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Abstract: The non-contact patient monitoring paradigm moves patient care into their homes and
enables long-term patient studies. The challenge, however, is to make the system non-intrusive,
privacy-preserving, and low-cost. To this end, we describe an open-source edge computing and
ambient data capture system, developed using low-cost and readily available hardware. We describe
five applications of our ambient data capture system. Namely: (a) Estimating occupancy and human
activity phenotyping; (b) Medical equipment alarm classification; (c) Geolocation of humans in a built
environment; (d) Ambient light logging; and (e) Ambient temperature and humidity logging. We
obtained an accuracy of 94% for estimating occupancy from video. We stress-tested the alarm note
classification in the absence and presence of speech and obtained micro averaged F1 scores of 0.98
and 0.93, respectively. The geolocation tracking provided a room-level accuracy of 98.7%. The root
mean square error in the temperature sensor validation task was 0.3◦C and for the humidity sensor, it
was 1% Relative Humidity. The low-cost edge computing system presented here demonstrated the
ability to capture and analyze a wide range of activities in a privacy-preserving manner in clinical
and home environments and is able to provide key insights into the healthcare practices and patient
behaviors.

Keywords: Raspberry Pi; Edge Computing; Ambient Health Monitoring; Privacy-preserving; Blue-
tooth; Geolocation Tracking; Patient Alarm; Illuminance;

1. Introduction

Over the years, sensor technologies have played a critical role in patient monitoring
in clinical and home environments. Despite this, much of the captured data is poorly
integrated for research and retrospective analysis. Moreover, certain key events occurring
in these settings remain undocumented with any level of spatiotemporal precision.

In clinical environments such as operating rooms (ORs) and intensive care units
(ICUs), key events during patient monitoring include: (1) Patient movements while lying
in bed and in mobility within the room[1,2]; (2) Bedside monitor alarm triggers and noise
pollution [2–6]; (3) Presence, absence and movement of clinical personnel in the patient’s
vicinity [7–9]; and (4) Variations in the ambient light, temperature, and humidity [2,6,10].
In home environments, key events that are generally untracked but are beneficial for
patient monitoring include: (1) Patient bodily movement during sleep [11,12]; (2) Patient
movement around their residence [13]; (3) Doorbell triggers, smoke-detector triggers,
microwave beeps, and phone rings [14]; and (4) Changes in the ambient light, temperature,
and humidity [15]. Recently, non-contact sensors or nearables [15–20] such as microphones,
video cameras, light-intensity sensors, temperature and humidity sensors, are becoming
more popular for hassle-free patient monitoring. They not only collect valuable patient
behavior data but also pick up key information about the patient’s ambient environment
while not interfering with the patient’s day-to-day activities.
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Figure 1. Edge computing and ambient data capture system. (PIR: Passive Infrared Sensor; USB:
Universal Serial Bus; TPU: Tensor Processing Unit)

The objective of this study was to develop a non-contact data capture and archival
system to capture patient behavior and ambient environment information. While obtain-
ing patient behavior and ambient information is crucial in understanding the effects of
healthcare practices on patient health, maintaining patient privacy is as important if not
more. For this, we utilized the edge computing paradigm. In edge computing, algorithms
are decentralized and moved closer to the point of data capture to reduce latency and
bandwidth requirements. This paradigm can be defined as computing outside the cloud,
happening at the edge of the network, specifically in applications where real-time data
processing is required. In our work, we utilized a Raspberry Pi (RPi) as a hub for data
collection and edge computing. We extracted patient privacy-preserving features from
the captured data on the RPi before discarding the raw underlying signal and transferred
the computed features to a Health Insurance Portability and Accountability Act (HIPAA)
compliant storage.

Non-contact monitoring of patients is becoming more prevalent, especially in elderly
patients [21–23] and neurodevelopmental populations (such as Autism Spectrum Disorder)
[24] as these systems cause no burden on the patients in terms of wearing and operating
the device (in contrast to a wearable such as the smart watch). Further, non-contact
monitoring allows for monitoring the patient’s global movements in contrast to wearables,
thus providing additional information about patient behaviors. The advent of the COVID-
19 pandemic further increased the need for such systems [19] as they allow passive patient
monitoring from a distance. However, there are multiple challenges in building such
a system. First challenge lies in integrating different sensors to capture multiple data
modalities under a single clock. Second, this system should asynchronously transfer the
data to a HIPAA-compliant database. Lastly, the system should maintain patient privacy
while capturing the various data modalities. We overcame these challenges by developing a
novel software system that ran on an RPi. Using this system we integrated the following five
sensors: (1) Passive Infrared (PIR) sensor (2) RPi-Infrared (IR) camera (3) Universal Serial
Bus (USB) Microphone (4) TCS34725 color sensor and (5) DHT22 temperature-humidity
sensor. Further, we utilized the onboard Bluetooth receiver to geolocate humans using
Bluetooth beacons. The main novelty of our work lies in achieving privacy-preserved
patient monitoring and data fusion. It was a specific design consideration that all hardware
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could be easily purchased at a low cost. This effectively helped scale the system and
enabled us to capture data in large clinical environments. Further, the system was intended
to be deployed rapidly without the need for expert fabrication of hardware.

2. Related Work
2.1. Wearables and Body Area Networks

Since the turn of the 21st century, wearables (on-body sensors) have been at the
forefront of non-traditional health monitoring systems [25–27]. These sensors collect high-
resolution physiological signal data such as the electrocardiogram (ECG) and galvanic
skin response. Further, multiple wearables can be used in a network for remote patient
monitoring. Body area networks (BANs) are one such system where multiple wearables
continuously monitor human physiology and track the patient’s health status [28]. BANs
utilize wireless technologies including the ultra-wideband [29], Bluetooth [30], and Zigbee
[30,31] for this purpose. Although BANs capture high-resolution information regarding
human physiology, they suffer from the following drawbacks:

• BAN sensors perform localized measurements. For example, a wrist-worn accelerom-
eter measures the acceleration of hand/wrist (local) and does not reliably measure
overall body movement (global). Although a network of accelerometers will alleviate
this problem, it comes at the cost of causing inconvenience to the human subject as
they have to wear multiple sensors on their body over long periods.

• Data from BAN sensors are often corrupted by missing data due to motion artifacts
and low compliance by the subjects. Human bodily movement causes motion artifacts
in the physiological signals (say ECG) being captured by the wearable and thus leads to
data degradation. Further, the wearer (a human) has to comply with a data acquisition
schedule and follow the instructions diligently to generate good quality data.

2.2. Non-contact Health Monitoring Systems

Non-contact health monitoring systems, on the other hand, capture global signals
(e.g., overall body movements via video camera [16]) and are less dependent on patient
compliance for data capture. A popular way of performing non-contact monitoring of
patients is to use the Doppler radar technology [32,33]. The Doppler radar is a specialized
radar system that can measure target displacement remotely by using the Doppler effect. It
has been used for gait-assessment of older adults [34], capturing human respiration signal
[35] and human vital sign measurement [36]. While it does an excellent job of detecting
body movements and measuring the vital signs of a patient, it does not capture auditory
cues and other ambient environmental signatures. Thus, it does not suit our needs.

In our work, we monitor both patient movements and the ambient environment they
inhabit utilizing more traditional sensors such as infrared cameras, microphones, and
ambient environment sensors. To ensure patient privacy, we utilized the edge computing
paradigm to extract patient privacy-preserving features and discarded raw video and audio
recordings. Numerous works have proposed the usage of some of our system’s individual
components for patient monitoring. Extensive research has been performed to study the
effect of noise pollution on patient and staff health, the performance of staff, and patient
safety in clinical environments [37–41]. However, very few works describe methods to
capture privacy-preserving ambient sound in clinical and home environments. In particular,
Guerlain et al. [42] presented a methodology for archiving multi-channel audio and video
recordings of OR during surgeries to facilitate prospective studies of operative performance.
In contrast, our system avoided capturing raw audio signals. We developed a method to
compute useful audio features from the captured raw audio on the RPi, archive the feature
vectors, and discard the raw audio signals.

To geolocate clinical personnel at fine-resolution, Azevedo-Coste et al. [43] proposed
using multiple cameras installed in ORs along with a wireless network of inertial sensors.
On the other hand, recently, there has been a surge in the development of radio frequency
(RF)-based non-contact human movement detectors and geolocators [44–46]. However,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 February 2022                   doi:10.20944/preprints202202.0246.v1

https://doi.org/10.20944/preprints202202.0246.v1


4 of 22

to keep the system low-cost, we avoided using these components in our edge computing
system. Instead, our method utilized PIR sensors and movement and pose signals from
RPi-IR cameras to capture patient movements and avoided retaining the raw video signals.
Further, we proposed performing geolocation in different environments (clinical and home)
using Bluetooth technology.

The effect of ambient temperature, humidity, and light intensity on the human cir-
cadian rhythm and sleep is a widely studied phenomenon. Aschoff et al. [47] provide a
comprehensive explanation about these effects. As there is growing evidence [48–53] about
these effects we included methods to asynchronously capture and archive these signals.

3. Materials and Methods
3.1. System Architecture

The system architecture described here is a low-cost, high-compliance design. At
its core is the Python script that interfaces with the sensors via the Raspberry Pi. A
picture illustrating the hardware components of the system is shown in Figure 1. The
bill-of-materials, along with the total cost for the hardware components and the system
dimensions, are provided in our open-sourced Github repository [54]. We now describe
the system’s individual hardware components along with the associated software.

3.1.1. Raspberry Pi

The RPi is a $35 computer that is about the size of a deck of cards. It functioned as
the central hub in our data collection pipeline. In our work, we used the RPi 4 model B
(Figure 1), which was released in June 2019 and was the most recent model during the
software development stage of the project. The Debian-based operating system (‘Raspbian-
Buster’) that is optimized for the RPi was installed for developers and users to interact
with the hardware. Among the onboard peripherals on the RPi were two USB 2.0 ports and
two USB 3.0 ports, a 40-pin General Purpose Input-Output (GPIO) header, and a USB-C
port to supply power to the RPi. The RPi was powered using a 5V 3A power adapter.

3.1.2. PIR Sensor Based Human Movement Detection

We used a PIR sensor (Figure 1) for coarse human movement detection. The PIR
sensor consists of a pair of IR sensitive slots housed in a hermetically sealed metal casing.
A Fresnel lens acts as the outermost cover, which increases the range and sensitivity of the
sensor. When the sensor is idle, both the IR slots receive the same amount of IR radiation.
Whereas, when an IR emanating object moves past the field of view of the first IR slot,
this slot detects an increased IR radiation, and thus, a differential signal C between the
two slots is generated. A differential signal C′, which is completely out of phase with
respect to C, is generated when the object moves past the other IR-sensitive slot. These
differentials are then processed to form the output signal. Our system was designed to
capture data at a sampling frequency of 1Hz. The data itself was a binary spike train
taking the value 1 when a movement was detected and 0 otherwise. In [12] we presented
the method for capturing movement data using a PIR sensor during sleep from a single
person. Further, we used the captured movement data to build a binary classifier for
obstructive sleep apnea classification and obtained a classification accuracy equal to 91%.
In the current work, we extended this method and generalized PIR sensor-based human
movement detection to function in different clinical and home environments. Based on
the positioning and orientation of the sensor, one could capture different information. For
instance, the timestamps when the patient’s knee was operated on could be obtained by
placing the sensor to monitor a patient’s knee during their knee replacement surgery.

3.1.3. IR Camera-Based Human Movement Detection

It is possible to use a video feed [16] from an RPi-IR camera in place of the PIR sensor
to perform human movement detection. This method allowed us to capture the human
movement signal with more than two quantization levels and obtain a finer signal than
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the binary signal captured using the PIR sensor. Besides capturing the occurrence of
movements, the RPi-IR camera-based analysis allowed us to compute the intensity and
direction of these movements. We used the No Infrared (NoIR) version [55] of the RPi-IR
camera (Figure 1). In contrast to the regular RPi-camera, the NoIR RPi-IR camera did not
employ infrared filters and gave us the ability to see in the dark with infrared lighting.

We now describe the method to extract human movement signal from the RPi-IR
camera feed and describe its utility. Without loss of generality let us assume we capture the
video at 1 Hz (i.e. 1 frame per second). Let the video frame at time t (in seconds) with a
pixel resolution equal to M×N be denoted as Ft, and the previous video frame be Ft−1. The
frame difference between the two frames at time t (Dt) is defined as Dt = Ft − Ft−1. The
difference-frame Dt has the same pixel resolution as Ft and Ft−1, i.e. M × N. For a given
video V, the corresponding difference frame-stack is given by the set D = {Dt}t∈[2,T] where
T is the total number of frames in V and Dt is the difference frame at t seconds. We extract
four different signals from D namely: (1) Global Difference Sum (GDS); (2) Global δ-Pixel
Count (GDPC); (3) Local Difference Sum (LDS); and (4) Local δ-Pixel Count (LDPC). The
global signals (GDS and GDPC) for a given difference frame Dt are computed as follows:

GDS[t] = ∑
i∈[1,M]

∑
j∈[1,N]

|Dt[i, j]| (1)

GDPC[t] = #({d ∈ Dt
∣∣ |d| > δ}) (2)

where d denotes an individual pixel in the difference frame Dt, |.| denotes the absolute
value and #(.) denotes the set cardinality. GDS[t] is the sum total of the absolute values
of the pixels in the difference frame at time t seconds and GDPC[t] is the total number of
pixels in the difference frame at time t seconds that have an absolute value greater than δ.
If δ = 0, GDPC[t] denotes the total number of non-zero pixels in the difference frame Dt.
The local signals (LDS and LDPC) for a given difference frame Dt are computed likewise
to the global signals but are calculated on smaller blocks in the difference frame. For this,
we divide a difference frame of pixel resolution M × N into K parts of equal size along
the M-axis and L parts of equal size along the N-axis. Each of the K parts contains m = M

K
columns and each of the L parts contains n = N

L rows. This division along the rows and
columns of a difference frame Dt creates nBlocks = K ∗ L local-blocks of size m× n. Let the
sth local-block be denoted as DLt,s. Then the local signals (LDS and LDPC) at time t for the
sth local-block are given as:

LDS[t, s] = ∑
i∈[1,m]

∑
j∈[1,n]

|DLt,s[i, j]| (3)

LDPC[t, s] = #({d ∈ DLt,s
∣∣ |d| > δ}) (4)

where d denotes an individual pixel in the difference frame local-block DLt,s, |.|
denotes the absolute value and #(.) denotes the set cardinality. The LDS[t, s] is the sum
total of the absolute values of the pixels in the sth local-block of the difference frame at
time t seconds and the LDPC[t, s] is the total number of pixels in the sth local-block of the
difference frame at time t seconds that have an absolute value greater than δ. Similar to
GDPC, if δ = 0, LDPC[t, s] denotes the total number of non-zero pixels in the sth local-block
of the difference frame Dt. The different parameters that needed to be set were δ, K, and L.
The default values we set in our work were δ = 0, K = 5, L = 4 and the videos we
experimented on had a pixel resolution equal to 320× 240. Thus, in our work, we had
m = 64, n = 64, and nBlocks = 20.

Together, the host of time-series data described in Appendix A gave us information
about the temporal and spatial variations in the video V. We needed certain assumptions
so that these signals gave us information about human movement. The assumptions were
as follows (1) We had one person in the entire video. (2) The background was static, and
the only moving object in the video was the person or an object attached to the person. (3)
The video was not corrupted or affected by noise.
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Figure 2. PoseNet [56] for human pose detection. (a) We show the scene without any humans. (b) The
scene with three humans standing. (c) The identified keypoints using PoseNet have been overlaid on
the individual humans. (d) The keypoints corresponding to the elbows and wrists have been retained.
This is useful for analyzing hand movements.

While the PIR sensor provided binary movement signals (movement occurred vs.
no movement), the movement signals from the IR cameras were finer and had a higher
spatial resolution. These two solutions were useful in different scenarios. For instance,
while the PIR sensor could be used to detect the presence or absence of a human in a room,
the movement signal from the IR camera could be used to perform a privacy-preserving
analysis of a patient’s sleep.

3.1.4. Human Pose and Activity Phenotyping

Technologies such as PoseNet [56,57], OpenPose [58] or DeepLabCut [59] could be used
to obtain canonical representations of the human form, and when tracked over time, one
could obtain information concerning pose and types of activities. In our implementation,
we used a Coral USB Tensor Processing Unit (TPU) Accelerator (Figure 1) and Tensorflow Lite
to render these abstractions in real time.

This data representation is known as keypoint representation and comprises the x-y
coordinate positions of various interest points on the body, including the knees, elbows,
and eyes. It has the advantage of preserving the privacy of individuals while also reducing
the dimensionality of the data. One can use this technology to understand behavior of the
neurodiverse populations, both at a group level and at an individual level, to capture social
interaction metrics and predict certain behaviors of interest ahead of time.

In its implementation, we used a Google Coral Accelerator USB device in addition
to the RPi and the RPi camera module V2 (8 megapixel). The RPi 4 was most suitable
for this work compared to the older versions of the RPi due to the presence of USB-A
3.0 ports. These ports ensured fast communication between the Coral device and RPi.
The absence of USB-A 3.0 ports in previous versions of the RPi significantly increased the
communication time between the RPi and Coral, thus increasing the total run time of the
algorithm implemented on it. We implemented the Tensorflow Lite model of the PoseNet
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algorithm on the Google Coral Accelerator that was connected to the USB-A 3.0 port of
the RPi 4. The camera attached to the RPi collected videos, which were converted to the
keypoint representations in real-time by PoseNet. These keypoint representations were
stored on a secure server for further processing, and the raw video was discarded, thus
achieving patient privacy. An example is given in Figure 2.

3.1.5. Privacy Preserving Audio Data Capture

The proposed audio data capturing system consisted of a USB microphone connected
to the RPi. In this work, we tested the Fifine Conference USB Microphone (Figure 1). In order
to record the audio signal, we used the python-sounddevice package available on GitHub
[60,61] under the MIT License. Specifically, we modified the script rec_unlimited.py [60]
to be able to continuously record audio data and perform audio feature computation at
regular intervals. To extract features from these audio snippets, we used a 30 millisecond
Hanning window with a 50% overlap. Feature computation was done using the librosa
package available on Github[62] under the Internet Systems Consortium (ISC) license. We
utilized the spectral representation method stft in the Core IO and Digital Signal Processing
toolbox and the spectral features method mfcc in the feature extraction toolbox in order
to compute short-time Fourier transform (STFT) and Mel-frequency cepstral coefficients
(MFCC), respectively. Further, we used the filter bank construction method mel in the Filters
toolbox to create a filter bank with 10 frequency bins. For each 30 millisecond window, we
then computed the signal energy in different frequency bins by performing the following
matrix multiplication:

E = MS (5)

where S was the STFT coefficient vector for the current window, M was the mel filter mask
matrix with each row corresponding to a different mask, and E was the signal energy
in different frequency bins corresponding to the mel filter masks. Note that the default
shape of mel filter masks was a triangle with the mask values summing to one. We further
included scripts for computing sample entropy of the windowed audio snippets using
the mse.c script, which was available on Physionet [63] under the GNU general public
license. Further, we developed scripts to archive the computed audio features to a secure
cloud storage and discard the underlying audio snippets. The above implementations
were developed using Python 3.7.3, C, and Bash scripting. These were representative edge
computing methods that could extract different features from audio signals. Other feature
extraction algorithms which could be run on the constrained environment of an RPi could
be easily incorporated as additional methods. The discarding of raw audio data ensured
patient privacy and speaker identification was not possible. Furthermore, we did not record
the speaker’s pitch information in the audio snippets or deploy methods to determine if a
given window contained voiced speech.

3.1.6. Human Location Tracking via Bluetooth

The Bluetooth scanning system utilized the onboard Bluetooth receiver of an RPi.
In this work, we tested the Smart Beacon SB18-3 by kontact.io with an RPi 4 model B. We
leveraged the scanner package by bluepy - a Bluetooth LE interface for Python [64] for this
purpose. The code implementation was done in Python 3.7.3. The software recorded
the received signal strength indicator (RSSI) value from all the beacons transmitting the
Bluetooth signal in the vicinity. We used the media access control (MAC) addresses of the
Bluetooth beacons to identify them. A Python script would poll for RSSI values from all
the beacons in the vicinity at regular intervals. The received RSSI values, the unique MAC
address, and the recording timestamp were dumped into a file.

3.1.7. Ambient Light Intensity Assessment

In this work, we used the Waveshare TCS34725 Color Sensor (Figure 1) in conjunction
with an RPi to capture ambient light intensity. Among other signals, the color sensor
captured the following signals which were of interest to us: (1) Red, Green, and Blue
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values in the RGB888 format (8-bit representation for each of the three color-channels); (2)
Illuminosity in Lumen per square foot (LUX); and (3) Color Temperature in Kelvin. The
RGB values and the color temperature gave us information about the ambient light color,
and the illuminosity values gave us information about the ambient light intensity.

3.1.8. Temperature and Humidity Detection

For temperature and humidity detection we used the DHT22 Temperature-Humidity
sensor module (Figure 1) in conjunction with an RPi. The DHT22 sensor comprised a
thermistor and a capacitive humidity sensor that measured the surrounding air to provide
calibrated temperature and humidity values. Further, the sensor module came with a
digital board that housed three pins, namely VCC, GND, and OUT. The sensor had an
operating voltage of 3.3/5V (DC), and the OUT could be read from a GPIO pin on the RPi.
The temperature range was −40 to 80 °C, and the humidity range was 0− 100% Relative
Humidity (RH).

3.1.9. Thermal Camera-Based Temperature Measurement

In [19], we showed that it is possible to perform febrile state detection using the
combination of an RPi camera and the FLIR Lepton 3.5 Radiometry Long-Wave Infrared
Camera with its associated Input-Output module. This system has been included in the
codebase without further experimental validation.

3.2. Data Fusion

The following data modalities were captured at a sampling frequency of 1 Hz: (1) PIR
sensor-based human movement; (2) IR camera-based human movement; (3) Audio data; (4)
Bluetooth RSSI signal; (5) Ambient light intensity; and (6) Temperature and humidity. A
single main script facilitated the capture of all the above data modalities and the individual
time stamps corresponding to each sample. The human pose signal was recorded in an ad-
hoc manner when the algorithm detected a human body. Nevertheless, the corresponding
timestamps were recorded using a single clock onboard the RPi to ensure all data modalities
were recorded synchronously. Further, the recorded data was easy to access via a simple
directory structure consisting of separate folders for each data modality. The data collection
was performed in parallel by each RPi and transmitted in real-time to a HIPAA compliant
central server, which aggregated the data to perform patient state analysis.

3.3. Applications

The applications of our edge computing and ambient data capture system range from
monitoring patient sleep in sleep labs to tracking neurodegenerative patients at their homes.
In our work, we describe five experiments to demonstrate our system’s utility:

1. Estimating occupancy and human activity phenotyping: This utility enables us to perform
patient sleep monitoring, human location tracking and activity phenotyping.

2. Medical equipment alarm classification using audio: This utility facilitates patient
monitor alarm monitoring in ORs or ICU rooms, where there are many system not centrally
integrated.

3. Geolocation of humans in a built environment: We can track humans in a built environ-
ment and model social distancing for quantifying epidemic disease exposure [65].

4. Ambient light logging: This system can be used to study the effect of ambient light on human
circadian rhythm.

5. Ambient temperature and humidity logging: We can perform long-term monitoring of the
effects of ambient environmental conditions on patient behavior.

In each of these experiments, we either processed the data captured by our system or
tested the utility of our onboard feature extraction methods to understand the associated
environments better.
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Table 2. Class labels including the Musical Notes in International Organization for Standardization /
International Electrotechnical Commission (ISO/IEC) 60601− 1− 8 Alarm and their count [E stands
for the Empty class and T stands for the Transition class]

Musical Note Fundamental Frequency (Hz) Count

C4 261.63 207
D4 293.66 43
E4 329.63 32
F4 349.23 46
F#

4 369.99 27
G4 392.00 66
A4 440.00 45
B4 493.88 17
C5 523.25 81
E - 969
T - 432

3.3.1. Estimating Occupancy and Human Activity Phenotyping

Table 1. Estimating occupancy and activity phenotyping

Start Time End Time Duration Action
(second) (second) (seconds)

0 30 30 One person standing
30 60 30 Two people standing
60 90 30 Three people standing
90 120 30 Three people exercising

120 150 30 Two people exercising
150 180 30 One person exercising

In this experiment, we developed and tested algorithms to (1) Track the number of
people in a given video; and (2) Differentiate people standing still from people performing
a hand exercise (activity). For this, we utilized PoseNet to record keypoint locations of stick
figures of humans in the video. We recorded a three-minute structured video in employing
three subjects (S1, S2 & S3). The data collection was performed as illustrated in Table 1.

The video frames and the corresponding keypoints were retrospectively processed to
compute the number of people in each frame. For every video frame, the corresponding
keypoints file contained the x-y coordinates of the stick figures. For each stick figure
(human being), a separate stick figure x-y coordinate array was stored. Thus, by calculating
the number of non-zero arrays in each keypoints file, we counted the number of people
present in the corresponding video frame.

For human activity phenotyping, we considered the case of contrasting a standing
human from an exercising human. For this, we considered the following four keypoints
amongst the 17 keypoints recorded by PoseNet: (1) Left Elbow; (2) Right Elbow; (3) Left
Wrist; and (4) Right wrist. In our retrospective analysis, we computed the distance (in
pixels) between frames for all four keypoint locations. A distance-vector was formed for
each of the four keypoint locations for all three subjects separately when they were standing
and exercising. Further, we computed the interquartile range (IQR) of these distance vectors
and plotted these values for all four locations for each subject both while standing and
exercising. The IQR is a suitable method for suppressing outliers and capturing the spread
of the data. The statistical variance, on the other hand, is affected by outliers. Hence, we
chose to compute IQR over the variance to measure the spread of the data.
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3.3.2. Medical Equipment Alarm Classification Using Audio

In this experiment, we tested the utility of the audio feature extraction methods (en-
ergy in mel frequency bins and MFCC) proposed by us for clinical audio classification. For
this, we utilized an external clinical audio database, extracted the proposed features, and
performed multi-class classification.

Dataset. We analyzed the International Organization for Standardization / International
Electrotechnical Commission (ISO/IEC) 60601 − 1 − 8 type medical equipment alarm
sounds [66]. The alarm sounds comprised eight categories: general, oxygen, ventilation,
cardiovascular, temperature, drug delivery, artificial perfusion, and power failure. Further,
each category had two alarm sounds, namely, medium priority alarm and high priority
alarm. The medium priority alarm sounds were about one second long and consisted of
three musical notes that were played once, whereas the high priority alarm sounds were
about 4.5 seconds long. They consisted of five musical notes that were played twice. All
the alarm audio recordings were single channel, sampled at 22050 Hz, and recorded in the
Waveform audio file format. Nine musical notes were used to construct these 16 different
alarm audio recordings. Table 2 lists these nine musical notes with their fundamental
frequencies. The works [66,67] provide more information on the individual alarm sound
recordings.

Feature Extraction. We used the audio data capture software described in Section 3.1.5 and
computed 20 MFCC features and 10 filter bank energy features on 30 millisecond snippets
of the 16 alarm sound recordings. Further, we computed STFT coefficients for the audio
clips and annotated each snippet to belong to one of the following 11 classes: {Empty, C4,
D4, E4, F4, F#

4 , G4, A4, B4, C5, Transition}. The Empty class was assigned when all the STFT
coefficients of a snippet were equal to zero. If a particular audio snippet was partially
made up of a specific note with the rest of the samples equal to zeros, such windows
were annotated as the Transition class. We annotated the musical notes by comparing the
fundamental frequency in STFT with the values shown in Table 2. Moreover, we used the
note sheets provided in [66,67] to confirm our annotations. We had a total of 1965 data
points. Table 2 further provides the breakdown of the number of data points in each class.

Classification. Using the 30 features described, we performed an 11 class classification
using five-fold cross-validation and an XGBoost [68] classifier. All codes were written
in Python 3.6.3 and XGBoost was implemented using the package provided in [69]. The
following hyperparameters were used without any tuning: n_estimators = 150, objective =
‘multi:softmax’, num_class = 11, max_depth = 6. All other hyperparameters were set to their
default values. As illustrated in Table 2, the dataset contained class imbalance. We thus used
both the macro averaged F1 (F1−macro) score and the micro averaged F1 (F1−micro)
score as the measures for assessing classification performance. The F1−macro score gives
equal importance to each class irrespective of the number of samples in each class thus
providing a balanced assessment of the multi-class classification performance when the
dataset is imbalanced. The F1−micro score on the other hand aggregates samples from all
classes before computing the F1 score. Please refer [70] for the individual expressions for
computing the two F1 scores.

Speech Mixing. Next, we measured the performance of the note classification algorithm in
the presence of speech. For this, in addition to the ISO/IEC 60601− 1− 8 dataset, we used
a speech record consisting of five speakers [four male and one female] from the Oxford
Lip Reading Sentences 2 dataset [71]. First, we resampled the speech record to match the
sampling frequency of the alarm audio recordings (22050Hz) and extracted the first channel
of this resampled speech record, denoted by S . Next, for each of the 16 alarm audio records
Ai, i ∈ [1, 16], we uniformly randomly pick an audio snippet from the speech record Si
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which was of the same length as Ai. We then generated 10 audio records per alarm audio
recording as follows:

Mi[α] = α ∗ Si + (1− α) ∗ Ai (6)

whereMi[α] was the mixed audio recording for a given α and α ∈ {0, 0.1, 0.2, · · · 0.8, 0.9}
was the mixing parameter that combined speech recording with alarm audio recordings.
Note that ∗ and + denoted scalar multiplication and sample-wise addition, respectively.
When α was equal to 0, we had no speech component, and thus,Mi[0] was equal to the
original alarm audio recording Ai. As α increased from 0 to 0.9, the speech component in
Mi[α] increased linearly, and the alarm audio component decreases linearly.

We obtained a total of 160 different audio recordings (10 mixed audio recordings per
clean alarm audio recording). We re-computed 20 MFCC features and 10 filter bank energy
features for these 160 audio recordings using 30 millisecond Hanning windows and a 50%
overlap and obtained a total of 19650 feature vectors. The ground truth labels for the feature
vector at different α values were the same as those for α = 0. Utilizing these 19650 feature
vectors and corresponding labels, we performed an 11 class classification of musical notes
using five-fold cross-validation and XGBoost [68] classifier. The hyperparameters were the
same as it was when there was no speech mixing.

3.3.3. Geolocation of Humans in a Built Environment

Table 3. The human tracking experiment

Start Time End Time Duration Action
(second) (second) (seconds)

0 146 146 Stay in room 1
146 159 13 Move from room 1 to room 2
159 268 109 Stay in room 2
268 286 18 Move from room 2 to room 3
286 470 184 Stay in room 3
470 480 10 Move from room 3 to room 1
480 600 120 Stay in room 1

In this experiment, we processed the RSSI signal received by the RPi to perform room-
level location detection of humans using a Bluetooth beacon. We set up nine RPis in a
built environment where each RPi was loaded with the software to capture RSSI values as
received from a specific Bluetooth beacon. The built environment consisted of three rooms,
and three RPis were present in each room, approximately equidistant from the center of
the room. A Kontakt.io Bluetooth beacon with a unique MAC address was used in the
experiment. A human subject carried the Bluetooth beacon and moved around the space as
illustrated in Table 3.

The processing of the collected RSSI values to perform geolocation of humans was
done on a central server. This was because we collected data from multiple RPis to perform
geolocation. Once the data was transferred to the cloud from each RPi, we downloaded
the data onto a single computer and performed geolocation. The RSSI signals captured by
each RPi were non-uniformly sampled. Hence, these signals were converted to a uniformly
sampled signal with a sampling frequency equal to 1 Hz by filling missing data using the
following equation.

RSSIn[currentTime] = RSSIn[previous]

×max([β× (currentTime− previous), 1])
(7)

where, n ∈ [1, 9] was the index variable to recognize RPis, RSSIn was the vector of RSSI
values captured by nth RPi, currentTime was the time (in seconds) at which we did not have
a reading of the RSSI value, previous was the closest predecessor time point (in seconds) to
currentTime at which we had a reading of the RSSI value, β was the decay parameter that
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controlled the rate at which the RSSI value decayed when RSSI values were missing and
max was a function to compute the maximum value in the input vector. The time difference
(currentTime - previous) was expressed in seconds.

Further, any RSSI value less than −200 dBm was clamped to −200 dBm to have all
RSSI values in a fixed range. We set β to 0.2, which corresponded to maintaining the
previous value for 5 seconds before the RSSI values were decayed when the RSSI values
were missing. Further, we computed the average RSSI signal for each room by computing
the mean value of the RSSI signals captured by the three RPis in each room. We used the
softmax function to obtain a probability vector that gave the probability of the human
subject with the Bluetooth beacon to be present in each of the three rooms at any given
point in time. The averaging of RSSI values from multiple RPi receivers and the further
usage of the softmax function significantly suppressed the effect of noisy RSSI samples.

3.3.4. Ambient Light Logging

Table 4. The ambient light tracking experiment

Day Time (HH:MM) Action

Clear Day (Dclear) 07:32 Sunrise
18:10 Sunset

Night-1 (N1)

18:55 Lights-ON
23:45 Lights-OFF
01:00 Data upload start
02:00 Restart data collection

Cloudy Day (Dcloudy)
07:31 Sunrise
16:58 Lights-ON
18:11 Sunset

Night-2 (N2) 23:42 Lights-OFF

To perform ambient data logging, we set up an RPi with the Waveshare TCS34725
color sensor in a built environment. The RPi was loaded with the associated software
needed to capture the ambient light intensity values. Table 4 provides a timeline of events
that occurred during ambient light data capture. The duration between 1 AM and 2 AM
was reserved for data upload, and no data capture was performed during this period.
The color sensor was set up in a place that received natural sunlight during the day and
received light from light sources in the room during the night. The lights in the room were
turned ON when the natural sunlight was not adequate for a normal human lifestyle. The
lights in the room remained ON until “sleep time” of the residents in the built environment
when the lights were turned OFF. We recorded the ambient light data for two consecutive
days. In parallel, we tracked the weather conditions of the data collection site and recorded
the minute-to-minute local cloud cover information. With this setup, we studied the effect
of cloud cover, sunrise and sunset times, artificial lights in the room, and buildings around
the data collection site on the ambient light data captured by the color sensor. We divided
the entire time period into 4 sections: Dclear, N1, Dcloudy, N2. Here, Dclear represents the
day-period (sunrise to sunset) on the first day when the skies were clear, N1 represents the
first night (sunset to sunrise), Dcloudy represents the day-period (sunrise to sunset) on the
second day when the skies were extremely cloudy (average cloud cover > 80%), and N2
represents the second night (sunset to sunrise). Since the cloud cover information during
the night had little or no effect on the ambient light intensity in the room, in our analysis,
we only used the cloud cover data tracked during Dclear and Dcloudy.

3.3.5. Ambient Temperature and Humidity Logging

We validated the DHT22 temperature and humidity sensor against a commercially
available sensor in this experiment. We set up an RPi with the DHT22 sensor in a built
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Figure 3. Results for occupancy estimation and activity phenotyping. (a) The comparison between
the ground truth and the estimation by the algorithm for the number of people in each video frame is
shown. (b) We show the interquartile range (IQR) of the distance (in pixels) between the keypoints
from consecutive frames (sampling frequency = 1Hz) for three subjects standing and performing
exercise.

environment. The RPi was loaded with the necessary software to continuously capture
temperature and humidity values and the associated UTC timestamps. We collected the
temperature (TRPi) and humidity (HRPi) values with this setup at a sampling frequency of
1Hz for three consecutive days (about 72 hours). Further, we set up the ORIA mini Bluetooth
Temperature-Humidity sensor (a commercial sensor) beside our RPi setup and simultaneously
performed temperature (Tcs) and humidity (Hcs) measurements using the commercial sen-
sor. The commercial sensor allowed the export of the recorded Tcs and Hcs measurements
in the form of comma-separated value files via an Android application. The commercial
sensor output contained measurement values at a sampling rate of 0.001667Hz (one sample
per 10 minutes). Hence, we retrospectively processed the TRPi and HRPi measurements
captured by the DHT22 sensor to match the number of samples and the measurement
timestamps corresponding to the commercial sensor via the following procedure. For
every timestamp (tscs) at which we had the temperature and humidity values from the
commercial sensor, we constructed a 10-minute window which spanned from tscs − (10
minutes) to tscs. We collated all TRPi and HRPi measurements in this time window and
computed the mean value of these measurements to obtain TRPi−µ[tscs] and HRPi−µ[tscs].
We then compared the TRPi−µ with Tcs and HRPi−µ with Hcs by plotting the signals one
over the other. Further, we performed correlation analysis and fit separate linear models for
the temperature and humidity measurements. Finally, we created separate Bland-Altman
plots for the temperature and humidity measurements.

4. Results
4.1. Estimating Occupancy and Human Activity Phenotyping

Figure 3A shows the comparison of the algorithm’s estimation for human occupancy
in each video frame with respect to the ground truth values. We obtained an accuracy of
94% for the occupancy estimation experiment. For contrasting humans performing hand
exercises from humans standing still, we visualized the IQR values of the frame-to-frame
distances (in pixels) for four keypoints corresponding to the human hand. The IQR values

Table 5. Note Classification in Medical Equipment Alarm

Setting F1−micro F1−macro

Without Speech 0.98 0.97
With Speech Mixing 0.93 0.91
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Figure 4. Human tracking via Bluetooth. The translucent background colors indicate the ground
truth values, and the corresponding room number has been labeled. (a) The received signal strength
indicator (RSSI) values as captured by each of the nine Raspberry Pis during the experiment are
shown. It is measured in decibels with reference to one milliwatt (dBm). (b) The corresponding
probability values of the subject being in Rooms 1, 2, or 3 during the experiment. The blue color
depicts Room 1, the green color depicts Room 2, and the red color depicts Room 3.

were always larger for exercising than standing still for all four keypoints and all three
subjects. When a subject was standing still, the keypoints barely moved and thus would
typically have low values (< 5 pixels). The individual IQR values for all three subjects at
the four keypoint locations are illustrated in Figure 3B.

4.2. Medical Equipment Alarm Classification Using Audio

Table 5 shows the results for the 11-class medical equipment alarm note classification.
We computed the micro averaged (F1−micro) and the macro-averaged (F1−macro) F1
scores for the two experiments. When there was no speech content in the alarm audio
recordings, we obtained an F1− micro equal to 0.98 and an F1− macro equal to 0.97.
Retraining with speech resulted in a drop of 5.1% and 6.2% in F1−micro and F1−macro
scores, respectively.

4.3. Geolocation of Humans in a Built Environment

Figure 4A shows interpolated RSSI values captured by each of the nine RPis that were
placed in the built environment, and Figure 4B illustrates the corresponding probability of
the subject being in rooms 1, 2, or 3. The ground truth of the subject’s presence is shown
using translucent colors in the background. Specifically, translucent blue denoted being
present in room 1, translucent green denoted being present in room 2, and translucent
red denoted being present in room 3. Further, the transition from one room to another
was illustrated by overlapping colors corresponding to the two rooms. It is evident from
Figure 4 that our system did an excellent job of identifying the room in which the person
was present. Specifically, for 592 out of 600 seconds, the human tracking system correctly
identified the subject’s presence in one of the three rooms, which corresponded to an
accuracy of 98.67%.

4.4. Ambient Light Logging

Figure 5 depicts the variation of ambient light intensity over two days. The minimum,
median, and maximum illuminance values during the Dclear period were equal to 0.56 LUX,
71.08 LUX, and 186.92 LUX, respectively, whereas the minimum, median, and maximum
illuminance values during the Dcloudy period were equal to 0.26 LUX, 26.93 LUX, and 117.41
LUX, respectively. Thus, the median difference in illuminance between the clear and cloudy
days was equal to 44.15 LUX. The minimum, median and maximum illuminance between
the lights-ON and lights-OFF times was equal to 15.08 LUX, 15.30 LUX, 16.66 LUX on the
first night (N1) and equal to 9.39 LUX, 10.15 LUX, 15.02 LUX on the second night (N2).
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Figure 5. Observing the effects of cloud cover, sunrise, sunset, lights-ON, lights-OFF and buildings
around the data collection site on the ambient light in a built environment for two continuous days
(48 hours). The solid-orange bars ( ) depict the amount of ambient light sensed by the color sensor in
Lumen per Square Foot (LUX). The solid-blue circles ( ) depict the local cloud cover in percentage of
local sky covered by clouds. The sunrise and sunset times are indicated with the rising and setting
sun symbols, respectively, using the upward and downward arrows. The yellow and black bulbs
specify the lights-ON and lights-OFF times, respectively. The skyscraper symbol indicates the time
when the Sun goes behind a skyscraper and causes a shadow onto the location where ambient light
was being tracked. Data upload is depicted by binary values and a cloud node.

The illuminance was consistently equal to zero between the lights-OFF and sunrise times.
Further, we observed a dip in illuminance when the Sun hid behind a skyscraper and cast a
shadow on the data collection site during the day.

4.5. Ambient Temperature and Humidity Logging

Figure 6 illustrates the comparison between the processed temperature and humidity
values from the DHT22 sensor with the outputs from a commercial sensor. The temperature
values from the two sensors closely followed each other with a root mean squared error
(RMSE) between the two measurements equal to 0.28◦C and a coefficient of determination
(r2) equal to 0.97. Over 97% of the samples lay within the limits of agreement [-1.96SD,
+1.96SD] in the Bland-Altman plot. Further, the mean difference was equal to -0.4◦C. The
humidity values from the two sensors closely followed each other with an RMSE between
the two measurements equal to 1.00%RH and an r2 equal to 0.90. Over 95% of the samples
lay within the limits of agreement [-1.96SD, +1.96SD] in the Bland-Altman plot. Further,
the mean difference was equal to -1.2%RH.

5. Discussion

The work described in this article aims to extend the types of data found in traditional
clinical monitoring environments and provide a simple system to capture data in the built
environment, outside of clinical settings. Many commercial (clinical and consumer) systems
are either designed to keep data in a proprietary ‘walled-garden’ to reduce competition
or are not designed for the high throughput needed to transmit/record the data. The
RPi-based edge computing system described in this work allows direct data import via
USB and upload to the cloud asynchronously to overcome these issues.

We have included methods to capture audio data, physical movement, and location
of subjects. As we have demonstrated, audio data allows capturing of all alarms in the
clinical space. While some monitors transmit some of these events or signals over the
network, it is often costly or impossible to gain access to such data, and data integration
and synchronization are highly problematic. Moreover, such systems do not provide a
holistic picture of the environment. For example, the volume of the alarm, together with the
background noise, contributes to noise pollution and has been shown to affect caregivers
and patients alike [4,5,72]. Beyond alarms in the clinical environment, it is possible to
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Figure 6. Comparison of temperature and humidity values captured by the Raspberry Pi (RPi)
integrated DHT22 sensor and a commercial sensor. The top plot corresponds to temperature in each
subplot, and the bottom plot corresponds to humidity values. (a) The dashed blue lines indicate the
processed temperature and humidity values captured by the RPi integrated DHT22 sensor. The solid
red lines indicate the corresponding values captured by the commercial sensor. (b) The correlation
plots between values captured from the DHT22 sensor and the commercial sensor. The solid-blue
circles ( ) indicate individual temperature and humidity tuples. The linear fits on the data and their
deviations from the 45◦ line are depicted in the plot. (c) The Bland-Altman plot between the two
measurements. The solid black lines indicate the mean difference between the two measurements.
The dashed black lines indicate the +1.96 and the -1.96 standard deviation (SD) lines for the difference
between the two measurements.
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capture whether a patient is being mechanically ventilated (and at what frequency), groans
and expression of pain, and other non-verbal utterances. It is possible to add speaker and
voice recognition to the code base, to identify who is speaking and about what, providing
insight into clinical (and non-clinical) discussions that may provide additional diagnostic
power. For instance, by differentiating patients from family members, it is possible to assess
both the level of clinical team support and frequency of bedside visits and the social support
that a patient may have (inferred by the number and duration of visitations by friends and
family). Tracking the time clinicians spend with patients and the level of expertise available
could help identify gaps in care. In addition, by tracking Bluetooth transmitter strength of
body-worn devices (e.g., badges or phones), it is possible to infer motion, an individual’s
identity (through a look-up table), and even the exact location of an individual if more
than one Bluetooth receiver base is used. Real-time and accurate tracking of humans using
Bluetooth beacons needs a receiver (RPi) sensor network. Further, we can have a central
server where all the RPis communicate and update the collected RSSI values. We can
then have algorithms operating on this database in real-time to perform the geolocation of
humans. We have implemented this system in a clinical environment at Emory Healthcare,
Atlanta, USA, to monitor the real-time location of humans.

By capturing motion via video, we can probe even deeper into assessing the patient
and their environment. For instance, we can estimate the quantity of sleep, sedation, and
agitation that a patient experiences, all of which have been linked to recovery [73]. At the
same time, if the motion is associated with clinical care, then the intensity of activity can
indicate when treatments, observations, or specific activities (such as replacing drips) took
place. While we know that the ratio of nursing staff to patient impacts outcomes [7], there
are no studies that examine the time at the bedside and the actions taken at the bedside in
terms of their impact on the outcome. However, it is known that time spent at the bedside
is linked to improved patient satisfaction [74].

Finally, the data modalities we capture provide us a unique opportunity to perform
multimodal analysis of the patient state. For instance, consider the case of human sleep
monitoring in a home environment. All we need to do is to place the Bluetooth beacon in
the patient’s clothes before they sleep. The motion signals captured during the patient’s
sleep give us the timestamps when the patient moved in the bed. Based on the intensity of
the motion signal, we can delineate minor movements (rolling over) from major movements
(sitting up in bed). The simultaneous recordings of audio-features and illuminance, which
can act both as sleep inhibitors (flushing toilet or turning ON lights) and wake-event
markers, give us valuable information about the patient’s sleeping patterns. Further, the
RSSI signal analysis will provide us with all the times that the patient exits the room
during the night. Finally, via a long-term monitoring protocol, we can recommend ideal
sleeping conditions to the patient by monitoring the temperature and humidity in the
room. Thus, the system presented here provides a low-cost method for performing deep
analysis, both at home and in a clinical setting. The system itself has been deployed for
patient monitoring and data collection in two separate healthcare facilities located in the
United States of America: (1) A New York state department of health funded center for
excellence facility that offers residential, medical, clinical and special education programs
to the residents (25 units); and (2) A Mild Cognitive Impairment rehabilitation program
facility at Emory Healthcare in Atlanta (40 units). For a 12 hour (7 AM to 7 PM) recording
of all data modalities (except PoseNet), a total of 832 MB of data was recorded.

6. Conclusion

This article presents an overview of a generalized open-source system for edge com-
puting in clinical and home environments. It provides real-time data elements and analysis
that are not generally present in electronic medical records yet are associated with clinical
performance, diagnosis, and outcomes. In particular, we focused on the acoustic envi-
ronment (such as speech, alarms, and environmental noise), the motion of clinicians and
patients, and location (absolute or relative to others). We also added optional camera-
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based analysis and environmental sensors (temperature, humidity, and light). Further,
we included methods for privacy-preserving feature extraction to provide a generally
acceptable system that is unlikely to violate hospital policies and other privacy regulations,
which may reduce the anxiety of administrators and clinicians concerning the level of
monitoring. Encryption and data transfer protocols were not included as these are specific
to each institution. The implementation on a state-of-the-art extensible edge computing
system at a relatively low cost provides a high degree of flexibility in the design. The
bill-of-materials and open-source code to replicate the work described here have been made
publicly available under an open-source license [54].
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OR Operating Room
ICU Intensive Care Unit
PIR Passive Infrared
USB Universal Serial Bus
TPU Tensor Processing Unit
RPi Raspberry Pi
HIPAA Three letter acronym
IR Infrared
ECG Electrocardiogram
BAN Body Area Network
RF Radio Frequency
GPIO General Purpose Input Output
NoIR No Infrared
GDS Global Difference Sum
GDPC Global δ-Pixel Count
LDS Local Difference Sum
LDPC Local δ-Pixel Count
ISC Internet Systems Consortium
STFT Short Time Fourier Transform
MFCC Mel Frequency Cepstral Coefficient
RSSI Received Signal Strength Indicator
MAC Media Access Control
LUX Lumen per Square Foot
DC Direct Current
RH Relative Humidity
IQR Interquartile Range
ISO International Organization for Standardization
IEC International Electrotechnical Commission
dBm Decibels with reference to one milliwatt
RMSE Root Mean Square Error
SD Standard Deviation
MCIEP Mild Cognitive Impairment Executive Park
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