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Abstract: Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern 
(VOC) are constantly threatening global public health. With no end date, the pandemic still persists 
with the emergence of novel variants that threaten the effectiveness of diagnostic tests and vaccines. 
Mutations in the Spike surface protein of the virus are regularly observed in the new variants, 
potentializing the emergence of novel viruses with different tropism from the current ones, which 
may change the severity and symptoms of the disease. Growing evidence has shown that mutations 
are being selected in favor of variants that are more capable of evading the action of neutralizing 
antibodies. In this context, the most important factor guiding the evolution of SARS-CoV-2 is its 
interaction with the host’s immune system. Thus, as current vaccines cannot block the transmission 
of the virus, measures complementary to vaccination, such as the use of masks, hand hygiene, and 
keeping environments ventilated remain essential to delay the emergence of new variants. 
Importantly, in addition to the involvement of the immune system in the evolution of the virus, we 
highlight several chemical parameters that influence the molecular interactions between viruses and 
host cells during invasion and are also critical tools making novel variants more transmissible. In 
this review, we dissect the impacts of the Spike mutations on biological parameters such as (1) 
increase of Spike binding affinity to hACE2; (2) bound time for the receptor to be cleaved by the 
proteases; (3) how mutations associate with increase of RBD up-conformation state in the Spike 
ectodomain; (4) expansion of uncleaved Spike protein in the virion particles; (5) increment of Spike 
concentration per virion particles; and (6) evasion of the immune system. These factors play key 
roles in the fast spreading of SARS-CoV-2 variants of concern, including the Omicron. 
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Introduction 
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly became 

a concern due to its fast spreading, causing more than 390 millions cases and 5.7 millions 
deaths to date [1]. The SARS-CoV-2 genome has approximately 29,900 base pairs that 
encode four structural proteins, i.e., Spike protein (or S protein), nucleocapsid (N), 
membrane (M) and envelope (E), in addition to 16 other non-structural proteins [2] 
(Figure 1A). In particular, the full Spike sequence has 1,273 amino acids, having multiple 
functional domains distributed in two subunits, S1 and S2 [2] (Figure 1B). The S1 subunit 
recognizes the human receptor, allowing the virus to initiate its entry into the host cell [3], 
while the S2 subunit favors fusion of the virus envelope with the host cell membrane, thus 
facilitating virus entry into the host cell [3]. The S1 is composed of a N-terminal domain 
(NTD), a receptor binding domain (RBD), and SD1 and SD2 domains, while the S2 subunit 
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is composed by the fusion peptide (FP), the heptapeptide repeat sequences 1 (HR1) and 2 
(HR2), a transmembrane domain (TM), and an intravirion, palmitoylated cysteine-rich C-
terminal domain, often referred to as the cytoplasmic domain or tail (CT) [3][4][5–7] 

The functional role of S1 is associated with the NTD, which helps the virus to adapt 
to host or environmental conditions. The RBD recognizes and binds to human 
angiotensin-converting enzyme 2 (hACE2) [3]. The functional role of S2 is associated with 
the FP, responsible for the insertion of S2 into the target cell’s membranes [8][3]. The HR1 
and HR2 form a bundle of helices responsible for the membrane fusion of the virus 
envelope and the host cell’s membrane into close proximity [9]. The TM is important for 
Spike protein trimerization and membrane fusion. The CT anchors the trimer in the viral 
membrane and it is also involved in membrane fusion [8] (Figure 1). 

 
Figure 1. Structural features of SARS-CoV-2 Spike protein. a) Genomic organization of SARS-CoV-2 based on the 
sequence of locus NC_045512.2 in the NCBI. b) Domains in the Spike sequence. Table 2. Spike protein has two main 
subunits: S1 and S2, the first is related to the binding to the host cellular receptor, whereas the last allows the fusion of the 
viral and cellular membranes. During the infection process, the Spike protein is processed by a human serine protease, 
TMPRSS2, at the S1/S2 and the S2′ sites to activate virus entry [10–13]. The total length of SARS-CoV-2 Spike is ~1273 
amino acids and consists of a signal peptide (SP) located at the N-terminus followed by the the S1 subunit composed of: a 
N-terminal domain (NTD), a receptor binding domain (RBD), and SD1 and SD2 domains. The S2 subunit is composed of: 
the fusion peptide (FP), the heptapeptide repeat sequences 1 (HR1) and 2 (HR2), a transmembrane domain (TM), and a 
cytoplasm domain (CT) [5,6]. The percentage of mutations in each domain of the Spike protein in relation to the Alpha, 
Beta, Gamma, Delta and Omicron variants is shown. There are more mutations in the S1 (6.8%) than in the S2 domain 
(2%). Deletions and insertions have been observed in the NTD. Significant mutations have accumulated in the interface of 
interaction between the RBD Spike protein and ACE2. The S1/S2 protease cleavage site has 25% mutations, whilst no 
mutation was observed in the S2’ site. c) Structural representation of the trimeric form of the Spike protein. d) Monomeric 
Spike protein structure. e) Conservation profile of the Spike protein among VOCs (Alpha, Beta, Gamma, Delta, and 
Omicron) was performed using ClustalW server [14] followed by the ConSurf Server [15,16] (Table S1). The absolutely 
conserved residues are colored in dark blue and those less conserved in cyan, as shown in the bar. The surface of the 
structure of the SpikeWT protein in complex with ACE2 (PDB ID 7DF4 [17]) is colored based on the conservation profile. 
The ACE2 structure is colored in salmon, and the chains A and C in the trimeric form of the Spike protein are colored in 
gray. 
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Naturally, adaptive mutations occur in the S protein that interact with hACE2, 
mediating the viral infection of the host cell [18,19]. Mutations in the Spike protein may 
improve or worsen infectivity, transmissibility and pathogenicity, compared to the wild-
type SARS-CoV-2 (SARS-CoV-2WT) [20]. In 2021, the main variants, denominated Alfa 
(B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2), spread worldwide, bringing 
more uncertainties about the pandemic course [21]. The Delta variant became the 
dominant variant (from 10% to over 90%) in less than 2 months in the studied countries 
(Figure S1) [22]. In November 2021, a novel variant denominated Omicron (B.1.1.529) was 
reported, presenting a much higher number of mutations (26 to 32 mutations only in the 
Spike protein) and raising concerns regarding how it would behave [23]. Nowadays, the 
world is facing a new wave due to SARS-CoV-2Omicron, which is highly infectious and is 
becoming the dominant variant worldwide. 

Turkahia and collaborators showed evidence of recombination, mainly between the 
SARS-CoV-2Alpha and SARS-CoV-2B.1.177 variants, and found that most recombination 
breakpoints were located within the gene coding for the Spike protein [24]. Another issue 
is the observed cases of co-infection by SARS-CoV-2 and Influenza [25,26]. RNA 
recombination between coronaviruses and Influenza C has been reported [27], suggesting 
that a novel SARS-CoV-2 variant that contains genetic information from both viruses 
might emerge. Such possibilities make the scientific and medical communities worry 
about vaccine effectiveness, symptoms, disease severity, transmissibility, and even the 
efficiency of current diagnostic tests for SARS-CoV-2. 

Molecular dynamics simulations and cryo-electron microscopy have shown that the 
dominant substitution D614G favors the up-conformation of the RDB of the Spike trimer 
[28–30], which is more accessible for interacting with hACE2 [3,6,31,32]. In the case of 
SARS-CoV-2WT, only one out of three RBDs is in the up-conformation. As for SARS-CoV-
2Delta, all three RBDs are in the up-conformation state, increasing the likelihood of hACE2 
interaction (Figure S2). Mutations, especially in the RBD, increase the virus capability to 
infect and to become more transmissible and resistant to the immune system [33–37]. 
Furthermore, specific mutations may alter the equilibrium dissociation constant (KD), the 
association constant (ka) and the dissociation constant (kd), all critical properties for the 
interaction with hACE2 [38,39]. Experimental studies demonstrated that SARS-CoV-2 is 
evolving to resist neutralizing antibodies. It has been shown that the E484K mutation in 
the RBD enables viruses to evade neutralizing antibodies and this residue is one of the 
most variable residues among the VOCs [40] (Figures S3b, S4 and Table S1). This 
mutation is localized in the main antibody-recognizing region [41]. The Delta variant has 
been described as more transmissible than the Alpha variant [42] and presents less 
susceptibility to neutralizing antibodies mobilized by vaccines than other SARS-CoV-2 
VOCs do [43]. Computational studies have shown that such capabilities may be caused 
by structural modifications as a result of L452R and T478K mutations in the RBD [44,45]. 
Interestingly, T478 is also a highly variable residue among the VOCs (Figure S4). 

Several vaccination technologies have been developed and are being used to 
immunize the population worldwide. Vaccination was shown to be effective in 
significantly reducing the death rate for patients with COVID-19, yet not blocking the 
transmission of the virus, which still occurs in an apparently reduced way [46]. However, 
the investigation of underlying mechanisms behind emerging SARS-CoV-2 variants 
resistant to neutralizing antibodies induced by vaccines or previous virus infections has 
gained prominence in the scientific community [47]. In the present review, we approached 
the impacts of Spike protein mutations on infectivity and transmissibility of SARS-CoV-2 
VOCs. Additionally, we discuss the capacity of the VOCs to evade neutralizing antibodies 
or decrease the sensitivity to antisera from convalescent and vaccinated patients, 
appearing to be the main factor driving the evolution of the virus [48]. We compile 
evidence from different studies that show the Spike protein in the SARS-CoV-2 VOCs 
evolved in distinct ways to present an increase of infectivity in the host cell, with higher 
infection fitness than the wild type. Since emergence of higher fitness VOCs is expected 
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while opportunities for mutation and recombination continue to be provided by high 
levels of virus circulation in the hosts population, we expect continued immunization and 
restrictive measures to continue to be the main strategies to diminish the likelihood of 
VOC emergence until effective drugs that block virus infection are made available. 

SARS-CoV-2 VOC mutations and their impact on hACE2 binding affinity and escape 
from the immune system. 

The evolution of the SARS-CoV-2 Spike protein has led to key structural features that 
facilitate fast-spreading transmission. The D614G mutation in the Spike protein was the 
first that worried the scientific community during the coronavirus disease 2019 (COVID-
19) pandemic and is still present in all SARS-CoV-2 VOCs. This SARS-CoV-2 mutation 
affects viral replication in lung cells and viral infectivity. The D614G substitution does not 
alter Spike biosynthesis, processing, or cell-cell fusion of SARS-CoV-2, but it disrupts an 
interprotomer contact breaking a salt bridge between D614 and K854 located at the FPPR 
(Fusion peptideproximal region). Thus favoring an RBD up-conformation state to bind to 
hACE2 but doesn’t increase protein stability [49][32]. Molecular dynamics simulations 
showed that conformational changes in the D614G Spike are energetically favorable for 
increasing infectivity due to an enhanced exposure of the RBD to interact with hACE2 
[28]. This favorable structural conformation may be explained due to a displacement of 
the loop composed of residues 620 to 640 [49]. This substitution also promotes an increase 
in the number of functional Spikes [50]. Furthermore, the D614G mutation moderately 
increased binding affinity to hACE2, providing a clear selective advantage to these 
mutants compared with ancestral SARS-CoV-2 (Table 1) [49]. 

Table 1. Kinetic parameters of RBD-hACE2 complex formation. Equilibrium dissociation 
constants (KD) calculated for RBD and its variants in the complex with dimeric hACE2 protein. 
Experimental KD values were also measured using a trimeric Spike protein and its variants for 
interacting with hACE2. 

 
 Spike Trimeric Spike RBD 

Strains 
ka  

(105 M−1s−1) 
kd 

(10−4 s−1) 

KD 

(nM) 

ka  
(105 M−1s−1) 

kd 

(10−4 s−1) 
KDRBD 

(nM) 
SARS-CoVWT  1.4 [6] 7.1 [6] 5.0 [6] 1.4-15.8 [51] 93-338 [51] 1.46-185 [51–53] 

SARS-CoV-2WT 1.4 [6] 1.6 [6] 1.2 [6] 9.0 [54] 91.6 [54] 1.1-112.1 [45,52,53,55–59] 
SARS-CoV-2D614G 1.6 [60] 1.7 [60] 1.0 [60] ND ND 0.38-12.8 [61] 
SARS-CoV-2Alpha 0.1 [54] 1.7 [54] 1.6 [54] 13.0 [54] 15.5 [54] 0.5-57.1 [45,54,56–59,61] 
SARS-CoV-2Beta 0.3 [54] 3.0 [54] 1.1[54] 12.0 [54] 39.4 [54] 3.3-25.5 [45,54,56,61] 

SARS-CoV-2Gamma 0.2 [54] 3.0 [54] 1.8[54] 13.0 [54] 28.8 [54] 2.2 [54] 
SARS-CoV-2Delta ND ND ND  0.1 [62] 46.0 [62]  2.7 -176 [22,62] 

ND = not determined, KD =kd/ka. 
The main SARS-CoV-2 VOCs are Alpha, Beta, Gamma, Delta and Omicron, in which 

the main mutations are localized in the Spike protein. In the Spike S1 subunit, the main 
changes happen in the NTD and RBD domains, while in the S2 subunit it happens in the 
HR1 domain (Figure 1B). Analysis of residue variability along the VOCs shows that Y145, 
K417, T478, E484 and H655 are very variable and most of them are exposed or involved 
in the hACE interaction (Figures 1e and S4). This suggests that they may be important for 
evading the immune system or for modulating human receptor binding. The NTD and 
RBD are the main targets of neutralizing antibodies and the elevated number of mutations 
observed in these domains for novel SARS-CoV-2 VOCs suggests that the virus might be 
evolving to escape the neutralizing action of antibodies produced by immunization or 
earlier infections. Figure S3 shows the multiple sequence alignment of Spike protein 
variants from SARS-CoV-2 VOCs. The Alpha variant, first detected in the United 
Kingdom, has mutations Δ69-70, Δ144, N501Y, A570D, D614G, P681H, T716I, S982A and 
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D1118H. The Beta (B.1.351) variant, first reported in South Africa, presents L18F, D80A, 
D215G, Δ242-244, R246I, K417N, N501Y, D614G and A701V mutations. The Gamma (P.1) 
variant, first identified in Brazil, presents mutations L18F, T20N, P26S, D138Y, R190S, 
K417T, E484K, N501Y, D614G, H655Y, T1027I and V1176F. The Delta (B.1.617.2) variant, 
first identified in India, has mutations T19R, Δ157-158, L452R, T478K, D614G, P681R and 
D950N in the Spike protein. Finally, the Omicron (B.1.1.529) variant, first reported also in 
South Africa, has mutations in A67V, Δ69-70, T95I, Δ142-144, Y145D, Δ211, L212I, 
insertion of EPE at position 214, G339D, S371L, S373P, S375F, K417N, N440K, G446S, 
S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, 
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K and L981F [63]. 

Mutations in the Spike protein correlate to enhanced virus fitness (such as the 
prevalent mutations, N501Y and D614G), increased binding to the hACE2 (such as 
N501Y), and resistance against neutralizing antibodies (highly variable residues among 
VOCs, such as T478 and E484). All these mutations cause conformational changes of the 
Spike trimer structure. Indeed, cryo-EM structures of the Alpha variant spike protein 
reveal a rotation of all three S1 subunits leading to up-conformation of the RBD [61]. When 
compared with D614G, the SARS-CoV-2Beta Spike presents a similar conformational state, 
differing only in the NTD of the Spike S1 subunit [61]. The triple-residue deletions (L242, 
L243 and A244) in the SARS-CoV-2Beta Spike protein result in structural changes in the 
adjacent loop (residues 246 to 260) and the nearby loop (residues 144 to 155), both of which 
form part of neutralizing epitopes [61]. These structural changes may affect the binding 
of neutralizing antibodies [61] and likely affect the efficiency of currently used COVID-19 
vaccines. The cryo-EM structure reveals that RBDs of SARS-CoV-2Gamma Spike protein 
mainly visit the up conformation [64]. The change in L452R in the Spike protein of SARS-
CoV-2Delta may contribute to 50% more transmissibility than the Alpha variant [65]. It 
could be correlated with electrostatic interactions with hACE2 [44,45]. 

Each SARS-CoV-2 VOC presents different values of ka, kd and KD for the interaction 
between the RBD or the trimeric form of the Spike protein and hACE2 (Table 1). Veesler 
and co-authors performed binding affinity assays to hACE2, comparing the trimeric Spike 
from SARS-CoV-2 variant with SARS-CoV-2WT, showing a ratio KDVARIANT/KDWT of ~1:5 [6]. 
When compared to SARS-CoV, SARS-CoV-2 Spike ka kept the same value of ~1.4 × 105 
M−1s−1 but decreased its kd value from 3.0x10−4 s−1 to ~1.7x10−4 s−1. In relation to the Spike of 
SARS-CoV-2WT, D614G Spike trimer presents comparable ka and kd rates of ~1.6x105 M−1.s−1 
and ~1.7x10−4 s−1, resulting in similar binding affinity to hACE2 (KDSARS-CoV−2/KDD614G of ~1:1) 
[60]. 

Our previous studies have shown that the Spike protein of SARS-CoV-2Alpha, SARS-
CoV-2Beta and SARS-CoV-2Gamma present comparable values of binding affinity to hACE as 
SARS-CoV-2WT, with KD values ranging from 1.1 to 1.8 nM [54], but higher affinity than 
the trimeric form of the Spike protein of SARS-CoV-2WT (KD values ~16 nM) [55]. A similar 
results was also observed for the Omicron variant that has higher affinity to hACE than 
the wild type but comparable values of binding affinity to hACE as SARS-CoV-2Beta 

[66].The main significant differences seem to be in the ka and kd values, ranging 0.1-0.3x105 
M−1s−1 and 1.7-3.0x10−4 s−1, which are less than those of SARS-CoV-2WT (ka and kd values of 
0.4x105 M−1s−1 and 7.0x10−4 s−1, respectively) [55]. Lower differences in the KD values, but 
larger ones in ka and kd values, imply changes to the binding kinetics to hACE2. Decreasing 
kd values due to mutations in these SARS-CoV-2 variants increase the likelihood of Spike 
protein will be cleaved by proteases, vital to membrane fusion and virus cell host entry. 
Therefore, these variants seem to improve virus entry in the host cell by increasing the 
probability of cleavage of the Spike protein by proteases, a step that is a requirement for 
the process of membrane fusion [55]. 

The emergence of novel SARS-CoV-2 VOCs with significant mutations in the Spike 
protein might result in changes of the virus tropism. This can occur when the proteases 
cleavage sites are mutated, as already observed for the Alpha, Delta, and Omicron 
variants (Figure S3b), or if the Spike protein starts to recognize other human receptors, 
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expanding the repertoire of entry points of the virus to new human cell lineages. This 
would result in different clinical symptoms of the disease and a significant decrease of 
efficiency of previous immune responses, acquired by previous infections or 
immunization based on SARS-CoV-2WT. This observation has been reported for the 
Omicron variant, which replicates faster in the airways and has an increased fitness 
compared to the D614G and Delta variants [67]. The replication of the Omicron variant in 
alveolar type 2 cells is not productive and does not efficiently use TMPRSS2 for entry or 
spread through cell-cell fusion [67]. Omicron has an altered protease usage and tropism, 
as shown in animal model studies, features that are probably related to this variant’s 
decreased pathogenicity compared to previous variants [67]. 

SARS-CoV-2 VOC decreases incubation period, increasing viral loads, transmission 
period, and transmissivity. 

One of the factors that contributed to SARS-CoV-2 becoming a pandemic virus is that 
viral transmission occurs in asymptomatic infected individuals and before the appearance 
of symptoms in symptomatic cases. The kinetics of SARS-CoV-2 infection involve contact 
with the virus, viral incubation, period of viral transmission (viral shedding) that is 
associated with increased viral load in the infected person, the period of symptom onset, 
and detection of viral RNA (viral RNA shedding) by diagnostic tests (Figure 2) [68,69]. 
The degree of viral transmissibility can be measured by the number of people who are 
infected for each person previously infected when everyone is susceptible. This number 
is called effective reproduction number R0 [70]. In general, the highest viral loads are 
reached when symptoms appear, gradually declining until vanishing around 21 days after 
the onset of symptoms. However, the live virus is only detectable up to the eighth day 
after the onset of symptoms [71], which may decrease transmissibility after this period. 
Viral loads are similar across age, sex and disease severity [72]. Interestingly, men transmit 
SARS-CoV-2 more effectively than women do [73]. This may be explained by the 
observation that men, aged 48 or less, have a viral load about ten times higher in the saliva 
than women [73]. Nevertheless, no differences were observed, in this cohort, for samples 
of nasofaringe, thus suggesting such biases may not apply to variants with different 
tropism. 

Considering the SARS-CoV epidemic context, estimated R0 values ranged from ~0.5 
to 1.3 [74]. Conversely, COVID-19 pandemic showed a compelling increase of R0 values, 
ranging from 1.4 to 3.9 [75] (Table 2). In general, SARS-CoV-2 VOCs tend to have higher 
R0 values relative to the wild-type SARS-CoV-2. In particular, the substitution D614G in 
the Spike protein makes SARS-CoV-2 31% more transmissible (R0 value ranging from 1.7 
to 4.7) [76]. Shi and co-authors showed that hamsters infected with SARS-CoV-2 
expressing D614G Spike mutant may also reveal increased virus transmission [77]. 
Increases in severity and mortality of COVID-19 are not associated with this D614G 
mutation [20], since the Alpha, Beta, and Delta variants all share this substitution. The 
higher transmissibility associated with this mutation seems to derive from an increase in 
viral load in younger patients [20]. The Alpha variant, whose estimated R0 interval is from 
2.2 to 6.1 (Table 2), is from 43 to 90% more transmissible than SARS-CoV-2WT [78]. The 
Beta variant is ~50% more transmissible than the SARS-CoV-2WT [79] and it is estimated to 
have an R0 ranging from 2.1 to 5.5 (Table 2). The Gamma variant is ~40-120% more 
transmissible than SARS-CoV-2WT [80], which corresponds to an estimated R0 ranging 
from 2.1 to 5.5 (Table 2). The Gamma variant evades neutralizing antibodies, leading to 
possibly higher rates of SARS-CoV-2 reinfection [81], and the same might happen to the 
other SARS-CoV-2 VOCs. The R0 of the Omicron variant is estimated to be as high as 10. 
As a result, the control of viral transmission in the UK is almost impossible since the cases 
of Omicron are doubling every 2–3 days [82], testing has been suggested to help to control 
the virus spreading [82]. 

SARS-CoV-2 VOCs modulate the kinetics of SARS-CoV-2 infection in a way that 
improves the virus fitness in the human body (Figure 2), thus leading to reduced vaccine 
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effectiveness and, in some cases, to increase disease severity. Concerning the Delta 
variant, which became the dominant lineage worldwide in 2021, the transmissibility rate 
(R0) increased from 1-4 to 6.4 [70,83], driven by higher viral loads (PCR Ct values) [68,84], 
shorter time to peak viral load (shorter incubation period [70,83]), longer viral shedding 
(slower decline), and abrogated neutralization capacity compared to non-Delta SARS-
CoV-2 variants [43] (Table 2). Interestingly, the Delta variant is associated with higher 
odds of oxygen requirement, intensive care unit admission, or death [68]. One of the 
explanations for the fast spreading of the Delta variant is its higher viral replication rate 
(2.7) [85] (Table 2), which results in higher viral loads and shorter incubation time. 
Nonetheless, in regard to the Delta variant, the symptoms onset is about 5.8 days after 
infection, not very different from wild-type SARS-CoV-2 [72,86] (Table 2). As a 
consequence, there is an increasing period of time in which infected people are spreading 
the virus in the presymptomatic stage. Subjects infected with the Delta variant may 
commence transmission 1.8 days prior to symptoms onset, compared to 0.8 days for 
previously SARS-CoV-2 variants. Consequently, it was estimated that 44% of the 
secondary cases were infected by presymptomatic people, and this number may have 
raised up to 74% for the Delta variant [72,86]. Since December of 2021, the Omicron variant 
was found to spread even faster than the Delta variant mainly due to its ability to escape 
the immune response, even as this variant is seemingly less lethal than previous ones. The 
Omicron variant has become the most prevalent variant in the beginning of 2022 
worldwide. 

 
Figure 2. The kinetics of SARS-CoV-2 infection. The SARS-CoV-2 infection involves contact with Table 2. 
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Table 2. Biological features of SARS-CoV, SARS-CoV-2 and SARS-CoV-2 variants. The median incubation period for 
the Alpha variant has been estimated at around 3 days, compared to around 5 days for ancestral strains [87–89]. The Delta 
variant has a shorter incubation period when compared to ancestral strains (4 days vs. 6 days) [89,90]. 

Strains 
Spike density 
(unit/virion) 

Mean S1/S2 
ratio& 

Viral Load  
(mean CT)# 

Initial 
Viral Load  
(mean CT)* 

Days of 
virus 

incubation  

Days of 
viral 

shedding** 

R0 

Growth 
rate, log10 

units per 
day 

SARS-CoV 50-100 [91]  1.1 [92] 26.9 [93] ND ND ND 0.54-1.3 [74] ND 
SARS-CoV-2WT 11-41 [94] 1.0 [95] 21.2 [96] 28 [68] 5-7 [90,97] 13 [90] 1.4-3.9 [75] 3.2 [85] 

SARS-CoV-2D614G 28-103 [97] 1.0 [95] 19.9 [96] ND ND 13 [90] 1.7-4.7 [76] ND 
SARS-CoV-2Alpha 28-103 [97] 1.2 [95] 17.4 [98] 22 [68] 3 [90] 13 [90] 2.2-6.1 [78] 3.1 [85] 
SARS-CoV-2Beta 28-103 [97] 1.2 [95] 18.9 [99] 22 [68] ND 13 [90] 2.1-5.5 [79] ND 

SARS-CoV-2Gamma 28-103 [97] 1.2 [95] 19.8 [100] ND ND ND 4.7-4.9 [80] ND 
SARS-CoV-2Delta ND ND ND 18 [68] 4-6 [86,90]  18 [90]  5.0-8.0 [89]  2.7 [85] 

& increased S-protein density in the virion as well as the increase of S1/S2 ratio correlate with this increased infectivity due 
to mutation D614G. D614G increases the stability of the Spike protein, decreasing the natural loss of S1 subunit, thus 
enhancing functional Spikes into the virion. D614G does not affect affinity to hACE2 [50,95]. # Viral load is determined 
using RT-PCR from nasal swab samples. * PCR Serial cycle threshold values in the beginning of the COVID-19 symptoms. 
** Mean number of days after COVID-19 initial symptoms for the patient to decrease the viral load (PCR CT (mean) bigger than 30). ND 
= not determined 

SARS-CoV-2 VOCs present less sensitivity to neutralizing antibodies than ancestral 
SARS-CoV-2 

Currently, more than 180 anti-SARS-CoV-2 vaccine candidates are in clinical trials. 
These candidates include inactivated, live attenuated, recombinant protein, vectored, 
RNA-based and DNA-based vaccines [101]. 

Inactivated vaccines. Inactivated vaccines are developed by growing viruses in cell 
culture followed by chemical or heat inactivation. Inactivated vaccines include 
CoronaVac, which are administered intramuscularly with adjuvants [102]. In Brazil, 
CoronaVac has shown, after two doses, 51% efficacy against symptomatic cases and 100% 
against hospitalization and mortality caused by COVID-19 [103]. A phase 3 trial in Turkey 
has shown an efficacy of 86.3% against the Alpha variant and 96.4% against non-Alpha 
variants [104]. CoronaVac was shown to be tolerable and to present immunogenicity and 
safety in children and adolescents from 3 to 17 years and healthy adults aged from 18 to 
59 years [105,106]. Covaxin (BBV152) is also an inactivated virus vaccine, which stimulates 
a protective immune response and, in phase 3 trial data, has an efficacy of 77.8% [107]. It 
was demonstrated that neutralization activities of sera from vaccinated people with 
BBV152 presented the same efficacy for the Alpha variant [108]. However, neutralization 
activity of sera collected from convalescent patients and vaccinated individuals with two 
doses of BBV152 demonstrated a decrease in neutralization titers against Beta and Delta 
[109]. Notwithstanding, these sera still showed a protective response against these 
variants [109]. BBV152 presented 65.2% protection against the Delta variant in Phase 3 
clinical trial [107]. 

Live attenuated vaccines & recombinant protein vaccines. Live attenuated vaccines are 
produced by a genetically weakened virus version, which induces an immune response 
similar to that occurring upon natural infection. Recombinant protein vaccines involve the 
use of recombinant Spike protein. An example for that is Spike injection, such as in the 
case of the Novavax vaccine [110]. The Novavax (NVX-CoV2373 or Covovax) was 
developed by Novavax and the Coalition for Epidemic Preparedness Innovations (CEPI). 
In a randomized study, after two doses of the NVX-CoV2373, the vaccine protected 89.7% 
against SARS-CoV-2 infection and showed 86.3% efficacy against the Alpha variant [110]. 

Replication-incompetent vectors. Replication-incompetent vectors are based on another 
virus that presents partial deletions of its genome and is able to express the Spike protein. 
These vaccines use vectors, for example, adenovirus, human parainfluenza virus, and 
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influenza virus. An adenovirus-based vaccine, Gam-COVID-Vac (Sputnik V), showed 
good safety and has shown to induce immune responses in participants aged 18 years or 
older [111]. The vaccine was administered in two doses intramuscularly during 21 days 
using two different recombinant adenovirus vectors (rAd26 and rAd5), both of them 
presenting the gene for the full-length SARS-CoV-2 Spike protein [111]. The Gam-COVID-
Vac showed good efficacy (91.6%) and was tolerable in most participants [111]. Oxford–
AstraZeneca vaccine (AZD1222) is recommended for people aged 18 years or older. A 
randomized study performed in Brazil, South Africa, and the United Kingdom revealed 
an efficacy of 70.4% after participants have received two doses (each dose containing 
5×1010 viral particles) [112]. The vaccine of Janssen Pharmaceuticals Companies of Johnson 
& Johnson (JNJ-78436735) is also recommended for people of 18 years or older and had an 
efficacy of 63.3% in a clinical trial with people who had received only one dose [113]. 

RNA-based vaccines. RNA-based vaccines are recent developments and, similar to 
DNA-based vaccines, use the genetic information to produce the antigen in the cells. 
Currently, mRNA-based vaccines produce recombinant Spike protein and are developed 
by Moderna and Pfizer–BioNTech. Moderna COVID-19 Vaccine (mRNA-1273) is 
recommended for people aged 18 years or older and presented an efficacy of 94.1% after 
two doses [114]. Specifically, vaccine effectiveness against the Alpha variant was 88.1 and 
100% after the first and second doses, respectively [115]. However, the effectiveness 
against Beta was 61.3 and 96.4% after first and second doses, respectively [115]. The Pfizer-
BioNTech vaccine (BNT162b2) is recommended for people 12 years or older [116]. In 
addition, the Pfizer-BioNTech vaccine is approved for individuals who are 5 years of age 
or older. However, in the present data, safety and effectiveness of this vaccine in children 
younger than 5 years have not yet been established [117]. Similarly, the Pfizer-BioNTech 
vaccine efficacy was 95%, protecting against SARS-CoV-2 in people who received two 
doses [116]. Notably, low efficacy was found after only 1 dose of BNT162b2 and AZD1222 
vaccine, presenting ~34% against Delta and ~51% against Alpha [118]. After the second 
dose of BNT162b2, on the other hand, efficacy was 93.4% for Alpha and 87.9% for Delta 
variants. Likewise, AZD1222 presented an efficacy of 66.1% for Alpha and 59.8% for Delta 
variants [118]. 

Virus evolution in order to evade the immune system and to survive. The emergence of 
novel SARS-CoV-2 variants is expected, though the selection of variants that circumvent 
the neutralizing effect of plasma from convalescent and immunized patients is under 
concern [119]. The course of the virus evolution in order to survive involves evading the 
immune system and infecting more and more people, spreading further and increasing 
its population. This hypothesis has been related to the decreasing sensitivity to 
neutralizing antibodies from infected patients with SARS-CoV-2, exerting a selective 
pressure, with a major concern of emerging resistant SARS-CoV-2 variants [120]. 

Nussenzweig and co-authors showed that convalescent plasma samples had less 
than 50 titres in 33% of infected individuals, more than 1,000 in 79%, and more than 5,000 
in 1%, demonstrating that most convalescent plasma samples did not have high levels of 
neutralizing antibodies [121]. The sensitivity of neutralizing antibodies produced by 
convalescent patients or induced by vaccines is higher in SARS-CoV-2WT and, in general, 
the performance of this sensitivity is decreased against any SARS-CoV-2 VOCs (Table 3). 
According to Tables 3 and 4, the Beta SARS-CoV-2 variant, in relation to the Alpha variant 
and the wild type, is more resistant to convalescent patient antisera and vaccine-induced 
antibodies. Indeed, sera from convalescent patients after 12 months of SARS-CoV-2 
infection show that neutralizing antibodies is 4-fold less sensitive against Delta than 
Alpha [43]. Furthermore, only a single dose of vaccines, either AstraZeneca or Pfizer, did 
not protect against Delta infection, while two doses generated efficient immune responses 
against this variant [43]. These data suggest that SARS-CoV-2 variants that elicit a less 
effective immune response or that are more resistant against neutralizing antibodies are 
more successful and become the source of worldwide fast spreading waves of virus 
infections, thus extending the duration of the pandemic. 
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Table 3. Sensitivity of sera from Convalescent patients and individuals vaccinated with Moderna, Pfizer-BioNTech and 
Oxford-AstraZeneca vaccines. The sensitivity of neutralizing antibodies produced by convalescent patients or induced by 
vaccines is higher in ancestral SARS-CoV-2 and, in general, the performance of this sensitivity is worse against any SARS-
CoV-2 variants. 

Strains 
Convalescent patient 

(ID50) Moderna (IC50/ID50) 
Pfizer-BioNTech 

(IC50/FRNT50) 
Oxford-AstraZeneca 

(FRNT50) 

SARS-CoVWT 1,500-8,000 [122] ND/ND ND/ND ND 
SARS-CoV-2WT 1,402 [95] ND/3,067 [95] ND/1,105 [123] 306 [123] 

SARS-CoV-2D614G 1,485 [95] 833 [124]/2,906 [95] 695 [124]/ND ND 
SARS-CoV-2Alpha 1,290 [95] 722 [124]/1,578 [95] 626 [124]/337 [123] 131 [123] 
SARS-CoV-2Beta 309 [95] 182[124]/477[95] 114 [124]/146 [123] 34 [123] 

ND = not determined. IC50 and ID50 = titers in serum for neutralizing 50% SARS-CoV-2 in vitro. FRNT50 = focus reduction 
neutralization test 50 (μg/mL); titers in serum for neutralizing 50% SARS-CoV-2 in vitro. 

Table 4. Sensitivity of sera induced by Sputnik V, Janssen, CoronaVac and Covaxin vaccines. The sensitivity of 
neutralizing antibodies induced by vaccines is superior in ancestral SARS-CoV-2 and, in general, the performance of this 
sensitivity is reduced against any SARS-CoV-2 variants. 

Strains 
 Sputnik V  

IC50 
Janssen 

IC50 
 CoronaVac  

ID50 
 Covaxin  
PRNT50 

SARS-CoVWT ND ND ND ND 
SARS-CoV-2WT ND ND 774.48 [125] ND 

SARS-CoV-2D614G 49.4 [126] 221 [124]/246 [127] ND ND 
SARS-CoV-2Alpha 87.1 [126] 232 [124]/266 [127] 44.64 [125] ND 
SARS-CoV-2Beta 7.9 [126] 33 [124]/68 [127] 35.03 [125] 61.6 [128] 

SARS-CoV-2Gamma ND 72 [127] ND ND 
SARS-Cov-2Delta ND 30[124]/154[127] 24.5[125] 69 [128] 

ND = not determined. IC50 and ID50 = titers in serum for neutralizing 50% SARS-CoV-2 in vitro. PRNT50 = Plaque reduction 
neutralization test. Titers in serum for neutralizing 50% SARS-CoV-2 in vitro. 

When compared to sera from convalescent patients infected with SARS-CoV, antisera 
from SARS-CoV-2 infected convalescent patients presented a significant loss of sensitivity 
to virus (ID50SARS-CoV range from 1,500 to 8,000, while ID50SARS-CoV−2 has value of 1,402) (Table 
3). Evidently, the sensitivity to neutralizing antibodies obtained from convalescent 
patients and vaccinated patients (mRNA-1273, Moderna) showed similar profiles in 
SARS-CoV-2WT and D614G variant (Table 3-4). Sensibility reduction was observed in 
neutralization of Kappa (B.1.617.1) and Delta (B.1.617.2) by antisera obtained from 
convalescent patients and vaccinated individuals. A loss of protection efficacy of 3.9-fold 
for convalescent plasma, 2.7-fold for the Pfizer-BioNTech vaccine, and 2.6-fold for the 
Oxford-AstraZeneca vaccine was observed for the Kappa variant. For infection by Delta, 
protection rates decline 2.7-, 2.5-, and 4.3-fold, respectively. Such reduced efficacies were 
comparable in scale with those seen for Alpha and Gamma, with no evidence of 
widespread escape from neutralization, in contrast to that observed for Beta. These results 
make it likely that the current RNA and viral vector vaccines will provide protection 
against the B.1.617 lineage, although an increase in breakthrough infections may occur as 
a result of the reduced neutralizing capacity of sera. Unfortunately, after two doses of 
CoronaVac, neutralizing antibodies seem to be less effective against any SARS-CoV-2 
variants, mainly the Delta variant (Table 4). In the case of the Omicron variant, 
convalescent patients or immunized patients with Ad26.COV2.S (single dose), BBIBP-
CorV or Sputnik V had no neutralizing activity against Omicron with exception for one 
Ad26.COV2.S and three BBIBP-CorV immunized patients serum. Serum of immunized 
individuals with mRNA1273, BNT162b2, and AZD1222 displayed higher neutralization 
against Wuhan-Hu-1 and activity against Omicron with a decrease of 33-, 44- and 36-fold, 
respectively. Interestingly, serum from vaccinated cohorts who were previously infected 
displayed higher neutralizing antibodies with a decrease of 5-fold [66]. Therefore, the 
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SARS-CoV-2 population seems to be evolving towards strains that are less affected by 
neutralizing antibodies induced by vaccines or previous SARS-CoV-2 infection. 

It is worth mentioning that antibody-dependent enhancement (ADE) is an alternative 
mechanism that some viruses use to infect cells [129–131]. This happens when the virus 
binds to receptor molecules, known as Fcγ receptors (FcγRs), on immune cells such as 
macrophages or monocytes and uses these receptors as a route to internalize the virus. 
Antibodies to any viral epitope with low affinity or in sub-optimal titer can induce ADE 
[132]. In the case of infection by SARS-CoV-2, the antibodies produced may elicit ADE 
following infection [133,134] primarily by the interaction with two types of FcγRs, 
FcγRIIA and FcγRIIIA. Nevertheless, no virus replication in macrophage cells was 
observed [133–135]. This mechanism seems to not be correlated to aberrant cytokine 
release by macrophages during some cases of SARS-CoV-2 infection, still it may function 
as a mechanism to trap the virus in the macrophages [133]. 

SARS-CoV-2 VOC Spike protein evolved different ways to facilitate virus spreading 
and evasion of neutralizing antibodies 

The Spike surface protein of main SARS-CoV-2 VOCs have evolved to increase viral 
fitness and facilitate the virus spreading (Figure 2). For this, at least six different 
mechanisms have been described that increase the efficiency of infection by SARS-CoV-2 
VOCs and are directly related to mutations in the Spike protein (Figure 3): (1) increasing 
hACE2 affinity (KD); and (2) extending the time the Spike protein remains bound to 
hACE2, thus increasing the likelihood that Spike is cleaved by proteases and proceeds to 
membrane fusion. (3) The Spike D614G mutation favors the up conformation of the RBD 
in the trimeric state of the protein, amplifying the amount of Spike protein subunits able 
to bind to hACE2. This mutation also (4) better stabilizes the trimeric form of the Spike 
protein (its unclived form). The Spike protein may spontaneously shed its S1 subunit and 
this early cleavage leads to protein inactivation, preventing virus infection. The Spike 
D614G mutation boosts the amount of Spike proteins in the surface of the virion able to 
bind the human receptor and, as a result, increases the infectivity rate. (5) Mutations in 
L452R, T478K and E484K located at the RBD increase the resistance to neutralizing 
antibodies. Therefore, it is a mechanism to evade the immune response and an alert to 
possible new mutations in Spike that could impair the effectiveness of current vaccines. 
Finally, (6) the Spike D614G mutation also raises the number of Spike proteins per viral 
particle. This observation implies a shift in the chemical equilibrium Spike + hACE2 ⇌ 
Spike-hACE2 is expected and an increase in Spike protein numbers per viral particle 
should be enough to increase the effectiveness of viral infection, as it elevates the amount 
of Spike bound to hACE2. Interestingly, this phenomenon could cause the virus to bind 
to tissues with a low amount of hACE2, which could change the severity and pathology 
of the disease. It may also result in a decrease of the viral dose required to cause infection. 
Taken together, all mechanisms described above end up helping Spike’s access to its ACE2 
receiver and increasing its infection success, resulting in more people infected in a shorter 
period of time. These mechanisms may also explain why the Spike protein of the Delta 
variant fused membranes more efficiently at low levels of the cellular receptor ACE2 [22]. 

There are 5 residues that are highly variable among SARS-CoV-2 VOCs: Y145, K417, 
T478, E484 and H655 (Figure S3 and Table S1), most of them are exposed in the Spike 
protein’s surface (Figure S4) and are related to evading the immune system. Interestingly, 
SARS-CoV-2Omicron carries the mutations T478K, E484A, and D614G, all of them important 
to evade the immune system and for fast spreading of SARS-CoV-2. Moreover, mutations 
in the RBD of the Omicron variant, such as K417N and N501Y, are predominantly 
distributed in the interface of its interaction with hACE2 and may have synergistic actions 
for escaping from neutralizing antibodies [136–138]. In animal model studies, the Omicron 
variant was shown to be less pathogenic, i.e., to cause milder symptoms, while being 10-
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20% more transmissible than the Delta variant. Intriguingly, the Omicron variant also 
showed to outcompete the Delta variant under immune selection pressure [139]. 

 
Figure 3. Mutations in the Spike protein of SARS-CoV-2 VOCs result in different mechanisms to evade the immune system, 
increase the infectiveness, and spread the virus faster in the population. Spike protein of SARS-CoV-2 VOCs increase the 
hACE2 affinity (KD) (1); increase the time that the Spike protein is bound to hACE2 (kd), favoring the process of membrane 
fusion (2); increase the up conformation of the RBD in the trimeric state of the Spike protein, a conformation that is able to 
bind to hACE2 (3); increase the amount of the unclivaged form of the Spike protein in the virion particles (4); different 
mutations in the RBD improve resistance to neutralizing antibodies (5); and expand the concentration of Spike proteins 
per viral particles (6). All mechanisms described contribute to Spike’s access to hACE2 and to membrane fusion. 

Epidemiology of COVID-19 
According to the World Health Organization (WHO), an increase in the number of 

COVID-19 cases can be observed in the second half of 2021 in countries from the northern 
hemisphere (Figure 4). Even after the vaccination rates in the United States, United 
Kingdom, Germany, and Japan surpassed 50%, all these countries had a significant 
increase in the number of cases and deaths. These data are explained by the emergence of 
novel variants of SARS-CoV-2 associated with lower efficiency of neutralizing antibodies 
[54,140]. For those countries that surpassed 60% of the population vaccinated with the first 
dose, such as Germany and the United Kingdom, the number of deaths was remarkably 
lower than rates seen during the first wave. Unlike these countries, the United States and 
Japan had 55.6% and 37.2% of the population vaccinated with the first dose, leading the 
number of deaths to exceed 50% compared to the first wave of the COVID-19 pandemic. 
Since Japan has very peculiar characteristics in its historical and behavioral context [141], 
death and case rates dropped in 11 weeks. However, in the period of the 2021 Olympic 
Games [142], the country had a significant increase in the number of COVID-19 cases, 
showing a direct relationship between collective activities, increased circulation and the 
time of transmission of the Delta variant [143] (Figure 4). It is very evident that the vaccine 
plays a key role in decreasing death rates from COVID-19. It is estimated that the rate of 
hospitalization among unvaccinated individuals is 29.2 times higher than those fully 
vaccinated [144]. Figure 4 shows the prevalence of the Delta and Omicron variants in the 
United Kingdom, Japan, United States and Germany and the timing of the increase in 
COVID-19 cases. Delta variant predominance increased from 10 to 90% in the range of 49 
days in the USA, 52 days in Japan, 49 days in the UK and 40 days in Germany (Figure S1). 
In part, the flexibility of sanitary measures probably contributed to these trajectories, but 
the emergence of the Omicron variant at the end of 2021 was the main reason for the 
staggering increase in rates of COVID-19 infection at the beginning of 2022 (Figure 4). The 
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UK eased the use of masks on July 19, 2021 [145]. On April 16, 2021, New Hampshire, 
United States, also relaxed its restrictive measures [146]. Therefore, even with high 
vaccination rates, the higher numbers of infected people may in part be explained by the 
relaxation of restrictive measures, which allowed the virus to spread more easily, 
increasing the likelihood for the emergence of novel variants able to take advantage of 
any of the several mechanisms, hereby discussed, to evade the immune response, replicate 
faster or to higher loads and/or to transmit more efficiently (Figure 5). 

 
Figure 4. Number of COVID-19 cases and death rates, the effect of vaccination rate, and prevalence of SARS-CoV-2 Delta 
and Omicron in the UK, Japan, USA, and Germany. On the left side is shown the number of cases (red line), the number 
of deaths (blue line), the rate of vaccinated individuals with the first dose (gray line), second dose (fully vaccinated, brown 
line) and additional dose (green line). The right side shows the graph of the number of cases (blue line) and the percentage 
of the Delta variant (green line) and Omicron variant (red line) as a function of time. All data were obtained from World 
in Data, WHO, CDC, UK Gov and Outbreak [147–151]. 
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Figure 5. Hypothesis to explain the emergence of novel SARS-CoV-2 variants. Currently, the world population is 
composed of three groups: those who do not have neutralizing antibodies to Figure 1. in which society does not make any 
kind of restriction to prevent the spread of the virus, the emergence of VOC should occur faster than in scenario 2, in 
which society maintains measures to reduce the virus spread. These two scenarios are independent of population 
immunization, since the virus mutates its genetic information randomly, and selection for variants with more successful 
infection should prevail in the population. This natural selection seems to be directed towards variants that are able to 
evade the immune system and spread the virus faster. The SARS-CoV-2 neutralizing antibodies of completely immunized 
and previously infected individuals kept high until 6 months after immunization or virus infection [152]. 

CONCLUSION 
In this review, we discussed the SARS-CoV-2 VOC mutations and their impacts on 

viral infectivity and transmissibility. SARS-CoV-2 has evolved and novel VOCs are still 
emerging. The route of the actual pandemic is still unknown, but mass worldwide 
vaccination has been effective to reduce the risk of severe illness, hospitalization, and 
death from COVID-19, although vaccines were mostly unable to block the spread of the 
virus. In this regard, restriction measurements to reduce virus spread are also essential to 
reduce the chances of emergence of new variants capable of evading the immune system, 
spreading much faster, and with a different tropism than previous strains. All SARS-CoV-
2 VOCs are of clinical concern, putting at risk the available diagnostic tests and 
immunization efficiency. 

Overall, in the course of viral evolution, mutations occur randomly and those giving 
some key advantages to the virus are more likely to be selected. In particular, for SARS-
CoV-2, several mutations fixed in successful variants are located within the Spike protein. 
Different studies provide evidence that these mutations enable SARS-CoV-2 to more 
efficiently evade the immune system, even in individuals previously infected or 
completely immunized. In addition, the VOC’s Spike proteins also incorporate changes 
that increase SARS-CoV-2′s infectiveness and transmission efficiency. 

The fast spread of many SARS-CoV-2 VOCs is a consequence of many factors, 
encompassing both host behavior and virus properties. While some Spike mutations lead 
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to greater efficacy of infection by increasing the binding affinity to human ACE2 receptors, 
the same or a few additional mutations may expand the time that Spike remains bound to 
hACE2, shift the Spike population to the most favorable conformation for receptor 
binding and increase the number of functional Spike proteins per virion. Most 
importantly, direct evaluation of the reduced sensitivity of convalescent sera and the 
observation that vaccinated individuals, while asymptomatic or with mild symptoms, are 
becoming ever more important for the spread of VOCs, suggests the selection of mutations 
that allow the virus to evade the immune system is key to explain the success of new 
variants and is probably going to continue as long as the numbers of novel infections 
remain high. Taken together these factors play a pivotal role in the emergence of fast 
spreading SARS-CoV-2 variants of concern, including the Omicron variant. 
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