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Abstract: Herein is introduced a simple scalar field model derived from classical based kinetic energy, 1

gravitational potential energy, and Special Relativity’s rest mass energy. By applying a classical orbit over 2

the scalar field, relativistic effects are predicted. The scalar field is then applied to a classical model of 3

the Hydrogen atom resulting in a relativistic effect equal to the binding energy of the Hydrogen atom. In 4

addition, the model derives the fine structure constant due to the gravitational effect. The relativistic effects 5

are then discretized in increments equal to the model’s gravitational induced constant. The discretization 6

produces the Hydrogen atom spectral emissions and an angular moment equal to Planck’s reduced constant. 7

The model is not presented as a replacement for current theory, rather it is for inspection and illustration of 8

how a simplistic model may offer a fundamental bridge between the more complex, time proven theories 9

of General Relativity and Quantum Mechanics. 10

Keywords: Classical Model; General Relativity; Hydrogen Atom, Fine Structure Constant, Planck Constant, 11

Dark Energy, Dark Matter 12

1. Introduction 13

As part of my doctoral thesis a method was derived for introductory teaching of General 14

Relativity (GR) via starting with Newtonian laws [1]. From Newtonian laws GR effects are 15

derived to first order equality in Schwarzschild’s solution to Einstein’s field equations. The 16

derivation methodology follows the same method as when Special Relativity is derived by 17

limiting the speed of particles to the speed of light in a vacuum [2]. In a continuation of the 18

study I introduce here a scalar field S derived from Newtonian Gravitational potential and 19

classical kinetic energy. By applying Newtonian mechanics over S, it is shown GR effects are 20

included in the Newtonian calculations. This method when applied to celestial orbits predicts a 21

perihelion advance. The results of the calculations provide high fidelity compared to known 22

measurements and mainstream theories. 23

Next, the field S is applied to a classical notion of an electron orbiting a proton. In this 24

application of S, an electron orbital advance is predicted. The model shows in addition to 25

the classical Coulomb binding energy, an additional binding energy resulting from the orbital 26

advance. The total binding energy is evaluated when an interacting photon has a wavelength 27

equal to the reduced Compton wavelength for the electron. At this equality, the additional 28

binding energy due to the advance is equal the binding energy of Bohr’s Hydrogen model for 29

the atom [? ], 27.2 eV. 30

2. Introduction 31

Here a scalar field model S is generated by equating a virtual point mass’s classical kinetic 32

and potential energy as a ratio to the rest energy of the mass generating the field. Then the 33

model is used to investigate time dilation as an effect of the field due to the mass. The results 34

are then compared to Schwarzschild’s solution[3] to Einstein’s field equations for matching 35

accepted theory. Next, the field S is applied to a classical based model of an electron orbiting a 36

proton. In this investigation of S, an electron orbital advance is predicted. The model shows 37

in addition to the classical Coulomb binding energy[4], an additional binding energy resulting 38
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from the orbital advance. The model’s total binding energy is evaluated when a photon with 39

wavelength equal to the reduced Compton wavelength[5] interacts with the electron. At this 40

equality, the additional binding energy due to the advance is equal the binding energy of the 41

Hydrogen atom (13.6 eV)[5]. 42

3. The Scalar Field Model 43

The scalar field is derived from Newtonian gravitational potential and classical kinetic
energy[4]. The gravitational potential is mapped to the field by considering a virtual point
particle (mv) equal to the mass (M) generating the field. The gravitational potential of mv
is calculated for all space with radial distance greater than or equal to the radius of M . The
potential value at each point is equated by:

Vg = −
GMmv

r2
(1)

Where G is the Newtonian Gravitational constant[5] and r is the radial distance from the center
of mass M to the point mass mv . Secondly the kinetic energy of mv relative to M is calculated
by:

Tg =
mv v2

2
(2)

Where v is the instantaneous velocity of mv relative to M . The energies in equations (1 & 2)
when combined form the classical total energy of mv [6]. Lastly, the total energy is evaluated
as a ratio to M ’s rest mass’s energy and added to unity. The proportionality is a dimensionless
scalar value:

A= 1+
Tg − Vg

E0
(3)

It is here hypothesized the value A represents the scalar time rate of a location in the field,
proportional to the time rate at a location where no gravitational influence exist. To transform
the field’s observed time rate at a location (t local) to the observed time rate at infinity (t∞),
apply equation 3 thus forth:

t∞ = A · t local (4)

Here the term Exemplar space is introduced for convenience, to represent any space where there
is no gravitational influence. In Exemplar space, the value of A by definition is 1.

AExemplar ≡ 1 (5)

In following Einstein’s postulate of the universal observed speed of light (c) [7], locally
observed measurements of time and length are determined by the distance a ray of light travels
in one unit of time ( t̂) as measured locally. The unit of length (l̂) is:

l̂ = c t̂ (6)

From any location within the field, the unit length and unit time are related to the unit length
and unit time in Exemplar space by:

l̂exemplar = Alocal
ˆllocal (7)

Where A is locally calculated. From this relatively non-complex scalar field, utilizing transforma- 44

tions from local space to Exemplar space, General Relativity effects are investigated. 45
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4. Relativistic effects in S 46

4.1. Time Dilation 47

Using equation 3, a clock c1 at radial distance r1 is compared to a clock cE1 in Exemplar
space:

cE1 = A1c1 =

�

1+
v2

1

2c2
+

GM
r1c2

�

c1 (8)

Where A1 is the calculated field value at location r1 from the center of mass M . When v1 equals
zero:

cE1 = A1c1 =

�

1+
GM
r1c2

�

c1 (9)

In Schwarzschild’s metric [3], at a radial distance r from the center of mass M with zero radial
velocity, the local clock rate τ as compared to a clock rate (t) an infinite distance from the mass
(M) is:

t =
1

Ç

1− GM
rc2

τ (10)

Performing a binomial expansion on equation 10 for GM
rc2 :

t =
�

1+
GM
rc2

+ ...
�

τ (11)

Analyzing equations 9 and 11 the model produces an equivalent measurement of time dilation 48

to a minimum first order equivalence of Schwarzschild’s metric in GR. 49

4.2. Orbits in the Scalar Field Model 50

Consider a circular orbit in S about a massive object. To calculate the orbital transformation
from a non-exemplar space to exemplar space requires squaring the value of A. This is because
both distance and time are transformed. The transformation of the circumference Cl to CE takes
the form:

CE = 2πAr = 2π
�

1+
GM
2rc2

+
GM
rc2

�2
r (12)

Where the potential is calculated from a gravitational orbit. Of interest, equation 12 shows for
any gravitational circular orbit there will be a first order advance of:

advance = 2π
�

1+
3GM
2c2

�2
(13)

Note the radial value r cancels out and one is left with a constant advance in length for all
circular orbits regardless of radial distance from the central massive object. For orbits that are
not circular but elliptical, the radial distance can be calculated as a dependency on the angle of
rotation[8] by setting r equal to:

r =
a(1− e2)

1+ ecos(θ )
(14)

Where a is the semi-major axis, e is the eccentricity, and θ is the angle of rotation. Integrating
the value for θ over the angle of 2π for one period P yields the advance. The full calculation to
first order of the model is:

∫ 1

0

∫ 2π

0







1+





3GM

2
�

a(1−e2)
1+ecos(θ )

�

c2









2

−1



dθdP (15)

The -1 is applied such that only the advance is calculated and not the entire elliptical circumfer- 51

ence. When equation 15 is applied to the planet Mercury, it predicts an advance of 42.98 arc 52

seconds per century which agrees closely to observations [9] and General Relativity effects. 53
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5. Classical Model of the Hydrogen Atom in S 54

In the classical approach, the electron is modeled to orbit the proton in the same way
a planet orbits the sun. In modeling the Hydrogen atom the classical Coulomb equation is
implemented into S for equating A:

A(r, m, v) = 1+
e2

8πε0me rc2
+

GMp

2rc2
+

GMp

rc2
(16)

Where Mp is the proton mass, ε0 is vacuum permittivity, r the radial distance from the center of
the proton, e is the elementary charge, and c is the speed of light. Equation 16 is squared in the
same manner as with the celestial orbit:

A(r, m, v)2 = 1+
e2

4πε0me rc2
(17)

The second order contributions and the gravitational potential have been omitted in equation
17 as their contributions are very small compared to the Coulomb contribution. As with the
gravitational orbit, when calculating an advance in orbit, the additional distance traversed per
revolution in a circular orbit is:

Advance = 2π

�

e2

4πε0mec2

�

(18)

Equation 18 is for a circular orbit. It is assumed any observed measurement will predict an 55

orbital period as starting and ending at the same point for each completed orbit (in a circular 56

orbit). This orbital observance omits any advance in the orbital system. As such, according 57

the the model, the total binding force of the orbit will be greater than the classically predicted 58

binding energy. 59

5.1. Electron Binding Energy of the Hydrogen Atom in S 60

In analyzing the model’s predicted additional binding energy due to the orbital advance,
the classical Coulomb potential energy[10] is considered:

EC =
e2

4πεr
(19)

along with the additional energy needed to traverse the advance in equation 18. If one takes
the ratio of the advance to the circumference of the orbit, it is:

rat io =
adv
2πr

=

� adv
2π

�

r
(20)

Using the value from equation 20 and multiplying it by the Coulomb energy, the additional
energy is derived. The additional energy due to the advance is:

EA(r) =

�

e2

4πεr

�

�� adv
2π

�

r

�

(21)

The derived total energy ET (r) is obtained by equating the energy of the classical orbit EC (r)
plus the additional energy due to the orbital advance EA(r) as a function of radial distance r:

ET (r) = EC (r)+ EA(r) =
e2

4πεr
+

�

e2

4πεr

�

�� adv
2π

�

r

�

(22)

where r is the radial distance between the proton and electron. 61
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5.2. Photon Interaction with the Hydrogen Atom in S 62

The energy of a photon with wavelength r is[10]:

Eγ(r) =
hc
r

(23)

Setting equation 23 equal to ET (r) (equation 22) and adding variable K as the value of propor-
tionality between Eγ(r) and ET (r):

K
�

hc
r

�

=
e2

4πεr
+

�

e2

4πεr

�

�� adv
2π

�

r

�

(24)

Solving for K:

k =





�

e2

4πεr

�

�hc
r

�



+







�

�

e2

4πεr

�

�

( adv
2π )
r

��

�hc
r

�






(25)

Reducing and rearranging equation 25 and using equation 18 for the advance value:

K =
1

2π

�

e2

2ε0hc
+

e2

2ε0hc

�

adv
2πr

�

�

(26)

From equation 24, the photon energy equivalent to ET (r) as a function of λ is:

Eγ(λ) =

Total Potential Energy
︷ ︸︸ ︷

EC (λ)

K(λ)
︸ ︷︷ ︸

Coulomb/K

+
EA(λ)

K(λ)
︸ ︷︷ ︸

Advance/k

(27)

When one investigates λ= λ̄e (the reduced Compton wavelength[5] ) equation 27 generates
the following values:

λ= λ̄e (28)

Advance = 2πre (29)

Ratio = α (30)

r = λ̄e =
re

α
(31)

Eγ(λτ) = 2πmec2 (32)

EC (r) = αmec2 (33)

EA(r) = α2mec2 (34)

(35)

Where α is the fine structure constant[5] , re is the classical electron radius[5] , and me is 63

the mass of the electron. For a visual representation of the list of equations and values see 64

Figure 1. The equations are derived from the predicted advance of the electron orbit. The 65

advance causes an additional energy EA(r) equated as traditional Coulomb energy E′C (r ′). The 66

potential/binding energies allowable and the angular momentum states allowable energy occur 67

at discrete energy levels. 68

If an investigator examined the energy from EA(r) it is logical to imagine they would
consider it a Coulomb based potential energy. As such, from a classical viewpoint the energy
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Figure 1. Equation Breakout

would relate to equation 19. In terms of classical Coulomb energy, the advance induced energy
is:

E′C (r ′) =
e2

4πεr ′
= EA(r) =

�

e2

4πεr

�

�� adv
2π

�

r

�

(36)

To remove ambiguity the new Coulomb based equation representing an investigator’s evaluation
of EA(r) is marked with a prime symbol. The value of EA(r) when λ= λ̄e is:

EA(r) = α2mec2 = E′C (r ′) (37)

The energy in equation 37 is equivalent to the classical potential energy of the electron to the 69

proton in the Hydrogen atom (27.12 eV ). 70

Recall from the model, the advance of the electron (equation 29) is an invariant distance
2πre for any orbit. If one increments the radial magnitude by integer multiples of re, discrete
energy levels are generated. Using equation 36 and solving for r ′ (when λ= λ̄e ):

r ′ =

� re
α

�2

re
(38)

Discretize equation 38 in increments of re by adding the value n to the equation where n =
{1, 2,3, ..n}:

r ′(n) =

� nre
α

�2

re
(39)

One can now ascertain the conversion of E
′

C (r ′) into a step function of re (the gravitational
induced constant of the electron orbital advance) by:

e2

4πεr ′
=

e2

4πεr
→ r ′(n) =

� nre
α

�2

re
=

n2re

α2
(40)

Thus the energy in equation 36 has discrete allowable energy magnitudes via the following
equation:

E
′

C (n) =
e2

4πε n2re
α2

=
α2e2

4πε0n2re
(41)
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Interpreting equation 41 the total potential energy of the Hydrogen atom may only take on
discrete values due to the advance of the electron (a gravitational effect). Thus, the following
potential energies are allowed for the system:

E
′

C (1) =
α2e2

4πε0(12)re
(42)

E
′

C (2) =
α2e2

4πε0(22)re
(43)

... (44)

E
′

C (n) =
α2e2

4πε0n2re
(45)

According the Virial theorem [11] the average kinetic energy of an orbiting particle will have
half the average potential energy of the bound system [12]. Thus, to remove an electron from
an n state energy, 1

2 E
′

C (n) is required. Listed below are the values for the first three states.

�

1
2

�

E
′

C (1) = 13.6 eV (46)
�

1
2

�

E
′

C (2) = 3.40 eV (47)
�

1
2

�

E
′

C (3) = 1.51 eV (48)

(49)

If one considers the difference between energy levels, the differential energies match the
Hydrogen spectral emissions [13]:

�

1
2

�

E
′

C (1)−
�

1
2

�

E
′

C (2) = 10.20 eV (50)
�

1
2

�

E
′

C (1)−
�

1
2

�

E
′

C (3) = 12.09 eV (51)

(52)

These are representative of the Lyman series [14]. Other series may be derived in a similar 71

manner. 72

5.3. Hydrogen Atom’s Electron Angular Momentum in the Scalar Field Model 73

A natural continuation of analyzing the model is to classically calculate the angular momen-
tum of an electron in orbit around a proton. In order to calculate angular momentum, velocity
is required. From deriving equation 16 the velocity as a function of r is:

v(r) =

√

√

√ e2

4πε0me r
(53)

Using the value of r = re
α from equation 29, v(r) is:

v(r) =

√

√

√ αe2

4πε0me r
(54)

Combining the radius, mass, and velocity the classically derived angular momentum at r is:

LT (r) = rmv =

√

√

√ remee2

4πε0α
(55)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 February 2022                   doi:10.20944/preprints202202.0241.v2

https://doi.org/10.20944/preprints202202.0241.v2


8

If one steps the radial value by integer multiples of re equation 55 is transformed to a discrete
equation:

LT (n) = rmv =

√

√

√nremee2

4πε0α
(56)

Where n takes on an integer value {1,2,3..}. Next, equate the angular momentum L ′ using
equation 38 for r ′:

L ′(n) =

 
� n re
α

�2

re

!

me

√

√

√

√

√

√

√









e2

4πεme

�

( n re
α )

2

re

�









= n h̄ (57)

6. Discussion and Conjectures 74

Equation 57 provides a straight forward understanding of the model’s prediction. The 75

angular momentum of the system must step in discrete increments of energy. When λ= λ̄e the 76

discrete energy step is h̄. This correlation shows a one to one relation between the gravitational 77

induced advance of the electron and the discrete angular momentum levels allowed. This 78

provides a direct link from gravitational effects to a causal effect of quantum discrete energy 79

levels in the angular momentum of an electron proton system. The model predicts a photon of 80

wavelength λ̄e interacting with the orbital will only generate a portion of the total energy (13.6 81

eV). This implies there may be a violation of conservation of energy within the model. 82

6.1. Contracting Space-Time 83

As a possible explanation for why only the EA portion of energy is emitted with an incoming
photon, it is here conjectured that a photon’s interaction with the system only creates or absorbs
photons when space-time is contracting or expanding. This conjecture leads to the following
postulate for the model: Photon creation and absorption only happens when there is a change in
the curvature of space-time. Mathematically:

∆C =

¨

absorption, When ∆C is positive

creation, When ∆C is negative
(58)

Where C is the curvature of space-time. When the change in curvature is positive (increasing 84

- away from zero curvature) there is an energy increase in the system causing the change in 85

space-time curvature, thus the energy was adsorbed. When the change in curvature is negative 86

(decreasing - toward zero curvature) there is an energy decrease in the system causing the 87

change in space-time curvature, thus energy is created (photon). When over a period of time 88

∆C = 0 there will be no absorption or creation of photons. For clarity, the postulate states 89

when a change of the curvature of space-time happens (an event), the event generates either 90

an absorption or creation of a photon. If there is no event (i.e. change in the curvature of 91

space-time) then no photon is absorbed or created. The generated photon is proportional to the 92

change in the curvature of space-time. 93

How does this relate to the conservation of energy? If the postulate holds, then the incoming 94

energy of the photon would have been considered only 13.6 eV, and not 2πme. This is because 95

the previous interaction with matter to measure the interaction of the photon would have been 96

measured by the event of the change in the curvature of space (thus only considered 13.6 eV). In 97

other words, the additional energy would be hidden from observation because its interaction did 98

not create or absorb a photon equal to the total energy, but to the observed energy as generated 99

by the change in curvature of space-time. 100

7. Conclusion 101

In conclusion it has been shown a scalar field model produces results comparable to 102

Schwarzschild’s solution to Einstein’s field equations. In applying the model to a classical model 103
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of the Hydrogen atom, an unexpected prediction arose. The model predicted an additional 104

binding energy to the classical model that is equivalent to the binding energy of the Hydrogen 105

atom when the energy of the system is equated to the rest mass energy of the electron. The 106

derived gravitational induced constant angle of advance of the electron’s orbit is the fine structure 107

constant. In addition, when discretized, the model provides accurate spectral emissions for the 108

Hydrogen atom and a one to one relation between Planck’s reduced constant h̄ and the orbital 109

advance caused by the gravitational effect. 110

Understanding the reason(s) the model presents accuracy to empirical data when the 111

system’s energy is equivalent to the rest energy of the electron merits further research. Although 112

by adding a strong and far reaching postulate, an explanation may exist. The postulate would 113

help explain why only the gravitational predicted effect generates photons, and only generates 114

them when space-time contracts. This is a postulate of great impact across many disciplines and 115

needs much research, vetting, before fully implementing it into the field model. 116

Another area of investigation is the amount of energy the model predicts that is not 117

representative of a photon-matter interaction. Recall the model only shows the gravitational 118

effect generating a photon. As such there is a predicted ratio of α−2 of photon observed energy to 119

non-luminous energy. If such an energy exits it may prove beneficial in the hunt for dark matter 120

or dark energy. These conjectures coupled with the model’s initial agreement with empirical 121

data and accepted theory warrants deeper investigation, as well as if there are any physical 122

relevancy to the model’s predictions. 123
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