for the (currently widely accepted) 
Standard Model. In [1, 2] the MLM was described as an alternative to the SM. On the basis of 
further studies (see [5–10]), MLM can now be viewed as the symbiosis of Segal’s Chronometry 
with SM. The main purpose of the current review is to put together concise and, hopefully, con-
vincing arguments in order to support such a far-reaching view.  

2. From Chronometry to the MLM-quarks of the U(3)-level  

First, the Segal’s Chronometry has to be outlined. Recall that A. Levichev has surveyed it in 
[11] (in Russian). Also, it is surveyed in [12] which is online.  

Mathematically, Chronometry deals with a slightly larger totality of space-time events than 
the Minkowski space-time M has. Namely, the compact chronometric world D, as a manifold, is 
the unitary group U(2) which is defined by formula (3.3) of [9]. (This suffices for our purposes. To 
eliminate closed time-like loops one has to move to the universal covering group.) Here (and on) 
we use world as a synonym of space-time. The imbedding of M into D via the Caley transform is 
well-known, see formula (5.2) of [12]. The Lorentzian metric (or inner product) in D was intro-
duced by Segal (and is given in Section 3.1 of [12]).  This metric is left-invariant as well as 
right-invariant on the Lie group U(2). The above mentioned Poincare group P is the totality of all 
isometries of the (pseudo-Euclidian) M. The group P+ can be obtained from P by adding scaling 
transformations; hence P is a subgroup of P+.  
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The main group of (causal) transformations in D is (15-dimensional) SU(2,2), see formula 
(2.2) from [2]; in our Figure A5 we choose a generic element g2 of SU(2,2) and we reproduce its 
action on a generic element z of D=U(2). It is the linear-fractional action, see Figure A5. When one 
switches to (an earlier mentioned) D’s universal cover, one has also to switch from SU(2,2) to its 
universal cover. In this regard we only mention that there is a canonical mathematical way of 
treating such a situation: when G acts on U, then there is a canonical action of the G’s universal 
cover on the U’s universal cover. In our paper, it is enough to stay with G = SU(2,2) and with its 
linear-fractional action on D.  

Certain representations (see [3]) of SU(2,2) give rise to chronometric particles but we notice, 
once and for all, that we only need to deal with just one particular representation: it is introduced 
right before our Theorem 2, below. The adjective chronometric indicates that we are within the 
Chronometry. The particles suggested by this theory should be compared to relativistic particles, 
where the (10-dimensional) Poincare group P is the main symmetry group, or to Galilean particles, 
when (also 10-dimensional) Galilean group is the main one. For our research it is important to 
remember that the SM deals with relativistic particles while the MLM, since it uses many findings 
of Segal’s School, treats chronometric particles, essentially. In [2] (Section 2) it was outlined how a 
property (one or another) of a chronometric particle can be interpreted in relativistic terms. 

For more details on Chronometry a reader is advised to visit Section 2 of [2] or suitable ref-
erences therein. However, on the basis of the findings in [10], we point out that certain corrections 
(of what Segal claimed in [3], and what was reproduced from [3] in Section 2 of [2]) have to be 
made. The research [10] can be viewed as a discussion of, and supplement to, Segal's list of 
chronometric elementary particles of spin 1/2 [3]. The last article is in some sense a summary of 
Segal's findings, and it is just 5 pages long. In [3], there are few, if any, clues of how to obtain 
results outlined in it. One of [10]'s goals was to prove (some of) Segal's statements. The most re-
markable of these is that there are four elementary chronometric particles of spin 1/2. Namely, there 
is a massive neutral particle named the exon, the electron e, and two types of neutrino (interpreted 
as υe and υμ). We failed to prove that (but see what we say below, on this page). In Segal's theory, a 
particle (e.g. each of the above) is mathematically associated with an irreducible unitary posi-
tive-energy representations of the symmetry group G (in our case, the conformal group SU(2; 2)). 
Let us stress that when we, below, associate certain mathematical objects with specific particles; 
we try (as much as possible) to stay in line with what Segal has done before in this regard. Here is 
the only significant exception to the above: around 2010 A. Levichev suggested [11] (Section 7) 
that it is rather the proton p than a hypothetical neutral particle, the exon.  

Later that suggestion gave birth to Levichev's Multi-Level Model of quarks, MLM [1, 2] 
which claims that each quark can be viewed as if it is a state of the proton. (A word of caution: Our 
“as if” cannot be dropped here; a reader is advised to check with our Remark 3, below, where we 
continue to discuss this issue.) Segal himself thought [3] (p. 994) that the exon could be the main 
ingredient of both the neutron and the proton. The research [10] displays an algebraic model (in 
terms of the composition series, which is inescapable when one deals with an indecomposable 
representation), in which there is just one, rather than two, as in the Segal article, light (i.e. mass-
less) particle.  

It is worth mentioning that an earlier conjecture by Segal (about the number of chronometric 
spin 1/2 particles) was in compliance with the findings in [10]: see [13] (Th. 16.7.10) which worked 
with a 3-step composition series. The representation is a limiting case of representations studied by 
Jakobsen in [14], where, purely algebraically, a 3-step series may be obtained after-the-fact. (We 
describe this representation in Subsection 6.3). Later, Segal's original (that is, the one of [13]) 
conclusion has been withdrawn: [3] (Table 1) states (without proof) the existence of the 4-step 
composition series. Overall, the authors of [10] follow the approach of [3] (see the Section In-
decomposable Elementary Particle Associations ibid). Below (in this Section), we will give more 
details from [10]. In particular, in the general context of how to mathematically define the notion of 
an elementary particle, we will comment on the transition from the renowned Wigner method to 
(what have been coined in [5] as) the Wigner-Segal method. Meanwhile we only state the following 
(it is an extract from [10]): there is a certain (infinite-dimensional) Hilbert space Fp (of functions on 
the Minkowski space-time M) which is interpreted as the set of all (theoretically possible) states (or 
wave functions) of the chronometric proton p (see formula (20) of [10] and Theorem 3.1 of [9]). 
(More details on the space Fp are given in our Subsection 6.3). The group G = SU(2,2) acts on Fp. 
According to the terminology of [9] (Remark 4.1), this G is the ruling group, Gr, since it rules (or 
governs) the behavior of the particle (the latter thus being the proton p in our case). Most of the 
above terminology and mathematical objects are defined and/or described in more detail further 
below. 

We are now in a position to start a description of the MLM. This model plays with the se-
quence of canonical (that is, based on principal minors of the matrices involved) embeddings of 
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groups: U(2) into U(3), U(2) into U(4), U(2) into U(5), etc. These groups were called levels: U(2) is 
the 0th level, U(3) – the 1st, U(4) – the 2nd, etc. In our Section 3 we will see that such a convention 
matches the standard quarks’ generations’ list. Recall that each matrix group U(n) is defined quite 
similarly to how U(2) was defined by formula (3.3) of [9]. Embeddings A12, A13, A23 of (the Segal’s 
compact cosmos) D = U(2) into U(3) were introduced as follows: under each of these three em-
beddings a matrix Z from D becomes a certain principal 2 by 2 minor of the corresponding 3 by 3 
matrix from U(3). Namely, let us denote by D12 the image of the embedding A12 where A12, itself, is 
defined as follows (also, these embeddings are illustrated in the top portion of Figure A1):  

Each Z from D is now an upper 2 by 2 principal minor of the 3 by 3 matrix A12(Z) in U(3); the 
third diagonal entry of A12(Z) is 1; in the A12(Z), all other entries vanish. The two remaining em-
beddings, A13 and A23 are defined quite similarly. Clearly, D12, D13, and D23 are U(2)–subgroups in 
U(3). Recall that the group U(2) is closed w.r.t. the complex conjugation, and w.r.t. the matrix 
transposition. The transposed matrix ZT can be viewed as a mirror of Z w.r.t. reflection in the 
principal diagonal. From this it follows that each of the D12, D13, D23 is invariant w.r.t. any of the 
two mentioned operations in U(3). Also, to enumerate all Dij, it is enough to consider the cases i< j, 
only. We supply each Dij with a Lorentzian metric by the demand that each Aij be an isometry. 

In the totality of all m by m matrices, introduce Pm, as the symmetry w.r.t. the opposite di-
agonal. Clearly, when Z is in U(2), then P2(Z) is also in U(2). From this it follows that the subgroup 
D13 is P3-invariant in U(3) while P3(D12)=D23, P3(D23)=D12. That enables us to view the embeddings 
A12 and A23 as equivalent (one becomes the other when composed with P3 and P2 – see Figure A1). 
This relates to the ‘presence of two SM-u-quarks in’ a proton, while the A13 relates to the 
presence of an SM-d-quark in that proton. These embeddings make it possible to introduce a 
notion of a flavor of a MLM-quarks of level U(3). The last two phrases are ‘non-mathematical’, we 
relate to physics here. We discuss this in more detail later in this section (right after Theorem 1).  

Definition 1. Below, in many instances, we use the name cell for each of these Dij.  

This seems to be a reasonable way of attaching names: compare to such a straightforward (but 
the one which is less ‘compact’) alternative as of “a minor (one or another) of the (corresponding) 
matrix of a certain size”. It should always be stated (or should be clear from the context) which 
U(n)-level such a cell is considered to be in.  

In [2] (Section 3), similarly to the way of introducing (in U(3)) of the U(2)-subgroups D12, 
D13, D23; the SU(2,2)-subgroups G12, G13, and G23 of SU(3,3) have been defined. A reader is now 
advised to go to our Section 4 where (right after Table 1) we define G12, G13 at the U(3)-level. 
Namely, a generic element (of each of the two subgroups) is explicitly shown at Fig. A5. At each 
level U(n), any subgroup Gij is defined in our Section 4 (right before Proposition 2 there) - quite 
similarly to how it has been done for the U(3)-level. 

Definition 2. Below, in many instances, we use the name ruling group, or the r-group, for each of 
these Gij (the latter being an SU(2,2)-subgroup of SU(n,n), in general). It should always be stated (or 
should be clear from the context) which U(n)-level such an r-group is associated with. From [5], we 
now reproduce the following statement [5] (Theorem 4.1).  

Theorem 1. An action of each of the subgroups G12, G13, and G23 on any of the subgroups D12, D13 

and D23 is defined. In particular, each of the following three actions, G12 on D12, G13 on D13, and G23  

on D23, is the linear-fractional one. 

Let us now say more about the mathematical meaning (and about the physical interpretation) 
of the following phrase (from above): “The embeddings A12 and A23 relate to the presence of two 
SM-u-quarks in a proton, while the A13 relates to the presence of an SM-d-quark in that proton”. 

First, let us recall that (according to the SM) a proton consists of two u-quarks and of one 
d-quark. The detection of three point-like centers (of highly inelastic electron-proton scattering, see 
[15]) served as an experimental basis for such a conclusion about the structure of a proton. How-
ever, after several decades of intense search, the majority of the Physics community has submitted 
to the view that “free quarks cannot be detected.” 

Before we introduce the MLM-quarks in U(3) (and later, with the increase of n, in each of the 
levels U(n)), we need to present more mathematical findings (from [9, 10], mostly) related to 
Chronometry. Above, closer to the beginning of the Section, we have been discussing chronometric 
particles of spin ½. They originate from an induced representation of the group G = SU(2,2) defined 
by formula (5) from Section 2 of [10]. In our current paper (starting with the next page, and in 
Subsection 6.3, and elsewhere throughout the paper), we provide more details about this repre-
sentation. In [10] (Section 9), it was concluded that exactly three chronometric spin ½ fermions 
have been mathematically detected (and interpreted as the proton p, electronic neutrino υe, and 
electron e). It was mentioned in [10] (right before Remark 1.1 there) that such a conclusion did not 
involve the MLM, per se. On the basis of formula (16) from [10] (Section 4), the space F of the 
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induced representation (sometimes referred to as the spannor representation) of the group G = 
SU(2,2) has been introduced. In F, there exist two non-trivial invariant subspaces with no invariant 
complement. One of those subspaces was denoted by Fp and it was supplied with a Hilbert space 
structure. On the basis of the findings in [14, 16], the following statement has been proven (see 
Section 5 of [10]): 

Theorem 2. The restriction of the induced representation to Fp is unitary and irreducible. In Fp, the 
energy-positivity condition holds. 

The space Fp has been interpreted as the totality of all (theoretically possible) wave functions 
of the chronometric proton. Notice that Fp is of conformal weight (or conformal dimension) 5/2, see 
[10] (Section 5). In our subsection 6.3 we provide those details from [10] which we need in order to 
indicate possible applications (like mass and shape of a chronometric proton) based on the notion of 
the proton’s wave function. Those details are only provided for the case of the proton. As regards 
leptons’ wave functions, a reader is asked to check with [10].   

Remark 1. Let us repeat that in [10] (Section 6), it was stated that Fp does not have an invariant 
complement. It means that we deal with the case where the Wigner method is not applicable. Ac-
cording to the Wigner-Segal method, we now have to deal with the quotient space W = F/Fp and 
with the factor-representation in it. In [10] (Section 6), a minimal non-trivial invariant subspace Fυ 
in W has been introduced, Fυ has been supplied with the unitary structure and it has been interpreted 
as the totality of all wave functions of the chronometric electronic neutrino. In [10] (Section 7), the 
quotient space W/Fυ= Fe has been interpreted as the totality of all wave functions of the chrono-
metric electron (since the corresponding factor-representation turned out to be irreducible and 
unitarizable, and the conformal weight is 3/2 now). This was the final step in the proof of the main 
finding of [10]: there are exactly three elementary chronometric spin ½ particles.  

Remark 2. Having in mind Remark 9.1 of [10], from now and on it seems plausible to associate the 
Hilbert space Fυ with the electronic antineutrino, rather than with electronic neutrino. Let us recall 
that the authors of [10] followed Segal (see [3]) and they interpreted this (‘middle’) sector of the 
3-step composition series as the one corresponding to the electronic neutrino but (also in [10]) they 
have envisaged a possibility of the antineutrino interpretation. Such an interpretation can serve as a 
mathematical reason allowing a return (as it has been claimed in [17]) to an ‘old model’ for the 
neutron as consisting of a proton, of an electron, and of an electronic anti-neutrino – see the 
U(2)-part of the Figure A4. 

For the level U(3), recall that each Aij is an isometry, and that each Dij is a space-time iso-
metric to the Segal’s compact cosmos D. From here (and on the basis of both the above Theorem 2 
and of its interpretation), we conclude that a spin ½ fermion (‘living in’ Dij) is mathematically de-
fined. If D12 or D23 is a support of its wave functions then, as part of the MLM, we associate this 
fermion with an u-quark. If D13 is such a support – then the particle is announced to be a d-quark. It 
means that in the MLM we have introduced two flavors for quarks of the 1st level, U(3), and (by 
merely keeping the SM-terminology) we have established the correspondence of MLM-quarks to 
the SM-quarks, and vice versa. It is assumed that a Hilbert structure in the corresponding spaces Hij 
is introduced via the isometries Aij from the original H = Fp. For each of our fermions of the level 
U(3), its r-group G (recall that ‘r’ here is for ‘ruling’, from Definition 2, above) can be any of G12, 
G13, or G23. Such a convention was a mathematical basis for defining the notion of a color of an 
MLM-quark (see Sections 3 and 4 of [5], as well as our Section 5, below). Clearly, each 
MLM-quark is as fully described, as the chronometric proton was – see our Theorem 2, above. One 
is thus tempted to think of an MLM-quark “as if” being a state of the (chronometric) proton. 

Remark 3. Our “as if” cannot be dropped here; at least (if dropped), additional explanation should 
be provided. Here is why: a proton is described by one pair (H, G) while an MLM-quark – by an-
other. In this regard, let us recall that the SM allows usage of different (however, of isometric, only) 
Hilbert spaces of wave functions for the same particle. Hence, let us recall that the following holds: 
the two r-groups (one for the proton, another for the MLM-quark) consist of matrices of different 
sizes; in the first case – those are 4 by 4 matrices (since our proton lives in U(2) = D), while the 
r-group G (for the quark) is a subgroup of SU(3,3). The latter means that the corresponding ma-
trices are 6 by 6 ones. We have thus explained why, formally, we should not view MLM-quarks as 
states of a proton. For a pair of different MLM-quarks (of the same MLM-level), the respective 
r-groups (consisting of the matrices of the same size), are, however, different subgroups of SU(3,3) 
– or of SU(n,n), if U(n) is the level in question. To finalize the current remark, we would like to 
stress that the main reason to not consider a quark as the state of a proton is that the two particles 
‘live’ in different MLM-levels. 

Rather than to use ‘a state of a proton’ terminology for an MLM-quark, let us word the pro-
cess (of highly inelastic electron-proton scattering) in question as follows. As the result of such a 
scattering, proton gets (from U(2)) to a ‘deeper’ level, U(3). In U(3) it gets to one particular cell (of 
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the total of three available ones: D12, D13, or D23) thus becoming an MLM-quark. Recall that the 
notion of a cell has been mathematically introduced above, in Definition 1. In terms of Physics, a 
possible description (see our Subsection 6.4, below) could use the following wording: “our proton 
pushes ‘deeper’ (that is, to the U(4)-level) the ‘former occupant’ of this cell. However, to better 
understand such a wording, it is recommended to read our Section 5, first.  

Since we have introduced equivalence (under operators P3 and P2 - see Figure A1) between 
D12 and D23, we only have two flavors rather than three. The word combinations, ‘gets to one par-
ticular cell’ and ‘becomes an MLM-quark’, merely mean that this stage of scattering has to be 
described in terms of the Multi-Level Model rather than using the SM-language. In a formal 
agreement with the SM, our description is that of elastic scattering (of the original electrons hitting 
the proton) on quarks (in our case – on MLM-quarks). In particular, within the U(3) level, we 
should use another Hilbert space and another r-group. These last two issues might be less, or even 
not at all, significant in comparison to a change of state of our proton as it becomes an MLM-quark. 
Such a change seems to be an unavoidable one.  

A reader is now advised to go to Figures B1, B2, and B3 in order to get a clue on what a state 
of a proton may look like. Seemingly, the thus suggested description of the highly inelastic elec-
tron-proton scattering does not, per se, contradict to detection of ‘three point-like components in a 
proton’. Also, in the MLM-approach one can apply the combinatorial SM-methods to calculate 
relations between certain scattering probabilities. A word of caution: in our current paper we dis-
cuss the ‘sunken vs captured’ proton issue (see Subsection 5.1). This develops the earlier (see [2]) 
notion of a ‘captured proton’. As an experiment-related example, let us now reproduce the fol-
lowing one (from Section 6 of [2]). It is known that the ratio of (full) cross sections between πp- and 
pp-scatterings is in compliance with the (standard) quarks’ model. In terms of the standard model 
this is explained as follows. Proton is composed of two u-quarks and of a d-quark (р = uud). The 
π-meson consists of two quarks, namely π+ = u𝐝, and π– = d𝐮. When π-meson collides with a 
proton, each quark in the π-meson can interact with each quark in the proton. The proton-proton 
collision is similarly described. Hence (under the assumption that interaction between hadrons is 
independent of the types of their quarks’ constituents), the ratio of full cross sections between πp 
and pp-scatterings should be 2/3.  

Experiments (within the appropriate energy range) agree on 0.633, that is, pretty close to 2/3. 
According to the multi-level model, interactions (of the type above mentioned) take place on the 
level of U(3). Let us prove that the ratio of full cross sections between pion-proton and 
pp-scatterings should be 2/3.  

The multi-level model (staying in agreement with the Standard Model in this issue) assumes 
that the interaction is between quarks. In case of an unstable particle, the multi-level model is able 
to describe interactions ‘as if’ the particle in question has the same quarks ingredients as specified 
by the Standard Model. In order such a particle (π+, say) be "cooked", one proton has to be placed 
into a d-cell (there is just one d-cell ‘available’) while a proton has to be to be placed into an u-cell 
(there are two u-cells ‘at hand’). For the proton to be involved into scattering on the U(3)-level, it 
has to be placed into any (of the three possible) cell on that level. Conclusion: there are six options 
to choose a couple of interacting quarks in the process of π+p-scattering. As regards the 
pp-scattering, there are 3 times 3, that is, 9 options to choose a pair of interacting quarks. We have 
thus proven that the ratio of full cross sections between π+p- and pp-scatterings should be 6/9 = 2/3.  

Let us provide more MLM-details. If our proton gets into the cell D12, then (instead of the 
former Fp) we have to exploit the space F12 of wave functions defined on D12, rather than on the 
original D.  

Let us recall that due to an isometry A12 between D and D12, the Hilbert spaces Fp and F12 are 
unitarily equivalent. In [5, Section 3] the notation q(1;1,2) has been used for such an MLM-quark: 
the first ‘1’ is the level number (here it means the U(3) level), while the pair (1,2) specifies the cell 
(being D12 here). 

3. The MLM-quarks of levels U(4) and U(5) 

Introduce embeddings of D=U(2) into U(4), first. Here they are (see Figure A2 of Appendix 
A): A12, A13, A14, A23, A24, A34; the notation mimics the one which has been already used in the 
(3)-case. To determine equivalences, consider the (applicable to any 4 by 4 matrix) operator P4: the 
symmetry w.r.t. the opposite diagonal. Clearly (as the Figure A2 illustrates), A12 is equivalent to 
A34, and A13 is equivalent to A24. Each of the subgroups D14 and D23 is P4–invariant. Relate A14 to an 
SM-quark s, and A23 – to an SM-quark c. At this (that is, at the second) level, A12 (which is equiv-
alent to A34) relates to an SM-quark u while A13 (equivalent to A24) relates to an SM-quark d. 
Hence, SM-quarks of both generations (one and two) ‘live’ on the 2nd MLM-level, U(4).  
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Now, for an interested reader (even if this person does not have much knowledge about 
currently known elementary particles), we give an overview of SM-quarks’ generations, as well as 
of the topic in general. Namely, by 2018 it was known that there exist (at least) three generations of 
quarks and three generations of leptons. These fundamental particles are thought to be adequately 
modeled as the ‘point-like’ ones. Both quarks and leptons have spin ½ which means that they are 
fermions. By convention, a fermion is a particle with half-integer spin, while a boson is a particle 
with an integer spin. Mathematically, a spin of a particle is a certain constant which is present in the 
(describing this very particle) representation of the group G – see, i.e. [18](p. 348). By G here (as 
well as above), we mean the main group of transformations acting in the space-time which our 
particle ‘lives in’. The word generation is part of the SM-terminology. (As it should be already 
clear, generations, essentially, are naturally ‘built into’ the MLM.)  

According to SM, the first generation of quarks consists of u and d; the first generation of 
leptons consists of the electronic neutrino υe, and of the electron e. The second generation: the 
quarks c and s; the leptons – muonic neutrino υμ and the muon μ. The third generation: the quarks t 
and b; the leptons - tau neutrino υτ and the tau particle τ. Also, for each particle, there is an an-
ti-particle. The SM-quarks are considered to have color and to have (fractional) electric charge. 
(Within the MLM, we will discuss both notions (color and electric charge) below, see our Section 
5). The SM-leptons (we have just listed all of them) are colorless particles having charge zero - as 
regards neutrinos, and charge 1 (or negative 1) - as regards the remaining leptons. Matter is built of 
atoms which are believed to be built of the first generation fermions. Within the SM, it is not quite 
clear why Nature needs the 2nd and the 3d generation fermions. As it will be seen below, the MLM 
subdivides the above fermions into generations by its very structure. It is very difficult to create and 
to detect fermions of generations 2 and 3: powerful charged particles’ accelerators are to be used 
for that. Besides, the created particles decay almost instantly. Within generations two and three, 
only neutrinos are believed to have the unlimited lifetime. Currently the search for the 4th genera-
tion of particles is going on (our Figure A3 indicates ‘where’ to look for quarks of the 4th genera-
tion).  

Part of the above presented description of fermions and of their role as seen by the SM is a 
(translated from Russian) portion of 

http://phys.vspu.ac.ru/forstudents/TSOR/Kutseva/pokolenie_leptonov_i_kvarkov.html. 
We now return to the MLM-description of quarks. Here is the list of all D=U(2) embeddings 

into U(5): A12, A13, A14, A15, A23, A24, A25, A34, A35, A45. To get a quick grasp of the picture in 
question, our reader can easily think of an illustration, similar to Figure A2. Clearly, P5(D12) = D45; 
we relate it to an SM-u-quark. P5(D13) = D35, we relate it to an SM-d-quark. P5(D14) = D25, we relate 
it to an SM-s-quark. P5(D23) = D34, we relate it to an SM-c-quark. Each of the following two sub-
groups, D15 (t-quark) and D24 (b-quark), is P5–invariant. Hence, ‘MLM-copies’ of the SM-quarks of 
all three generations ‘live’ on the 3d MLM-level U(5). 

From now and till the end of Section 4, let us write the word ‘quark’ everywhere instead of the 
earlier used ‘MLM-quark’. Recall (from [2, 5]) the notation q(n; i, j) for the corresponding quark of 
the n-th level; one can always assume that i<j. Such a convention results in the following relations 
between MLM- and SM-quarks: 

q(1; 1, 2) = q(1; 2, 3) = u, q(1; 1, 3) = d; q(2; 1, 2) = q(2; 3, 4) = u, q(2; 1, 3) = q(2; 2, 4) = d, 
q(2; 2, 3) = c, q(2; 1, 4) = s; q(3; 1, 2) = q(3; 4, 5) = u, q(3; 1, 3) = q(3; 3, 5) = d, 
q(3; 2, 3) = q(3; 3, 4) = c, q(3; 1, 4) = q(3; 2, 5) = s, q(3; 2, 4) = b, q(3; 1, 5) = t, “top quark”. 

Recall that ‘2’ (in, say, q(2; 1, 4)) is the number of the level, while the pair (1,4) indicates the cell 
D14. Also, compare to an example at the end of Section 2 and see Figure A3. 

Remark 4. The SM-quarks of higher generations were detected later (than SM-quarks of lower 
generations), with the increase of the accelerators’ typical energies. Hence, it is natural to interpret 
the ‘deepening’, with the increase of n, of the U(n)-levels as corresponding to the increase of the 
scattering typical energy.  

As regards the total number of MLM-quarks at a given MLM-level, we reproduce (from [1, 2] 
the following 

Тheorem 3. On the level U(n), suppose an U(2)-subgroup Dij be not Pn-invariant. Then Dij cor-
responds  to a quark from a lower level. The recurrent (1) and explicit (2) formulas (for the total 
number mn of quarks at the U(n)-level) hold: 

m2 = 1, mn = mn-1 + [n/2], (1) 

mn = {n(n-1)/2 + [n/2]}/2. (2) 

Here, [x] denotes the greatest integer part (roof) of a real number x. 
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     To conclude our Section 3, we indicate that our ‘selection criterion’ (that is, why are we quite 
satisfied with our list of MLM-quarks) is the one which establishes an explicit correspondence with 
the SM-quarks. In levels U(3), U(4), U(5) the MLM-quarks are in precise correspondence with 
SM-quarks as they are currently agreed upon. In level U(6), three new SM-quarks are predicted, as 
illustrated in our Figure A3. 

4. On fractional electric charges of SM-quarks and the Han-Nambu scheme 

Most part of this Section’s content is a translation of (certain) portions of [5]. 
According to the Standard Model, the electric charge of each quark 𝑢 (or 𝑐, or 𝑡) is 2/3, while 

the electric charge of each quark 𝑑 (or 𝑠, or 𝑏) is minus 1/3. There is an approach with integer 
quarks’ charges, [19]. Such an approach is known as the Han-Nambu scheme (in [19] there is a 
reference to the original Han-Nambu publications). Our current section reproduces (from [5]) the 
adaptation of the Han-Nambu scheme to the MLM.   

Consider the U(3)-level, first. Let us insert our notation into the following Table (which we 
reproduce from p.1 of [19]). 

Тable 1.  

f \ c 12 23 13 
u: 12, 23 1 1 0 

d: 13 0 0 -1 

In the first row of this Table, f is for flavor, that is, u or d; c is for color (not to be confused 
with the notation for the quark c!). The last three entries in the first row are abbreviations for G12, 
G23, and G13. This notation for corresponding SU(2,2)-subgroups of SU(3,3) was introduced in our 
Section 2; however, a ‘shorter’ one, 12, 23, 13 should not be confusing neither. Similarly (in the 
beginning of the Table’s second row) we use 12, 23 instead of D12, D23, etc.  

Before we state a possible ‘color-related’ interpretation of the above Table 1, let us provide 
more details (from [5], mostly) on how the subgroups Gij have been introduced. 

It is well-known that each matrix gn (in Gn = SU(n,n)) is composed from n by n blocks An, Bn, 
Cn, Dn. Also, there is a fundamental (linear-fractional) Gn-action on U(n); see more details about it 
in [20] (Section 2.1). For the U(3)-level, recall (from our Section 2) the embedding A12. It desig-
nates the rows 1 and 2, and it designates the columns 1 and 2. Such a designation (choice) of rows 
and columns uniquely specifies an SU(2,2)-subgroup G12 in G3. Namely, each g12 in G12 is com-
posed (from blocks A2, B2, C2, D2 of the original matrix g2 from G2 = SU(2,2)) as follows: A2 is the 
upper principal minor in the 6 by 6 matrix g3; D2 is the principal minor located at the 4 and 5 
row-column intersections; one more (not a principal) minor B2 is located on the intersection of rows 
(1 and 2) with columns (4 and 5); C2 is located on the intersection of rows (4 and 5) with columns (1 
and 2). The remaining entries of the matrix g12 are as follows: 1 (if on the main diagonal) and 0 
(when off the main diagonal). A reader is now advised to have a look at Fig. A5. Subgroups G13 and 
G23 are defined quite similarly. The following statement can be easily verified.  

Proposition 1. The subgroup G12 acts linear-fractionally on D12; similarly: G13 on D13, and G23 on 
D23. 

Remark 5. Actually, we can (canonically) define an (equivalent to linear-fractional) action of each 
(of the three possible) Gij on Dsk. As an example, to define such an action of G13 on D12, we con-
jugate G13 by the corresponding elementary matrix E. Now, if g is from G13 and z is from D12, then 
the result of the g-action on z is, by definition, the result of the (linear-fractional) action of EgE on 
z. From now and on, we assume that each Gij acts (in the way which has been just indicated) on any 
of Dsk. 

Having the Remark 5 in mind, we define the color of an MLM-quark Dsk as Gij (which can be 
chosen from G12, G13, G23). In other words, the color of an MLM-quark is defined by the choice of 
its ruling group (or, even more formally, the color (as a symbol) of an MLM-quark is (the symbol 
of) its ruling group. It goes without saying that the ruling group also acts in the Hilbert space of 
wave functions of the quark in question (compare to what we have stated earlier, right before 
Remark 3). Clearly, there are three colors for quarks of the U(3)-level.  

Let us now introduce the notion of a color for an arbitrary U(n), with the integer n not less than 
3. Given an embedding of D = U(2) into U(n), by Gij we understand a certain (uniquely defined) 
SU(2,2)-subgroup in Gn = SU(n,n). Namely, Gij consists of certain matrices gn, uniquely defined by 
four n by n blocks An, Bn, Cn, Dn. The latter four blocks are uniquely defined by the matrix g2 
(chosen arbitrarily) from G2 = SU(2,2); in particular, Gij is isomorphic to SU(2,2) – see Proposition 
2, below. To continue, g2 is determined by its 2 by 2 blocks A2, B2, C2, D2. To define each n by n 
block for gn, proceed as follows. For an arbitrary n by n matrix, Aij determines the corresponding 2 
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by 2 principal minor in it (it might again be helpful to check with our Fig. A5 ). We define An as 
follows: (1) A2 is that very minor in An; (2) any other entry in An is 1 (if on the principal diagonal) or 
it is zero (if it is off the principal diagonal) – compare to how G12 was defined in our Section 2. The 
block Dn is defined quite similarly but with the help of D2. The two remaining blocks, Bn and Cn, are 
defined (in terms of B2 and C2) slightly differently. Namely, each entry, which is off the corre-
sponding 2 by 2 principal minor of the block, is zero. The following statement has been proven in 
[2]. 

Proposition 2. Gij is a subgroup of Gn; Gij is isomorphic to SU(2,2).  

For each level U(n), with n > 2, the MLM-quark (of a certain flavor and color) is defined as an 
ordered triple (Dpq, Gij, m). Here m is either 1, or negative 1 (depending on whether we deal with a 
particle or with an anti-particle). The subgroup Dpq in U(n) determines flavor, while the subgroup 
Gij in SU(n,n) determines color. An implicit part of this definition is a well-defined representation 
space, p-space H, which the proton’s wave function belongs to. The ruling group Gij acts in this H.  

Here is another statement from [2]: 

Proposition 3. The total number of colors at the U(n)-level is n(n-1)/2.  

Returning to the U(3)-level, let us now present the following possible interpretation in terms 
of physics: when a proton (participating in highly inelastic scattering) ‘finds itself’ in a D13-cell 
(and it stays there for a moment, name it a sunken proton), then its color may be one of G12, G23, G13 
but changing between them with huge speed, presumably. As stated in the above Table 1, in D13 

these ruling subgroups generate electric charges 0, 0, negative 1, in that order. It means that a quark 
d has an average charge of 1/3. Similarly, a u-quark has charge 2/3. Notice that (from now and on) 
we use sunken instead of sank (which appeared in [2]). As regards an electric charge generated by 
the ruling group, we provide more details in our subsection 6.2.  

For the U(4)-level, consider the following  

Тable 2.  

f \ c 12 13 14 23 24 34 
u: 12, 34 1 0 1 1 0 1 
d: 13, 24 0 -1 0 0 -1 0 

s: 14 0 -1 0 0 -1 0 
c: 23 1 0 1 1 0 1 
 

Again, applying the Han-Nambu scheme, we deduce ‘correct’ electric charges for MLM-quarks u, 
d, c, s at this level. The total number of colors is 6.  

At the U(5)-level, there are 10 colors (see Table 3) which implies charges of 7/10 for each of 
u, c, t and negative 3/10 charges for each of d, s, b. Hence, at the level of U(5) the SM-data and the 
MLM-conclusion (assuming the validity of the Han-Nambu scheme) are contradictory (as regards 
quarks’ electric charges).  

Remark 6. Seemingly, one might try to exploit this discrepancy while experimenting with   
the e+-e- annihilation. Frequently one plots the curve R (s) = (total cross section to get hadrons) over 
(total cross section to get muon and anti-muon pair). Here s is the square of the total energy in the 
center of inertia. The knowledge about that curve is fundamental for the current high-energy 
physics, see [21] (p. 269). Outside of the resonances, the curve is piece-wise constant: R is 3 times 
the sum of f 2, where the summation goes for all quarks having a smaller mass than energy; here f = 
f(q) is an electric charge of the corresponding quark q. However, one has to deduce the 
MLM-analogue of this formula, since the number of colors is now level-dependent. Nevertheless 
(even without exact knowledge of this formula), we can guess (assuming the validity of the 
Han-Nambu scheme) that on the U(5)-level the function R behaves somewhat differently if com-
pared with its behavior in levels U(3), U(4), and U(6). Notice that in [2] (Section 6) the corre-
sponding numerical corrections have been suggested (by A. L.) too hastily. As we have just indi-
cated the question seems to be more complicated and it still waits for its solution.  

Тable 3.  

f \ c 12 13 14 15 23 24 25 34 35 45 
u: 12, 45 1 0 1 1 0 1 1 1 0 1 
d: 13, 35 0 -1 0 0 -1 0 0 0 -1 0 
s: 14, 25 0 -1 0 0 -1 0 0 0 -1 0 
c: 12, 45 1 0 1 1 0 1 1 1 0 1 
b: 14, 25 0 -1 0 0 -1 0 0 0 -1 0 
t: 12, 45 1 0 1 1 0 1 1 1 0 1 
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At the U(6)-level the number of colors is 15, see Table 4. The MLM-quarks on this level get 
three new flavors. The electric charges of the new quarks are as follows: f(4; 1, 6) = 𝑓(4; 3, 4) = 2/3, 
f(4; 2, 5) = −1/3. The charges of other MLM-quarks on this level are the same as of the corre-
sponding SM-quarks. 

Тable 4.  

f \ c 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56 
u: 12, 45 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 
d: 13, 35 0 -1 0 0 -1 0 -1 0 0 0 -1 0 0 -1 0 
s: 14, 25 0 -1 0 0 -1 0 -1 0 0 0 -1 0 0 -1 0 
c: 12, 45 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 
b: 14, 25 0 -1 0 0 -1 0 -1 0 0 0 -1 0 0 -1 0 
t: 12, 45 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 
q(4;1;6) 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 
q(4;2;5) 0 -1 0 0 -1 0 -1 0 0 0 -1 0 0 -1 0 
q(4;3;4) 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 

5. The Multi-Level Model has infinitely many quarks’ and leptons’ generations 

As should be already clear, the MLM’s main feature is the sequence of levels: U(2), U(3), U(4), etc. 
In our Scheme 1, below, we denote MLM-quarks by pij rather than by the SM-symbols, as before. 
The reason for doing so is as follows.  

5.1. A ‘sunken vs captured’ MLM-proton 

In our Section 4 (right after Proposition 3) we have provided more details on ‘a quark as a sunken 
proton’ approach (as originally articulated in [2] and recalled in the beginning of our Section 6, 
below). Namely, any subgroup Gij of SU(n,n) induces the color charge, of 1, -1, or 0 in each ‘cell’ 
Dsk of the U(n)-level. In the current Section 5 we discuss MLM-quarks (and MLM-leptons which 
can be associated with them) as stable ingredients of ‘matter at deeper (than U(2)) levels’. Such 
stability presumes that a proton stays at the dsk-cell not just for a tiny moment (which could 
have happened as the result of its participating in highly inelastic scattering – see the portion of our 
Section 4, between Proposition 3 and Remark 6) but for an observable (and even theoretically 
unlimited, if there is no influence by another interaction) time interval – name it a captured pro-
ton. Let us postulate that such a capture may happen only if the ruling group Gij ‘matches’ the 
cell Dsk: i = s and j = k. In particular, such a hadron pij has electric charge of 1 or of negative 1.  

5.2. Fermion triples at deeper levels and where to search for new quarks and leptons 

Having in mind our Remarks 1 and 2, it is natural to place MLM-fermions of spin 1/2 into levels 
and to combine them into triples as follows: 
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Scheme 1. 

U(2)-level: proton p – electronic antineutrino – electron e. 

U(3)-level: quark p12 (or p23) – muonic antineutrino – muon μ, 

quark p13 – muonic neutrino – anti-μ. 

U(4)-level: quark p12 (or p34) – muonic antineutrino – μ,  

quark p13 (or p24) – muonic neutrino – anti-μ, 

quark p23 – (anti - tau neutrino) – tau particle τ, 

quark p14 – tau neutrino – anti-τ. 

U(5)-level: quark p12 (or p45) – muonic antineutrino – μ,  

quark p13 (or p24) – muonic neutrino – anti-μ, 

quark p23 (or p35) – (anti - tau neutrino) – τ, 

quark p14 (or p25) – tau neutrino – anti-τ, 

quark p24 – 4th generation neutrino – 4th generation positron, 

quark p15 – 4th generation antineutrino – 4th generation electron. 

The main letter p in the (above used) notation, reminds that each MLM-quark pij originates 
from a proton p, essentially. Besides, pij stands for a captured proton (as postulated above). Also, it 
now makes sense to reproduce from [9] (Section 6) Scheme 2 (see below) which is an ‘old version’ 
of Scheme 1. Clearly, a physicist (not enough informed about our MLM-setting) might think of the 
Scheme 2 as of an awkward one (if not contradictory): how an SM-quark (having fractional electric 
charge) can be associated with a lepton (having an integer charge)? In that case, we address him/her 
to the above Scheme 1. 

Scheme 2. (an old version of Scheme 1).  

U(2)-level: proton – electronic antineutrino – electron 

U(3)-level: quark u (represented by either D 12 or by D 23) – muonic antineutrino – muon μ, 

quark d (represented by D 13) – muonic neutrino – anti- μ 

U(4)-level: quark u (represented by either D 12 or by D 34) – muonic antineutrino – μ,  

quark d (represented by either D 13 or by D 24) – muonic neutrino – anti- μ, 

quark c (represented by D 23) – anti - tau neutrino – tau particle τ, 

quark s (represented by D 14) – tau neutrino – anti- τ 

U(5)-level: quark u (represented by either D 12 or by D 45) – muonic antineutrino – μ,  

quark d (represented by either D 13 or by D 24) – muonic neutrino – anti-μ, 

quark c (represented by either D 23 or by D 35) – (anti - tau neutrino) – τ, 

quark s (represented by either D 14 or by D 25) – tau neutrino – anti-τ, 

quark b (represented by D 24) – 4th generation neutrino – 4th generation positron, 

quark t (represented by D 15) – 4th generation anti-neutrino – 4th generation electron 

In the lowest two lines of (each of the two) schemes, we have entered two leptons (of the 4th 
generation) which are not yet experimentally detected. Each of the above triples (like ‘quark u – 
muonic antineutrino – μ’ or ‘quark c – tau antineutrino – τ’) is entered on the basis of the ‘proton – 
electronic antineutrino – electron’ composition series, see our Remarks 1 and 2. Also, notice that a 
lepton of generation k is always associated with a quark of generation k-1. This property originates 
from the following convention: by ‘quark of generation 0’ we mean a proton. Both the U(2)-, and 
the U(3)-part of the above data is illustrated in Figure A4 (with more explanation added there). 

The following observation finalizes the validation of our Section 5 title: one can similarly 
proceed with levels U(6), U(7), etc. In particular, Figure A3 illustrates the U(6)-level and indicates  
‘where’ to search for (three) quarks of the 4th generation. 
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5.3. Why are different generations’ leptons distinct particles? 

One of the ‘puzzles’ of the Standard Model reads as follows: “Why electron e, muon μ and tau 
lepton τ are distinct particles?” Here is our reply (we give it as one of the MLM-conclusions and we 
use the terminology developed in our Section 2): 

Remark 7. Within the SM (when the Wigner method is applied), the above three leptons are de-
scribed by one and the same pair (H, G), where H is a Hilbert space of wave functions and G is the 
r-group (being the 10-dimensional Poincare one). Assuming the validity of the MLM, our 
MLM-leptons have different spaces (H1, H2, H3) of wave functions and different r-groups: G1, G2, 
G3 (these groups are 15-dimensional). Namely, the three supports of wave functions are pair-wise 
distinct since they are quotient spaces produced by factoring at three different levels (as it has been 
earlier mentioned, in such a situation the Wigner-Segal method is necessarily involved). As regards 
the groups G1, G2, and G3, the first consists of 4 by 4 matrices, the second – of 6 by 6 matrices, and 
the third – of 8 by 8 ones. Also, these G1, G2, G3 operate at different levels: at U(2), at U(3), and at 
U(4), respectively. Having all the above in mind, it seems as of not much of a surprise that the three 
MLM-leptons are observed as distinct particles. 

Remark 8. Quite similarly (within the MLM), it can be explained why any two neutrinos (of two 
different SM-generations) are detected as two distinct particles.  

Remark 9. We would like to interpret our list of fermions’ triples in levels U(2) through U(5) 
(presented earlier in this Section) as a hint on how the matter at deeper MLM-levels might be 
structured. Maybe the detection of hadron jets is indicative of such a structure (which might be 
locally damaged during a highly energetic interaction)? These types of questions are in line with 
findings of [22, 23]. Namely, [22] concludes about quark-gluon plasma as of an extremely dense 
media (at least, as studied in central Pb-Pb collisions). Certain parts of [23] describe ‘quark matter’. 
In particular, it is concluded that the ‘hadron-quark pasta’ phase exists in very massive neutron 
stars, whose rotational frequencies are less than around 300 Hz. All other stars are not dense 
enough to trigger quark deconfinement in their cores. Recall in this regard that the U(2)-level is a 
chronometric model of ‘our’ space-time. That is why the presented combination of fermions’ tri-
ples in levels U(3), U(4), and U(5) (see Scheme 1) can be interpreted as the way of how ‘matter’ at 
these (= ‘deeper’) levels might be structured. Notice that the above Scheme 1 presumes integer 
charges (that is 1, or negative 1) of stable MLM-quarks. Otherwise, as an example, the following 
triple (quark d – muonic neutrino – antimuon) would not be of total zero charge; then how could we 
view it as the ‘U(3)-level anti-neutron’?  

6. Discussion 

Chronometric fermions of spin ½ are introduced via the spannor representation (see the 
portion of our text right before Theorem 2 in Section 2). In [10] it has been proven that the corre-
sponding composition series is a ‘three-step’ one. Its lower and upper factors are interpreted as the 
proton and the electron. Since factoring here is inescapable, this procedure (of constructing ele-
mentary particles) is not described in terms of the Wigner method. In [5] it was suggested to name 
such an approach (which the above three-step composition series is a specific feature of) as the 
Wigner-Segal method. In [2] it has been stated that as a basis for the MLM, the Segal's compact 
cosmos D can be exploited as well as the sequence of canonical (that is, corresponding to principal 
minors of appropriate matrices) group embeddings: U(2) into U(3), U(2) into U(4), etc. These 
groups were called the levels (of matter): U(2) - the 0th  (that is, our mundane world), U(3) – the 1st, 
U(4) - the 2nd, etc. Such a convention matches the SM-quarks' generations list. An opinion has been 
expressed [2], that “the MLM is the only known construct where such notions as flavor and color 
are defined mathematically”. Currently, the following seems to be an adequate description of the 
‘MLM versus SM’ case: MLM is the symbiosis of Segal’s Chronometry with SM.  

As regards another statement from [2] (“In MLM, a quark can be interpreted as a 'sunken' 
proton: during the beginning of the reaction process, the proton 'is pushed' into a 'deeper' level.”), 
our current paper provides (by presenting findings from several publications in one place here) a 
much more detailed foundation for such a conjecture. Unfortunately, we are not yet in a position to 
better support another claim of [2] (“At each level, a gluon can be interpreted as a colored and 
flavored photon.”), since in order to do that, we have to start with a double-check of the bosonic 
sector findings by Segal. Recall that in [10] such a double-check has been performed for the fer-
mionic sector. Nevertheless, even at this point in time it seems appropriate to mention the following 
chronometric findings: The key bosons (photon γ, W-boson, Z-boson) have been mathematically 
detected [3].  
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Formally, the MLM (as applied to quarks and leptons) is presented as a rigorous mathemat-
ical construct. Since it is quite broad and involved, it allows to formulate (and, in some cases, it 
even calls for) logically reasonable conjectures and avenues of further research. Let us list some of 
them (as we have just mentioned, if bosons had been included/added as the objects of 
MLM-inspection, then such a list would have been broader). In each of the subsections (below), 
there is very little, as regards precise computations, since our exposition here merely INDICATES 
‘MLM-possibilities’ which, presumably, can be further exploited in order to perform the research 
in question. 

6.1. MLM-mathematics of weak and strong interactions 

As regards both fermions and bosons, one interesting future research direction can be high-
lighted as follows: Can weak interactions be mathematically described as the MLM-vertical ones? 
To better understand the meaning of such a claim, the reader is invited to go back to our Remark 2 
in Section 2. This was an example of a ‘vertical’ force binding the three particles (proton, an-
ti-neutrino, and electron) together into a neutron. To mathematically decompose such a neutron 
into its ingredients, the factoring has to be applied. While by the MLM-horizontal, one should 
mean a ‘tangential’ (to a U(n)-level in question) force between quarks – the strong force, essentially 
(it is advised to have a look at those levels’ content: Fig. A3). Or, which is even more mathemat-
ically precise, this force is between such a pair of particles (in one and the same U(n)-level) that 
each particle’s space of states is an invariant ‘massive subspace’ of the corresponding representa-
tion (which is a spannor representation, essentially – see our Remark 1 in Section 2) of its ruling 
group. A generic example of such a subspace was Fp from Remark 1.  

6.2. Chronometry and MLM on the notion of electric charge  

On the basis of our (chronometric) Remark 2 (in Section 2), and on the suggested MLM- 
approach to the values of SM-quarks’ electric charges (see in our Section 4 the portion of the text 
which goes after Proposition 3), the following seems to be logically non-contradictory:  

Conjecture 1. The electric charges of the proton and of the electron (viewed either ‘inside’ neu-
tron, or separately) originate as the result of the corresponding action (in their Hilbert spaces Fp and 
Fe) of the ruling group G (represented, essentially, by SU(2,2)).  

Hopefully, such a (to a certain extent, philosophical) view might serve as an answer (preliminary, at 
least) to the question “What are the origins of electric charge?” According to the SM (as well as to 
the MLM), there are color charges, too. In our Section 4 the color charges were introduced via the 
‘MLM-modification’ of the Han-Nambu scheme. The electric charges of the SM-quarks are frac-
tional. As based on our Section 4 findings, it is possible to interpret the chronometric proton’s 
electric charge as a special case of the MLM-quarks’ color charges: in the U(2)-level there is just 
one ruling group for the proton which means that there is just one color. We interpret this color 
charge as the electric charge of the chronometric proton. 

An MLM-quark is a MATHEMATICAL notion. At each level, it is interpreted (in terms of 
Physics) either as a ‘sunken proton’ or as a ‘captured proton’. The color of the MLM-quark is de-
fined by its ruling group. In the U(3)-level, there are three (G12, G13, G23) possible ruling groups, 
each is a subgroup of SU(3,3). Hence, there are three color charges in the U(3)-level (the ‘value’ of 
each charge is 1, see Table 1). And so on: in any level U(n) each color charge is ‘generated’ by the 
corresponding subgroup (isomorphic to SU(2,2)). The electric charge of each sunken MLM-quark 
was defined as a statistical average of corresponding color charges (see a more detailed description 
which starts right after Table 1 in Section 4) – compare to the charge of a captured MLM-quark as 
described in our subsection 5.1.  

The total number of colors (in a given MLM-level) is level-dependent (see Theorem 3 in 
Section 3). In the U(5)-level, the electric charge values of MLM-quarks are (slightly) different 
from those of the corresponding SM-quarks. 

6.3. On the nucleon’s mass and shape (the case of a chronometric proton) 

In the beginning of our Section 2 we have spoken on the interplay between chronometric and 
relativistic notions. As regards the notion of mass (of an elementary particle), our guiding ‘tools’ 
are the ones suggested by Segal (see [3] and references therein). In particular, [3] (p. 996) provides 
the expression for the relativistic mass operator. In view of the very MLM-structure, it seems 
reasonable to start with the case of the (chronometric) proton p. In particular, it is necessary to 
search for most suitable (in view of what Segal says on p.996 of [3]) p-states. In this subsection we 
present an outcome of one small step forward in the performance of such a search.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2022                   doi:10.20944/preprints202202.0280.v2

https://doi.org/10.20944/preprints202202.0280.v2


 13 
 

 

Recall from our Section 2 that we there view the proton’s wave functions as defined on the 
Minkowski space-time M. In [10] M is represented as a certain set of 2 by 2 matrices, let us use h to 
denote an element in M: 

                                                           h = ൤
𝑥଴ + 𝑥ଵ 𝑥ଶ + 𝑖𝑥ଷ

𝑥ଶ − 𝑖𝑥ଷ 𝑥଴ − 𝑥ଵ
൨.                                          (3) 

 It follows from [10] (equation (20)) that each value of the wave function 𝚿𝟏 at h is the 
following vector in a complex 2-dimensional linear space C2: 

𝚿𝟏[𝝎𝟏, 𝒗𝟏](𝐡) = 𝑲(𝐡, 𝝎𝟏)𝒗𝟏. (4) 
 

By w*, we will denote the matrix obtained from w by transposition and complex conjugation. In 
(4), the parameter 𝒗𝟏 is from C2, while the reproducing kernel 

𝑲(𝝎𝟏, 𝝎𝟐) = ൫(𝝎𝟏 − 𝝎𝟐
∗ )/𝟐𝒊൯

ି𝟏
൛𝐝𝐞𝐭൫(𝝎𝟏 − 𝝎𝟐

∗ )/𝟐𝒊൯ൟ
ି𝟐

 (5) 

with 𝝎𝟏, 𝝎𝟐 being certain 2 by 2 matrices (see [10, Section 4] according to which the above ex-
pression (5) is always mathematically meaningful).  

     The (infinite-dimensional) Hilbert space Fp (of functions on the Minkowski space-time M), 
which is interpreted as the set of all (theoretically possible) states (or wave functions) of the 
chronometric proton p, can now be described as follows. It is the completion of the span of the set 
of functions (4). The positive definite inner product in Fp is defined as follows: 

〈𝚿𝟏, 𝚿𝟐〉 = 〈𝑲(𝝎𝟏, 𝝎𝟐)𝒗𝟏, 𝒗𝟐〉 (6) 

where, in the right side of (6), the canonical inner product in C2 is meant. As it has been stated in 
Theorem 2 (see our Section 2), the restriction of the induced representation to Fp is unitary and 
irreducible. Here the Mackey's concept of induced representation is meant. This concept proved to 
be a major tool in the modern quantum mechanical description of a particle (see [18]). We 
apologize to the reader that the above mentioned representation (which is known as the spannor 
representation, [3]) cannot be fully described in our current paper. We only recall that it is induced 
from a certain finite-dimensional representation of the (extended by scaling, and thus being 
11-dimensional) Poincare group. 

 From now, let us use L (and drop subscripts in (4) and elsewhere) to denote the wave func-
tion (4). Using equation (15) of [10], we have: 

L(h) = SAv, (7) 

with always defined 

                                 S = {det [(h – w)/2i]}-2.                              (8)   
 
 

                                Introduce the (real-valued!) function f as follows:                                                               
                                                           f(h) = LL*,                                              (9) 

where (for brevity) in the right side we omit the argument h. To word it differently, the value of f at 
h is the hermitian square of the vector in the right side of (4). The expression for the 2 by 2 matrix A 
is (reproduced from [24]) as follows: 

A = 2i(h – w*)-1. 
(10) 

In this [24], the entries in (3), (7), (8) have been specified as follows: v1=0, v2=1; x0 = x1 = 0;  

w = ቂ
𝟏 + 𝒊 −𝟏
−𝟏 𝟏 + 𝒊

ቃ, h = ቂ 
𝟎 𝒛
𝒛 𝟎

 ቃ with z = x +iy. In (4) we have simplified x2 to x, and x3 to 

y. In our Appendix B we thus deal with the real-valued function f(x,y). Here x and y are the ‘usual’ 
coordinates on the plane, while the remaining two coordinates (time t and the third space coordinate 
are chosen as 0). In other words, it is the case of a ‘toy model’, a very simple first try to understand 
what kind of functions might be obtained, in the proton’s Hilbert space Fp. Dropping a (positive) 
constant factor, we end up with f(x,y) = ((x+1)2 + y2 + 2)λ-3 where λ = ((x+1)2 + y2)2  + 4. It turns 
out that f(x,y) has just one local minimum, at (-1,0) as shown on Fig. B1. The totality of all points 
where f(x,y) reaches its maximum V is a circle defined by the equation (x+1)2 + y2 = r2. The radius 
r of this circle is determined from the system of equations for critical points of f(x,y). The highest 
points of the graph (as shown on Figs. B2, B3) form a circle which lies in the z = V plane; here z is 
for the third coordinate in space. The findings are graphically presented: Figures B1, B2, and B3. 
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Clearly, it is important to move from this toy example to a more realistic one where f depends on all 
four variables (notice that, obviously, f(x,y,z,t) is everywhere positive).  

In particular, it seems reasonable to look for a wave function (3) with the following proper-
ties: 

A) sections of f(x,y,z,t) by 3-planes t=const are spherically symmetric (or, at least, they are close to 
being spherically symmetric); 

B) as t changes, these sections change rather slowly; 

C) the value f(x,y,z,t=const) is very close to 0 as soon as (x,y,z) is far enough from the center of our 
proton (we are thus able to speak of the proton’s radius).  

If the value (as a function of time) of the mass operator at such a state is almost a constant, then we 
can set this value to be the proton’s mass. In what follows, we pretend that such a realistic wave 
function has been already detected. In that case, it is possible to relate our preliminary analytic 
findings in the proton’s space Fp to certain attempts of research, dedicated to the radius of a proton 
or, more broadly, to the shape of nucleons: [25 – 27]. 

As clearly seen on Fig. B1, (-1,0) is the center of our proton. The function f(x,y) has a local 
minimum there. As analytic calculations [24] show, the graph of f(x,y) is rotationally symmetric. 
The axis of this symmetry, the straight line N (passing through (-1,0)) is orthogonal to the plane of 
coordinates x, y and N passes through (-1,0). On Fig. B2 we see that the highest points of the graph 
form a circle. This circle (or, rather a 2-sphere, for a more realistic example) is “where a strong 
repulsive pressure near the centre of the proton (up to 0.6 fm) switches to a binding pressure at 
greater distances” [25]. As Fig. B3 shows, our condition C), from above, is close to being satisfied. 

6.4. The SM states that a proton consists of three quarks. What does MLM say? 
In Section 2 (closer to its end) we have described the MLM-interpretation of the proton’s 

uud-quark structure, the latter being one of the basic SM-tenets. The Multi-Level Model claims that 
the proton is indestructible since its Hilbert space of states, Fp, carries the irreducible unitary rep-
resentation of G=SU(2,2). Instead of interpreting u, u, d, as particles, the MLM explains the de-
tection of three centers of electron-proton scattering as follows: MLM speaks of three ‘channels’ 
which the proton ‘chooses’ in order to avoid destruction when bombarded (by electrons, say). 
These channels can be labeled by symbols Dij of corresponding cells (see Definition 1 in Section 2). 
Having in mind our contemplation (see Section 5) on the structure of matter at deeper, than U(2), 
levels, we can now put into play one more possible feature of such a highly inelastic elec-
tron-proton scattering. It looks like a reasonable physical assumption that the corresponding cell 
(D12, say, at the U(3)-level) is already ‘occupied’ (by a proton p, compare to the notation p12 which 
we have introduced in Section 5, between Scheme 1 and Scheme 2). The former ‘D12-occupant’ is 
then pushed to an even deeper level, U(4), for a moment. Our proton, now being in D12, repels the 
electron elastically (that is, electron bounces off the proton when the latter is in the D12 cell), and 
then our proton is pushed (by the deeper matter’s repulsive pressure) back to the U(2)-level.  

7. Conclusions 

The main goal of the current review is to put together mathematical arguments and experi-
mental data in order to support the claim that the Multi-Level Model can be thought of as the 
symbiosis of Chronometry with the Standard Model. Above, we mostly have been using the setting 
of Segal’s Chronometry in its compact form, D = U(2). There is a mathematically well-developed 
[12] (Sections 3.1 and 7) way of transition to an astronomically more adequate setting, the direct 
product of the ‘time line’ with SU(2), where SU(2) is for a spherical 3-space with its radius R being 
a conformal invariant [28]. Segal names this R as the "radius of the universe." 

As Segal puts it [3], “…the chronometric physics is fundamental theory that derives from 
very general considerations of causality, stability, and symmetry. As such, it is naturally slightly 
abstract, and its empirical implications require development, which like those of special relativity 
and quantum mechanics may initially appear contradictory of accepted doctrine… Relativistic 
quantum theory appears as the limiting case of chronometric theory as R tends to infinity, in a sense 
similar to that in which classical physics appears as the limit (as the Planck’s constant tends to 0) of 
quantum theory, and non-relativistic physics appears as the limit (as the speed of light c goes to 
infinity) of relativistic physics.” 

If, by now, we have been able to justify the title of our review, then the above characteristics 
of Chronometry are applicable to the Multi-Level Model, as a whole. Also, we would like to in-
dicate that the MLM-approach to quarks and leptons is a very economic one: essentially, the 
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number of stable elementary fermions of spin ½ has been reduced to just three (the proton, the 
electron, the electronic neutrino and their anti-particles). Hopefully, the MLM-view that a proton is 
indestructible, will, eventually, be accepted by the mainstream Physics. Combined with the 
MLM-approach (U(n)-levels being the key wording here) to matter structuring, such a radical view 
on the proton makes it easy to solve the SM-puzzle of quark and lepton generations (as done in our 
Section 5).  

Since our chronometric proton has no constituents, it is questionable whether there is an 
MLM-need for colors, per se. In our current presentation we stay with colors exactly as they have 
been mathematically introduced in [1, 2]. However, we have now highlighted the notion of the 
ruling group (which ‘creates’ color): Definition 2 in Section 2. The number of colors is lev-
el-dependent (see formulas (1), (2) in Section 3). In Scheme 1 and in Fig. A3, we have indicated 
‘where’ to search for new quarks and leptons. 

There are two original portions in the current paper: subsections 5.1 and 6.3, above. In 6.3, 
we suggest a wave function based approach to study certain properties of the proton (like mass, 
shape and inner pressure which have been recently researched in several publications). 

Seemingly, only further theoretical research (and check against experimental data) will de-
cide which other claims/conjectures/approaches (some outlined, some just mentioned) of our re-
view may significantly contribute to the current trends in the Physics of Particles – while the re-
maining ones would be thought of as having merely mathematical value.  
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Appendix A 

Figure A1. 

𝑈(2) = 𝑫: ቂ
∗ ∗
∗ ∗

ቃ 

 
 

ቈ
∗ ∗
∗ ∗

0
0

 0 0 1
 ቉ ቈ

 ∗ 0
 0 1

∗ 
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 ∗ 0 ∗ 
቉ ቈ

 1 0
 0 ∗

0 
∗ 

 0 ∗ ∗ 
቉

𝐷ଵଶ 𝐷ଵଷ 𝐷ଶଷ

 

D12, quark u; D13, quark d; D23, quark u – subgroups in U(3) isomorphic to U(2). 

𝑃ଶ : ቂ
𝑧ଵ 𝑧ଶ

𝑧ଷ 𝑧ସ
ቃ →  ቂ

𝑧ସ 𝑧ଶ

𝑧ଷ 𝑧ଵ
ቃ ; 𝑃ଷ : ൥ 

𝑎 𝑏 𝑐 
𝑑 𝑒 𝑓 
𝑔 ℎ 𝑖 

൩ →  ൥ 

𝑖 𝑓 𝑐 
ℎ 𝑒 𝑏 
𝑔 𝑑 𝑎 

൩.  

𝐴ଶଷ =  𝑃ଷ ∘ 𝐴ଵଶ ∘ 𝑃ଶ, 𝑃ଷ(𝐷ଵଶ) =  𝐷ଶଷ,

𝑃ଷ(𝐷ଶଷ) =  𝐷ଵଶ,   𝑃ଷ(𝐷ଵଷ) =  𝐷ଵଷ,
 

 
Figure A2. 

𝑈(2) = 𝑫: ቂ
∗ ∗
∗ ∗

ቃ 
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A12 A13 A34 A14 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2022                   doi:10.20944/preprints202202.0280.v2

https://doi.org/10.20944/preprints202202.0280.v2


 16 
 

 

቎
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∗ ∗

0 0
0 0

0 0
0 0

1 0
0 1

቏ ቎

∗ 0
0 1

∗ 0
0 0

∗ 0
0 0

∗ 0
0 1

቏ ቎

∗ 0
0 1

0 ∗
0 0

0 0
∗ 0

1 0
0 ∗

቏ … ቎

1 0
0 1

0 0
0 0

0 0
0 0

∗ ∗
∗ ∗

቏

𝐷ଵଶ 𝐷ଵଷ 𝐷ଵସ … 𝐷ଷସ

 

 

𝐴ଶସ =  𝑃ସ ∘ 𝐴ଵଷ ∘ 𝑃ଶ, 𝐴ଷସ =  𝑃ସ ∘ 𝐴ଵଶ ∘ 𝑃ଶ, 𝑃ସ(𝐷ଵଷ) =  𝐷ଶସ, 𝑃ସ(𝐷ଶସ) =  𝐷ଵଷ, 
 

𝑃ସ(𝐷ଵଶ) =  𝐷ଷସ, 𝑃ସ(𝐷ଷସ) =  𝐷ଵଶ,   

𝑃ସ(𝐷ଵସ) =  𝐷ଵସ − quark 𝑠; 𝑃ସ(𝐷ଶଷ) =  𝐷ଶଷ −  quark 𝑐. 
Figure A3. 

𝑈(6):

⎩
⎪
⎨

⎪
⎧𝐷ଵଶ

௨ 𝐷ଵଷ
ௗ 𝐷ଵସ

௦ 𝐷ଵହ
௧ 𝐷 ଵ଺

𝟐/𝟑

௤(ସ;ଵ,଺)

𝐷ଶଷ
௖ 𝐷ଶସ

௕ 𝐷 ଶହ
ି𝟏/𝟑

௤(ସ;ଶ,ହ)
𝐷ଶ଺

௧ 𝐷 ଷସ
𝟐/𝟑

௤(ସ;ଷ,ସ)

𝐷ଷହ
௕ 𝐷ଷ଺

௦ 𝐷ସହ
௖ 𝐷ସ଺

ௗ 𝐷ହ଺
௨

 

 

𝑈(5): ൞

𝐷 ଵଶ
𝟐/𝟑

௨ 𝐷 ଵଷ
ି𝟏/𝟑

ௗ 𝐷 ଵସ
ି𝟏/𝟑

௦ 𝐷 ଵହ
𝟐/𝟑

௧ 𝐷 ଶଷ
𝟐/𝟑

с

𝐷 ଶସ
ି𝟏/𝟑

௕ 𝐷 ଶହ
ି𝟏/𝟑

௦ 𝐷 ଷସ
𝟐/𝟑

௖ 𝐷 ଷହ
ି𝟏/𝟑

ௗ 𝐷 ସହ
𝟐/𝟑

௨  

 

𝑈(4):  𝐷 ଵଶ
𝟐/𝟑

௨ 𝐷 ଵଷ
ି𝟏/𝟑

ௗ 𝐷 ଶଷ
𝟐/𝟑

с 𝐷 ଶସ
ି𝟏/𝟑

ௗ 𝐷 ଷସ
𝟐/𝟑

௨ 𝐷 ଵସ
ି𝟏/𝟑

௦
 

𝑈(3):  𝐷 ଵଶ
𝟐/𝟑

௨ 𝐷 ଶଷ
𝟐/𝟑

௨ 𝐷 ଵଷ
ି𝟏/𝟑

ௗ
 

 
The fractional electric charges are entered in accordance with the SM. Please compare with 

our Section 4 where the Han-Nambu scheme has been applied. In that case, the charges of the 
U(5)-quarks would be different (see the part of the text right before our Remark 6). Also, here we 
interpret each MLM-quark as a ‘sunken proton’ (rather than as a captured one). 

 
Figure A4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The left portion of Fig. A4 is for a neutron as consisting of the proton p, of an electron e, and 

of an electronic anti-neutrino. Different areas (for each the three particles) mean to indicate their 

νതఓ  
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e 

𝑝ଵଶ 𝑝ଶଷ 

 

𝑝ଵଷ p 
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different masses. The proton and neutrino are placed as ‘equal’ (in terms of the composition series 
– see our Remark 2 for more details) since each (of the two) representation subspace is invariant. 
Notice that there is also a significant mathematical difference between the two representation 
spaces. It is expressed in terms of the so called Gelfand-Kirillov dimension, and it allows to dis-
tinguish between the proton and the neutrino (see [10] for further details on that). There is no in-
variant subspace for the electron which is indicated by the wavy line. Additionally, this wavy line 
indicates the presence of the weak force which (together with electromagnetism) binds the three 
particles together, into a neutron. 
     The right portion of Fig. A4 is for the U(3)-level (as discussed in Remark 9 of Section 5).  
 
 
Figure A5. 

𝑔ଵଶ = ൦

𝐴 𝟎 𝐵 𝟎
𝟎 1 𝟎 0
𝐶 𝟎 𝐷 𝟎
𝟎 0 𝟎 1

൪ , 𝑔ଵଷ =

⎣
⎢
⎢
⎢
⎢
⎡
𝐴ଵ 0 𝐴ଶ 𝐵ଵ 0 𝐵ଶ

0 1 0 0 0 0
𝐴ଷ 0 𝐴ସ 𝐵ଷ 0 𝐵ସ

𝐶ଵ 0 𝐶ଶ 𝐷ଵ 0 𝐷ଶ

0 0 0 0 1 0
𝐶ଷ 0 𝐶ସ 𝐷ଷ 0 𝐷ସ⎦

⎥
⎥
⎥
⎥
⎤

 , 

where in case of g12 the 4 by 4 matrix g2 was denoted as ቂ
 𝐴 𝐵 
 𝐶 𝐷 

ቃ, while in case of g13 the 4 by 4 

matrix g2 was also denoted as ቂ
 𝐴 𝐵 
 𝐶 𝐷 

ቃ, but with further specification of its 2 by 2 blocks: 𝐴 =

൤
 𝐴ଵ 𝐴ଶ 
 𝐴ଷ 𝐴ସ

൨, 𝐵 = ൤
 𝐵ଵ 𝐵ଶ 
 𝐵ଷ 𝐵ସ

൨ , 𝐶 = ൤
 𝐶ଵ 𝐶ଶ 
 𝐶ଷ 𝐶ସ

൨ , 𝐷 = ൤
 𝐷ଵ 𝐷ଶ 
 𝐷ଷ 𝐷ସ

൨. It can be easily found in the liter-

ature which additional properties do matrices A B C D have to satisfy in order g2 be an element of 
SU(2,2). The result of the action of g2 on an element z from D = U(2) is as follows: 
(Az+B)(Cz+D)-1. 
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Appendix B 

Figure B1.  

 
Figure B2. 

 
Figure B3.  
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