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Abstract: A 3-month (June-August) regime of the year 2002 summer rainfall (JJA2002) was simulated 1

with 30 physics combinations using the Weather Research and Forecasting (WRF) model at 12-km 2

horizontal grid resolution. The objective is to examine summer rainfall sensitivity to parameter- 3

ization of microphysical, convective, and boundary layer processes and identify an best possible 4

combination of parameterization options that performs relatively better in simulating spatial and 5

temporal distribution of summer rains over Ethiopia. The WRF simulated rainfall was evaluated 6

against station data and satellite rainfall products (CHIRPS and ENACTS) using mean absolute error, 7

Pearson and Pattern correlation coefficients (PCC), pattern correlation and and error in number of 8

rainy days as evaluation metrics. Summer rainfall is found to be most sensitive to choice of cumulus 9

parameterization and least sensitive to cloud microphysics. All simulations captured the spatial dis- 10

tribution of mean seasonal precipitation with PCC ranging from 0.89-0.94. However, all simulations 11

overestimated precipitation amount and number of rainy days. Out of the 30, the simulations that 12

uses a combination of Grell-3D cumulus scheme, ACM2 boundary layer, Lin Microphysics, Dudhai 13

shortwave radiation and RRTM longwave radiation scheme ranked the top and provided the most 14

realistic simulation in terms of amount and spatio-temporal distribution of summer rainfall. 15

Keywords: RCM, WRF, Downscaling,Parameterization, Sensitivity, Ethiopia 16

1. Introduction 17

Advancements in scientific understanding of the climate system and climate modeling 18

have promoted seasonal forecasting to be a well-established operational area at several 19

national centers[1]. As a result, different centres around the world (e.g., the National Center 20

for Environmental Prediction-NCEP, the European Center for Medium Range Weather 21

Forecast-ECMWF, Australian Bureau of Meteorology) run seasonal forecasting systems (e.g., 22

the Climate Forecast System version 2 [CFSV2, 2], seasonal forecast system [SEAS5, 3], and 23

the Australian Ocean-Atmosphere Model for Climate Prediction [POAMA, 4] respectively 24

on a global scale. These seasonal forecast products provide reasonable global perspectives 25

and outlooks of the climate several months in advance. However, despite their potential 26

applications for different socio-economic sectors, the usefulness of these forecasts has been 27

limited because of their coarse spatial resolutions [1,5]. In order for such climate forecasts to 28

be of practical societal value, it is essential for them to be issued at spatial scales appropriate 29

to the decision maker or at the scale needed to exploit them further (e.g., using them as an 30

input for hydrologic or crop simulation models) [5]. To address the scale problem and meet 31

the need for regional information, downscaling seasonal forecast by using regional climate 32

models (RCMs) became an emerging area during the last decade [5–7]. 33

Several studies around the world have demonstrated the potential advantages of 34

using RCMs to downscale coarse resolution climate predictions [e.g., 1,8–15]. Although 35
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fewer in number and scope (i.e., experimental and/or research only), RCMs have been 36

tested over Greater Horn of Africa (GHA) region. For example, in their dynamical seasonal 37

hindcast study over East Africa, [11] found that the Regional Climate Model system 4 38

(RegCM4) reproduces both spatial and inter-annual variability of seasonal rainfall and 39

captures the teleconnection between El Nino Southern Oscillation (ENSO) and regional 40

precipitation structure. Cheneka et al. [16] evaluated downscaling of global seasonal 41

hindcasts from the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) 42

using the COSMO-CLM (CCLM) RCM over East Africa during summer season over ten- 43

year period (2000–2009). They found that although COSMO-CLM didn’t remove wet 44

bias in summer precipitation over the Ethiopian highlands and in parts of the lowland, 45

it managed to add value in capturing extreme precipitation years, especially over the 46

Ethiopian highlands. 47

However, despite such promising results and the widely accepted notion that RCMs 48

can improve the simulation of precipitation compared with global forecasts owing to their 49

more comprehensive representation of the important physical processes at a finer resolution 50

[17–19], dynamical downscaling cannot be applied universally. This is due to a range of 51

options available in RCMs for different physical and dynamical parameterizations. For 52

example, WRF model (which is the focus of this study) currently provides more tha 15 53

cumulus (CU), 15 planetary boundary layer (PBL) and 20 microphysics (MP) parameteriza- 54

tions options [20]. These range of options are meant to allow users to select physics and 55

dynamics settings that optimise the model for their particular needs [21–23]. However, the 56

the variety of configurations that WRF can be operated can lead to varying results. Selection 57

of an optimum combination of options depends on quality of lateral boundary condition, 58

scales, geographic location, application, domains size, spin up, vertical resolution or nesting 59

architecture [19] and any change in the configuration of these factors can lead to varying 60

result. Hence, it is crucial to test for the most appropriate model setup for a particular 61

purpose over a given region through numerical experiments [21]. Consequently, numerous 62

sensitivity studies have been conducted over different parts of the world to identify an 63

optimum WRF configuration [e.g., 22,24–28]. 64

Despite the crucial importance of sensitivity studies, only a handful of such studies 65

have been conducted over the GHA region [e.g., 9,29]. In addition, the above few studies 66

either cover a specific season or a small portion of the region. Given the high spatial variabil- 67

ity of climate over the region and the vast possible combination of physical paramerization 68

options, the available studies are almost insignificant. Thus, in this study a range of physics 69

combinations in WRF model are used to simulate a summer rainfall during drought year of 70

2002 across GHA (with focus on Ethiopia) for identifying the best possible configurations 71

that would latter be used to dynamically downscale global seasonal precipitation forecast 72

from global models. 73

2. Materials and Methods 74

2.1. Verification data 75

In order to address observation uncertainty, we used three data sets to evaluate the 76

performance of each combination of parameterization options: daily precipitation from 77

58 meteorological stations obtained from National Meteorology Agency (NMA) archive, 78

gridded monthly precipitation from the Climate Hazards Infrared Precipitation with Sta- 79

tions version 2 [CHIRPS, 30] and gauge-satellite blended rainfall estimate from Enhancing 80

National Climate Services initiative [ENACTS, 31,32]. CHIRPS has a resolution of 0.05◦ 81

× 0.05◦ while ENACT has around 0.1◦ × 0.1◦ (10km) resolution and were mainly used to 82

evaluate performance in terms of capturing magnitude and spatial distribution of mean 83

seasonal precipitation. To facilitate grid-to-grid comparison with WRF simulation, both 84

CHIRPS and ENACTS datasets were regridded from their native grid to WRF simulation 85

grid configuration using bilinear interpolation routine from the Earth System Modelling 86

Framework (ESMF) in NCAR Command Language (NCL) Version 6.3 [33]. 87
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Despite having comparable spatial resolution to WRF simulation, the two gridded 88

datasets exhibit lower spatial details in precipitation compared to WRF likely owing to the 89

sparse network of weather stations used in the blending process (e.g., spatial distribution 90

of mean seasonal precipitation shown in Figure 3). Thus, it is important to note the possible 91

implications of this mismatch on results of evaluations. However, as these datasets are 92

relatively the best available products over the region ([34,35] and the station network over 93

the area is sparse and uneven, they have been utilized for the evaluation. In addition, 94

evaluation of performance related to intensity and frequency of rainfall events performed 95

with respect to weather stations only as the gridded products either lack data or are 96

unreliable on daily time scales. For evaluations involving weather stations, data for WRF 97

grid points nearest to respective stations were extracted. 98

2.2. Initial and boundary data 99

The initial and lateral boundary conditions including SST used to drive WRF are 100

obtained from the Climate Forecast System Reanalysis(CFSR) data set [36] where surface 101

variables have 0.3120 × 0.3120 resolution while pressure level data have 0.50 × 0.50 resolu- 102

tion with model top at 1mb. These datasets (i.e., temperature, humidity, surface pressure, 103

geopotential heights and winds) were prescribed at 6-h intervals starting on 1st May and 104

were obtained from the NCAR Research Data Archive (https://rda.ucar.edu/datasets/). 105

2.3. Model Description 106

All experiments in this study were conducted with WRF model, version 3.8.1 [20]. The 107

WRF model is a state-of-the-art, next-generation mesoscale numerical weather prediction 108

system designed to serve both operational forecasting and atmospheric research needs 109

(http://www.wrf-model.org). It is a non-hydrostatic model, with several available dynamic 110

cores as well as many different choices for physical parameterizations suitable for a broad 111

spectrum of applications across scales ranging from meters to thousands of kilometers. The 112

physics package includes microphysics, cumulus parameterization, planetary boundary 113

layer (PBL), land surface models (LSM), longwave (LWR) and shortwave radiation (SWR) 114

radiation. An in depth description of WRF model can be found in [20]. 115

2.4. Model Setup: domain and integration time 116

We used a two-domain configuration with one-way nesting for all simulations: parent 117

domain (D01) and nested domain (D02) with resolution of 12km and 4km respectively 118

(Fig 1). The parent domain (D01) is centered on Ethiopia and extends from 150S to 220N 119

and 1518E to 550E. It comprises the entire Greater Horn of Africa, central Africa, parts of 120

southern Africa, Red Sea, parts of North Africa and the Middle East, Arabian Sea and 121

western half of Indian Ocean. It is intended to encompass, to the extent feasible, regions 122

that include synoptic features and circulations which directly influence summer climate 123

over Ethiopia [17]. Although the domain is not large enough to incorporate synoptic 124

systems starting from their source regions (e.g., low level flow from Atlantic Ocean to 125

Ethiopia begins from southern Atlantic ocean where St. Elena high is located), findings 126

from previous studies ([e.g., 11,37] suggest that the domain is large enough for systems to 127

develop fully. For example, Diro et al. [11] carried out sensitivity experiment using RegCM3 128

driven by ECMWF seasonal hindcast to quantify the impact of domain size in simulating 129

the spatial pattern of summer rainfall over Ethiopia using two-domain set up, one covering 130

the horn of Africa (230E to 570E, 50S to 230N) and the second smaller domain covering 131

only Ethiopia. The comparison showed that the larger domain was far better reproducing 132

the correct precipitation pattern while the smaller domain performed relatively poor to 133

the extent that the location of precipitation maxima is misplaced. The above study, while 134

showing the importance of domain size in simulating summer precipitation over Ethiopia, 135

it also partly justifies that the size of the outer domain used in our study (which extends 136

further south and west by 10 degrees compared to larger domain used in Diro et al. [11] is 137

sufficiently large not to be too constrained to reproduce errors in the driving reanalysis [17]. 138
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The nested domain (D02) on the other hand covers the whole Ethiopia with few extra grid 139

cells on all sides to account for relaxation zone. Results discussed in subsequent sections 140

will be based on simulation outputs from D02. 141

As in horizontal resolution, a uniform vertical resolution 40 eta levels spaced closer 142

together in the PBL were used across all simulation. It cover the whole troposphere with 143

resolution decreasing slowly with height in order to allow low-level flow details to be 144

captured. The first 20 levels are inside atmospheric boundary layer (below 1500 m), with 145

the first level at approximately 16 meters, and the domain top at 100 hPa. Although it is 146

recognized that the choice of model horizontal and vertical resolution, size and location of 147

domain boundary and choice of boundary conditions can be equally important to the choice 148

of physics options [e.g., 17,29], identifying the optimum configuration for these options is 149

beyond the scope of this study. This sensitivity experiment is conducted for anomalously 150

dry summer season of 2002 with each simulation covering period from May 1st to August 151

31st. The first month of the simulation (i.e., May) was considered as model spin-up and 152

only the simulations from June through August were used for model evaluation. 153

Figure 1. The model domain and topography

2.5. Experimental setup 154

The accuracy of the model configured with a certain scheme cannot be uniquely at- 155

tributed to a single parameterization but rather to the combination of them, since feedbacks 156

are usually as important as the schemes themselves[38]. Furthermore, the suitability of a 157

specific configuration strongly depends on the region, the season, or even the particular 158

event considered and hence, there is no single configuration appropriate for every situa- 159

tion. Since testing all the possible combinations of physics options is not computationally 160

affordable, a representative sample of the physics packages was chosen with a different 161

level of complexity and formulation [38]. 162

The WRF model comprises multiple options for most parameterization schemes that 163

can be combined in any different way, enabling the user to optimize the model for a range 164

of spatial and temporal resolutions and climatologically different geographical regions 165

[22]. The options typically range from simple and efficient, to sophisticated and more 166

computationally costly, and from newly developed schemes to well-tried schemes such 167
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as those in current operational models. Since testing the extremely large ensemble of all 168

possible combinations of physics options is not computationally feasible, we considered 169

a small subset based on the most commonly used physics options for cumulus (CU), 170

planetary boundary layer (PBL), microphysics (MP) and radiation parametrization. Figure 171

2 shows the schemes tested and how the different physics options for each are combined. 172

The CU is the scheme with highest impact on precipitation simulation and is used to predict 173

the collective effects of convective clouds at smaller scales as a function of larger-scale 174

processes and conditions. The CU options tested are Kain-Fritsch [KF, 39], Betts-Miller- 175

Janjic [BMJ, 40,41] and Grell 3D [Grell, 42,43]. The PBL and surface layer schemes define 176

boundary layer fluxes (heat, moisture, momentum) and the vertical diffusion processes. 177

For PBL (and surface layer) the Yonsei University [YSU, 44], Mellor-Yamada-Janjic scheme 178

[MYJ, 40] and Asymmetric Convective Model [ACM2, 45] were tested. In the WRF model, 179

some PBL schemes are tied to particular surface layer schemes [20], so a single common 180

surface layer scheme could not be used here. Thus, Revised MM5 Monin-Obukhov scheme 181

[46] scheme was used with YSU and ACM2 and Monin-Obukhov (Janjic Eta) scheme 182

[47] scheme was used with MYJ scheme. The MP schemes allows to predict water phase 183

transitions in the atmosphere and to consider snow and hail. The MP options tested were 184

the WRF Single-Moment 6-class [WSM6, 48], LIN [Lin, 49] and Morrison double-moment 185

scheme [MOR, 50]. The combination of 3 options from CU, PBL and MP resulted in 27 186

simulations with longwave (LW) and shortwave radiation (SW) parameterizations set to 187

the Rapid Radiative Transfer Model [RRTM, 51] and Dudhia Shortwave Scheme [Dudh, 52] 188

respectively. In addition to the above 27 simulations, 3 more simulations were conducted 189

to test sensitivity to selection of radiation schemes where the RRTMG Shortwave and 190

Longwave Schemes [RRTMG, 53] was combined with Dudhai and RRTM schemes (Table 191

1). The following options were used for the other parametrization schemes: KF for CU, 192

YSU for PBL, WSM6 for MP. Unlike the RRTM/Dudhia schemes that consider a binary 193

measure of grid cloudiness, the RRTMG schemes use overlapping cloud fraction algorithms 194

to determine the cloudiness of the grid. Furthermore, RRTMG schemes take into account 195

the concentrations of trace gases, aerosols, ozone,and carbondioxide, and they consider 196

reflected shortwave radiation fluxes [26]. All the 30 experiments use the Noah land surface 197

model [54], and MODIS 21 class landuse data. 198

Figure 2. Experimental set up. Each row contains experiments with KF, BMJ and Grell 3D CU
schemes. First 3 columns YSU PBL, columns 4-6 experiments with MYJ PBL scheme and columns 7-9
ACM2 PBL scheme. Columns 1,4,7 WSM6 MP scheme; columns 2,5,8 Lin MP scheme and columns
3,6,9 Morrison MP scheme. All 27 experiments utilize RRTM LW and Dudhai SW radiation schemes.
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WRF Run Cu PBL MP LW SW

E28 KF YSU WSM6 RRTMG Dudhia
E29 KF YSU WSM6 RRTM RRTMG
E30 KF YSU WSM6 RRTMG RRTMG

Table 1. Additional set of experiments for Radiation parameterization sensitivity

2.6. Evaluation Statistics 199

The WRF simulated and observed precipitation values from meteorological stations
as well as gridded precipitation products are compared using four different statistics: the
Mean Absolute Error (MAE), pattern correlation coefficient (PCC), Pearson Correlation
Coefficient (R), daily intensity index and frequency of rainy days in the season. Gridded
rainfall products (i.e., CHIRPS and ENACT) were used as observational references in
calculating the first two statistics only while daily precipitation from meteorological stations
is used to calculate all but PCC. MAE is used to measure the closeness of the modeled
and observed values. For grid-based comparison, mean seasonal precipitation was first
computed for observation and WRF simulations and MAE was calculated over each grid-
point pairs with respect to both gridded data sets. For station-based comparison, absolute
value of bias is calculated for each day and averaged over 92 days in the season. The
PCC is computed from observed and simulated mean JJA precipitation according to the
usual Pearson correlation operating on the M grid point pairs from WRF and gridded
observations [55]:

PCC =

M
∑

m=1
(ym − y)(om − o)[

M
∑

m=1
(ym − y)2

M
∑

m=1
(om − o)2

]1/2 (1)

where y and o are WRF simulated and observed seasonal mean precipitation at the mth grid 200

point and the over-bars refer to these variables averaged over M grid points (i.e., here, M 201

refers to grid points within the boundary of Ethiopia. The PCC ranges from -1 to 1 [56] with 202

values closer to one indicating the higher skill of WRF in capturing the observed spatial 203

patterns of mean seasonal precipitation over Ethiopia. The PCC is calculated with respect 204

to both CHIRPS and ENACT and values reported in this paper are average of the two. The 205

R is used to quantify the ability of WRF simulations in capturing intra-seasonal variation 206

of daily precipitation and is calculated from time series of daily precipitation from June 207

1st to August 31st, 2002 between gauging stations and WRF grid-points where respective 208

stations fall. The error in frequency of rainy days (ERD) is computed as the difference 209

between simulated and observed total number of rainy days (i.e., daily precipitation is 210

greater than 1 mm) over WRF grid-points and gauging station. Similarly, mean Daily 211

intensity is compared by dividing total precipitation in the season with total number of 212

rainy days in the season. 213

To rank the different combination of physics options based on performance statistics,
a new aggregate score (AS) is defined and computed. As the above statistics have different
units, range and orientation, simple manipulations are applied to the scores before aggre-
gation. First, evaluation metrics that are computed over multiple grid-points or stations
(i.e., all except PCC) are averaged (spatially) to create one score for each experiment. In
terms of score orientation, R and PCC are positively oriented (larger value indicating higher
performance) while MAE, MB and ERD are negatively oriented. To facilitate aggregation,
R and PCC were converted to negative orientation by subtracting the scores from 1 (1-R or
1-PCC). All statistical scores are then normalized using Equation.2 to change their range to
0-1.

Xnorm =
Xi − Xmin

Xmax − Xmin
(2)
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where X is a score and Xmin and Xmax are defined by the best and worst of the 27 simulations 214

for any given score. 215

Thereafter, the AS were computed as the sum of the normalized (Xnorm) values of
R, PCC, MAE, MBias and ERD (Equation 3). As each of the five normalized terms have
values ranging from 0 (for the best) to 1 (for the worst), AS will range between 0 (best) and
5 (worst).

AS = Rnorm + PCCnorm + MAEnorm + MAE2norm + ERDnorm (3)

3. Result and Discussion 216

3.1. Mean seasonal precipitation 217

According to analysis of long term precipitation records from CHIRPS and ENACTS, 218

northwestern, western, and central mountainous regions of Ethiopia (where summer is the 219

main rainy season), receive 500 mm to 1200 mm of mean seasonal rainfall. The semiarid 220

regions of northeastern, eastern, southeastern and southern Ethiopia on the other hand 221

receive comparably less precipitation during JJA season that accounts for less than 25% 222

their mean annual precipitation respectively. Although 2002 is one of the driest years over 223

Ethiopia, the CHIRPS and ENACTS rainfall distribution for JJA2002 (Figure. 3a and b) is 224

similar to the long term climatology except for the relatively wetter highlands that drier 225

compared to climatology. 226

Figure. 3 (2nd to 4th column) show mean seasonal precipitation for JJA2002 for 27 227

WRF simulations shown in Figure 2 and the PCC scores for these simulations with respect 228

to both gridded products are presented in Figure 6. In general, all 27 experiments have 229

reproduced the spatial patterns of JJA precipitation over Ethiopia that includes the north- 230

south and east-west precipitation gradients, precipitation gradient within and either sides 231

of central rift valley, fine scale patterns associated with the topography; the maximum 232

precipitation over the Bale mountain ridges in southern Ethiopia and over the western 233

side of the Semien mountains. This is evident from the PCC ranging from 0.92 to 0.96 234

(Figure.6a) when compared with CHIRPS and 0.86 to 0.93 when compared with ENACTS. 235

Although the observed fine scale rainfall patterns are well reproduced, the exaggerated 236

details in WRF simulations (compared to CHIRPS and ENACTS that have comparable 237

resolution as WRF simulations) over the mountainous regions suggest an over-sensitivity 238

to the topography. Diro et al. [11] also found a similar result while comparing RegCM3 239

simulations (driven by ERA-Intrim) with TRMM gridded precipitation and suggested 240

that this might be due to misrepresented topographic forcing and the diagnostic nature of 241

convective parametrization schemes that prevent advection of evolving convective systems 242

from one grid cell to another [57]. 243

Although WRF simulations have captured spatial patterns reasonable well, all simu- 244

lations have consistently overestimated JJA precipitation prominently over the Ethiopian 245

highlands (i.e., west and northwestern Ethiopia as well as Bale Mountains on eastern side 246

of the Rift Valley) and north eastern lowlands to a lesser extent (and for selected exper- 247

iments) and slightly underestimating over southwestern and northeastern peripheries. 248

Zeleke et al. [58] also found a similar pattern where RegCM4 simulations although repro- 249

ducing climatological rainfall pattern show positive and negative biases over the western 250

mountainous regions and some isolated lowland areas (e.g., area extending from north to 251

south between northwestern highlands and northeastern lowlands respectively(large dry 252

bias),mountainous regions on the eastern side of rift valley) respectively when compared 253

with RegCM4 simulation of JJAS rainfall averaged over period from 1989 to 2005. 254
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Figure 3. Seasonal (JJA) mean precipitation (mm/day) during 2002 for a) CHIRPS, b)ENACTS and
WRF Simulation. First column KF CU scheme, 2nd BMJ CU scheme and 3rd Grell CU scheme. 2-4
row YSU PBL scheme, 5-7 MYJ PBL scheme and 8-10 ACM2 PBL scheme. Rows 2, 5 and 8 WSM6 MP
scheme; rows 3,6,and 9 Lin scheme and rows 5,7 and 10 Morrison MP scheme. Refer to Figure 2 for
more details.

The wet bias is the highest for simulations using KF CU scheme followed by BMJ and 255

the least for Grell CU scheme (Figure.3 and ??). Over some of these locations, wet bias 256

exceeds 10mm/day and covers the largest area under KF scheme followed by BMJ that 257

shows localized spots. Such wet bias magnitudes are however seen only at a single location 258

for Grell scheme. Although Grell scheme has outperformed KF and BMJ schemes in terms 259

of mean seasonal precipitation magnitude, it has a false wet spot over northeastern dry 260
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lowlands of Ethiopia where precipitation is overestimated by as much as 6mm/day when 261

compared with both gridded datasets. Although not as extensive and as large as Grell, 262

this wet bias is also exhibited for KF scheme. The wet bias for simulations involving KF 263

scheme show no change regardless of changes in PBL schemes (YSU and MYJ) and MP 264

schemes (all three) except when used together with ACM2 PBL. There is still a considerable 265

wet bias but smaller than the other KF simulations. When KF and Grell CU schemes are 266

used with MYJ PBL scheme results in a notable increase in wet bias over northeastern 267

lowlands (among other locations). For KF CU scheme, the wet bias increases in magnitude 268

and extends further east when used with MYJ PBL scheme. For Grell CU scheme, the 269

wet bias is present across all simulations but magnitude increases when used with MYJ 270

scheme. Unlike KF and Grell , BMJ CU scheme performed better when used with MYJ 271

PBL scheme with significantly smaller wet bias over highlands and better representation 272

of precipitation gradient on either sides of the rift valley. This confirms to the findings 273

of Gbode et al. [59] who pointed out that schemes that are developed together tend to 274

perform better. Precipitation is least sensitive to Microphysics schemes with only noticeable 275

response seen when BMJ Cu and YSU PBL schemes are used with Morrison MP scheme 276

which results in a relatively higher wet bias use of WSM6 and Lin MP schemes. 277

Figure 4. Seasonal (JJA) mean precipitation (mm/day) during 2002 for a) CHIRPS, b)ENACTS, WRF
Simulation with c-e) CU sensitivity with KF, BMJ and Grell CU physics option, f-h) PBL sensitivity
with YSU, MJY and ACM2 options respectively, i-k) Microphysics sensitivity with WSM6, Lin and
Morrison options respectively. The WRF simulated rainfall for each group (CU, PBL and MP) are
mean of 9 members with different combinations.
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Figure 5. Seasonal (JJA) mean precipitation (mm/day) during 2002 for a) CHIRPS, b)ENACTS,
ensemble mean of WRF simulation utilizing c) KF CU, d)BMJ CU, e)Grell CU, f)YSU PBL, g)MYJ PBL,
h) ACM2 PBL, i)WSM6 MP, j)Lin MP, k)Morrison MP options. The WRF simulated rainfall for each
group (CU, PBL and MP) are mean of 9 members with different combinations.

Figure 6. Pattern Correlation Coefficient of seasonal mean JJA precipitation between WRF simulations
and CHIRPS a) and ENACTS b) for 3 homogeneous rainfall zones and entire country
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Figure 7. Bias in spatially averaged JJA mean precipitation (mm/day) during 2002 against CHIRPS
(red) and ENACTS (blue) datasets for a) Homogeneous zone A, b) and C) Zone C.

The large wet bias over highlands of Ethiopia is in line with previous studies [37, 278

60,61] that showed biases of simulated rainfall to be large in mountainous regions. For 279

example, Endris et al. [61] evaluated the ability of WRF (and other 9 RCMs in CORDEX 280

experiment) to simulate the characteristics of rainfall patterns over East Africa and found 281

that WRF overestimated JJAS rainfall climatology over the Ethiopian highlands. Although 282

the horizontal resolution in this study is quite different from 50km resolution used by 283

Endris et al. [61], the model setup used coincides with E1 (i.e., KF CU, WSM5 MP, YSU PBL, 284

Dudhia SW, and RRTM LW radiation schemes). 285

The performance of WRF simulations in capturing JJA2002 rainfall is further evaluated 286

by spatially averaging seasonal rainfall over three homogeneous rainfall zones (after Diro 287

et al. [62]) shown in Fig.6. Figure.7 illustrates simulation bias in JJA2002 mean rainfall 288

spatially averaged over homogeneous zones with respect to CHIRPS and ENACTS datasets. 289

Bias with respect to the two reference datasets show reasonable agreement in terms of both 290

magnitude and inter-simulation differences. However, over Zone A and B, bias magnitude 291

is higher when CHIRPS is used as a reference (by 1.17 mm/day and 0.17 mm/day on 292

average respectively) while for Zone C magnitudes become slightly higher when ENACT 293

is used as reference. As expected, bias is larger for Zone A which encompasses wetter and 294

summer rain receiving areas and ranges from 3.5 mm (E26) to 9.5 mm (E6). For Zone C, 295

which is characterized by a dry summer, all simulations exhibit very similar rainfall rates 296

but slight bias differences can be seen among experiment. 297
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When compared across simulations, the bias is consistently smaller for simulations 298

with Grell CU (i.e., 4.5 mm for zone A) compared to KF and BMJ CU schemes (5.7 mm and 299

8.1 mm for zone A respectively). For all experiments, bais is smallest when ACM2 PBL is 300

used. The difference is relatively higher when ACM2 is used with KF and BMJ CU schemes. 301

As in the grid-by-grid comparison, no notable pattern can be seen between different MP 302

schemes. The spatial averaging has further demonstrated that KF and Grell CU perform 303

better when used with ACM2 PBL. For example, for zone A out of the 9 simulations using 304

KF CU (i.e., E1-E9) simulations with ACM2 PBL (E7-E9) have an average bias 2.4 mm/day 305

and 3 mm/day smaller than simulations with YSU PBL (E1-E3) and MYJ PBL (E4-E6) 306

respectively. In addition, BMJ CU simulations (E10-18) perform relatively better when used 307

with ACM2 over Zones B and C. Although JJA2002 precipitation is least sensitive to MP 308

schemes and lack notable pattern as compared to CU and PBL schemes, Figures 3, 4 and 7 309

show some kind of pattern where Morrison MP scheme when used with BMJ CU scheme 310

results in higher magnitude of bias over Zone A. However, a similar pattern seen over Zone 311

B (Figure.7b), E12, E15 and E18) is mostly due to the cancellation of wet and dry biases 312

during spatial averaging. 313

In terms of sensitivity, the differences exhibited among CU schemes are far more 314

greater than differences seen among PBL and MP schemes indicating that precipitation is 315

most sensitive to changes in CU parameterization. This is expected as the use of different 316

convection schemes leads to substantially different simulations of lower tropospheric circu- 317

lations and thus significantly affecting simulated rainfall amounts[17,63]. To demonstrate 318

the differences in level of sensitivity among CU, PBL and MP parameterizations, ensemble 319

means are created for three schemes from each parameterization option and presented in 320

Figure 4 and 5 compared to gridded and weather station data respectively. For example, 321

ensemble mean of all 9 experiments using KF, BMJ and Grell CU (Figure 4A-C and Fig- 322

ure 5A-C), regardless of PBL and MP schemes, clearly shows that there is a substantial 323

difference among CU schemes with Grell ensemble showing the least wet bias and KF 324

the largest wet bias. Although there are some notable differences among ensemble means 325

for PBL and MP ensembles, they are significantly smaller than differences among CU 326

schemes. This is expected as the use of different convection schemes leads to substantially 327

different simulations of lower tropospheric circulations and thus significantly affecting 328

simulated rainfall amounts [17,63]. All the above comparisons (i.e., WRF simulation vs 329

gridded observations) were made using weather station precipitation as a reference and 330

show similar bias and sensitivity patterns as in the gridded comparison (Figure. A1 and 331

A2. 332
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No. of stations in each bias category
Exp

0-10 10-20 20-30 30-40 40-50 50-70
Max Bias
(in Days)

Avg. Bias
(in Days)

Avg. Bias/
physics option

E1 5 12 13 10 7 0 46 22.9 KF Only=26.7
E2 6 13 15 7 9 0 47 23.7 BMJ Only=27.8
E3 4 17 10 10 8 0 46 22.7 Grell Only=30.9
E4 4 10 10 8 10 3 53 26.7 YSU Only=26.2
E5 4 9 12 7 13 1 52 27.3 MYJ Only=28.7
E6 5 12 12 6 11 3 54 26.9 ACM2 Only=21.1
E7 12 19 11 6 1 0 44 16.0 WSM6 Only=24.8
E8 13 14 13 5 1 0 42 15.5 LIN Only=25.0
E9 7 15 14 8 2 0 44 18.9 Morr Only=26.2

E10 3 14 12 14 4 1 53 25.6
E11 4 13 14 17 3 1 52 26.1
E12 5 9 18 14 4 2 56 27.1
E13 4 12 19 10 6 2 52 27.1
E14 4 9 15 16 5 2 53 27.8
E15 3 12 13 11 8 2 56 29.2
E16 6 18 17 6 2 0 47 19.3
E17 10 15 18 5 2 0 43 18.8
E18 6 14 16 12 4 0 47 23.7

E19 6 7 10 14 8 6 62 29.2
E20 4 9 10 14 9 4 59 29.2
E21 4 10 9 12 10 4 61 29.4
E22 3 10 10 8 12 6 68 30.9
E23 3 7 11 8 11 7 65 31.3
E24 4 9 11 10 11 6 69 30.9
E25 7 9 16 13 5 2 56 25.4
E26 3 14 12 14 6 2 56 25.3
E27 4 13 14 14 4 3 60 26.6

Table 2. Bias in simulated number of rainy days compared to weather station and number of stations
in different rainy day bias categories for 27 WRF simulations. Last column is bias averaged over 9
experiments with similar parameterization schemes for each physics options. For example, KF Only
bias is average of 9 experiments with KF CU scheme regardless of parameterization schemes used for
PBL and MP.
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Figure 8. Observed number of rainy days over weather station (top) and bias in WRF simulated
number of rainy days during JJA season of 2002 compared to weather stations

3.2. Rainy day frequency and intensity 333

In this section, WRF simulations are evaluated for their performance in reproducing 334

the observed frequency of rainy days and the various categories of rainfall intensities 335

over the 92-day simulation period. Rainy days are defined as days with the amount of 336

rainfall recorded/simulated at a station/grid-point greater than 1 mm. The observed 337

rainy day frequency (Figure. 8,top) show large spatial variability ranging from 0 days 338

in south and southeastern lowlands where JJA is not main rainy season (e.g., 0, 0, 2 and 339

3 days over Kebridehar, Gode, Negelle and Degehabour stations) to more than 75 days 340

over stations located in western and northwestern highlands (e.g., Bahirdar, Debremarkos, 341

Chagni, Nekemte and Shambu). The significantly larger magnitude of rainy days over 342

western and northwestern Ethiopia is however expected as these locations receive larger 343

proportion of annual rainfall during summer months. Overall, all WRF simulations have 344

overestimated rainy days except for 4 stations in south and southeast (i.e., Arba Minch, 345

Negelle, Jijiga and Degehabour) that underestimated number rainy days by 1 to 6 days 346

for selected experiments. However, the above cases account only 1.3% of the total station- 347

experiment combination (i.e., 20 cases out of 1512). Out of the 20, 55% occur over Negelle 348

station located in southern Ethiopia while in terms of experiment 50% and 40% involve KF 349

and Grell CU schemes respectively. 350

Unlike the underestimation, magnitude of the positive bias is significantly large and 351

reaches as high as 69 days over the arid northeastern lowlands for simulation E24 that 352

uses Grell CU, MYJ PBL and MOR MP. As seen in Fig.8, rainy days bias follows a similar 353

spatial pattern across experiments. The most prominent is the larger bias magnitudes over 354

stations located around western escarpment of the Rift Valley (stretching from north to 355

central Ethiopia) and eastern escarpment of Rift Valley (from Bale to eastern highlands) 356

despite these stations having significantly fewer number of observed rainy days (in orders 357

of 30-40 days) compared to those over west and northwest. The other similar pattern is 358

related to stations over south and south eastern lowlands which have the least number of 359

rainy days (less than 15 days) still show the least bias. On the contrary, two station over 360

northeast lowlands show a very high bias that go as high as 69 days for simulations using 361

Grell CU. 362
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Figure 9. Summary statistics for rainy day averaged over stations

When comparing rainy days bias among experiments, some notable differences can 363

be seen. In general, all simulations involving Grell CU scheme (E19-E27) show larger bias 364

compared to corresponding experiments utilizing KF and BMJ CU schemes but with similar 365

PBL and MP schemes (Figure 8 and Table 9). When averaged over the 54 stations and 366

experiments, rainy days bias for Grell -only experiments show average bias of around 31 367

days while KF-only and BMJ-only simulations showing 26.7 and 27.8 days respectively. 368

Rainy days frequency shows an even more sensitivity to choice of PBL schemes where a 369

significant difference in mean bias is seen among experiments using YSU, MYJ and ACM2 370

(i.e., 28.9, 31.6 and 21.7 days respectively). However, for MP paramerization, the difference 371

among the three schemes is relatively very small (24.8, 25 and 26.2 days for WSM6-, Lin- and 372

Morrison-only schemes respectively). Another notable pattern among experiments is that 373

all CU and MP schemes performed better when used together with ACM2 PBL scheme. For 374

example, for experiments using KF CU and ACM2 PBL (E7, E8 and E9) average bias is 16.8 375

days and increases to 23.1 days and 27 days when YSU (E1-E3) and MYJ (E4-E6) PBL are is 376

used respectively. As shown above, the same also holds true when bias is averaged over 377

ACM2-, YSU- and MYJ-only experiments. In addition, out of the 9 experiments with the 378

least bias averaged over stations, 6 use ACM2 PBL or KF CU schemes. When considering 379

frequency of rainy days as evaluation criteria, the above findings suggest that E8 (KF CU, 380

ACM2 PBL and Lin MP) followed by E7 (KF CU, ACM2 PBL and Morrison MP) schemes 381

performed relatively better (Table 2). 382

In terms of daily rainfall intensity, simulations show a general spatial pattern where 383

intensity is overestimated over the highlands (i.e., central, west and northwest Ethiopia) 384

and either slightly overestimated or underestimated the elsewhere (Figure 10. This is 385

somehow a reversed pattern compared to rainy days as areas with larger/smaller rainy 386

day bias have relatively smaller/larger bias in rainfall intensity. This is more evident over 387

station located around the eastern escarpment of the Rift Valley that showed a small positive 388

bias for KF CU simulations and small negative bias for BMJ and Grell CU simulations. As 389

in mean seasonal rainfall, rainfall intensity showed the most sensitivity to choice of CU 390

parameterization options followed by PBL and MP options. This can be seen from the 391

differences among simulations that are the largest when CU options are changed (Table 392

3). For example, summary of mean absolute bias in intensity (MAB) (Table 3, last column) 393

shows that MAB averaged over similar CU options has a relatively larger differences 394

(1.6mm) compared to differences in PBL (0.4mm) and MP (0.2mm) parameterizations. 395

Overall, simulations with KF CU showed the largest MAB of 5mm averaged over 396

stations and highest number of stations with MAB > 5mm/day (i.e., 22 stations) and 397

MAB > 10mm/day (9.3 stations). Simulations with Grell CU on the other hand performed 398

relatively better with the lowest MAB 3.4mm/day and lowest number of station with MAB 399

> 5mm/day (15.1 stations) and MAB > 10mm/day (1.4 stations). Even though KF CU 400

simulations have the least bias magnitude in terms of rainy day frequency, this significantly 401

large bias in intensity has resulted in KF simulations to have the highest wet bias in terms 402

of seasonal mean precipitation. Another notable pattern is that BMJ CU performs better 403

when used with MJY PBL (developed together with MYJ CU scheme). For example, MAB 404

increases from 3.2mm/day when BMJ CU is used together with MYJ PBL to 4.2mm/day 405
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and 4.7mm when used with YSU and ACM2 PBL options respectively. The same also 406

holds true for the other statistics in Table 3. When comparing biases in seasonal total 407

precipitation, rainy days, and intensity, the patterns suggested that wet bias over the 408

highlands is still significantly higher compared to the areas showing larger rainy day bias 409

which indicates that source of bias for seasonal precipitation for the highlands is mostly 410

overestimated precipitation intensity while for areas like eastern escapement of the Rift 411

Valley overestimated rainy days mostly accounts for wet bias. 412

Exp
Bias across stations

MAB
No. Station

MAB/option
Avg Min Max MAB > 5 MAB >10

E1 4.1 -8.3 15.1 5.2 24 10 KF-Only =5.0
E2 4.1 -8.0 17.1 5.4 24 10 BMJ-Only=4.0
E3 4.3 -7.0 16.5 5.4 24 9 Grell -Only=3.4
E4 4.0 -8.0 17.3 5.2 22 11 YSU-Only=4.3
E5 4.0 -7.6 16.8 5.1 23 9 MYJ-Only=3.9
E6 4.2 -7.3 17.5 5.3 22 13 ACM2-Only=4.2
E7 3.2 -7.6 14.7 4.4 21 6 WSM6-Only=4.1
E8 2.9 -8.3 15.5 4.7 20 6 Lin-Only=4.1
E9 3.1 -8.9 17.9 4.6 18 10 Morrison-Only=4.3

E10 0.6 -10.4 12.0 3.8 16 3
E11 0.8 -9.9 9.4 4.2 18 0
E12 2.0 -9.9 15.0 4.5 21 6
E13 0.2 -11.0 7.1 3.1 10 2
E14 0.0 -10.7 6.9 3.0 10 1
E15 1.2 -10.1 10.9 3.5 14 2
E16 1.1 -10.2 14.8 4.4 17 4
E17 1.1 -11.6 15.7 4.8 18 6
E18 1.9 -9.5 17.9 4.8 22 6
E19 -0.2 -10.2 8.9 3.4 18 2

E20 -0.3 -10.3 9.4 3.6 18 2
E21 -0.6 -11.3 8.2 3.6 19 2
E22 -0.6 -9.8 7.6 3.3 14 0
E23 -0.4 -9.3 8.8 3.2 13 0
E24 -0.9 -10.1 6.9 3.3 12 1
E25 -1.0 -11.7 9.6 3.7 13 2
E26 -1.8 -11.7 8.1 3.3 14 2
E27 -1.8 -12.1 7.9 3.3 15 2

Table 3. Summary statistics from comparison of simulated and observed (weather stations) rainfall
intensity across experiments over grid-points where stations are located in. Last column is bias
averaged over physics options (9 members for each).
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Figure 10. Bias in the mean rainfall intensity (Rainy day total/number of rainy days) during JJA season of 2002 compared to 54 weather stations for 27 WRF experiments
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3.3. Radiation scheme 413

As stated in the methods section, assessing the sensitivity of radiation schemes (long- and 414

short wave) was not part of the primary objectives of this study and additional set of 415

simulations were run (E28, E29 and E30 Table xx) after completion of the other simulations 416

which use fixed options for radiation (i.e., Dudhai for SW and RRTM for LW). All three 417

simulations were compared with E1 which use similar options for CU (KF), PBL (YSU) and 418

MP (WSM6) as the three experiments. E1 uses RRTM scheme for LW and Dudhai for SW; 419

E28 uses RRTMG for LW and Dudhai for SW; E29 used RRTM for LW and RRTMG for SW; 420

E30 uses RRTMG scheme for both LW and SW radiation. 421

Figures.11 shows comparison of seasonal mean precipitation between radiation ex- 422

periments with station observation. Given the fact that KF CU scheme is used in all the 423

four simulations, it can be seen that all four simulations have consistently overestimated 424

seasonal mean precipitation with only a single station showing dry bias of 1 mm for ex- 425

periments E1 and E28. However, significant differences can be observed among them. E29 426

(RRTM for LW and RRTMG) performed the least with average wet bias of 9.1 mm (range 427

0-23 mm). Out of the 59 stations used for comparison, E29 showed the highest bias for 41 428

stations and for 26 out 59 stations show wet bias of 10mm or more. On the other hand, 429

E28 (RRTMG-Dudhai) performed relatively better with wet bias of 5 mm averaged over 430

stations (range -1 mm to 16 mm). In addition, E28 showed the least bias for 43 stations 431

out of 59. E30 and E1 show a similar (close) performance with mean bias of 6 mm (range 432

0-13mm) and 6.4 mm (range -1-16mm) respectively. It can also be seen that there is a marked 433

difference in wet bias when physics option for SW is changed than LW (i.e., comparing 434

RRTM-Dudhai(Figure.11b) and RRTM-RRTMG (Figure.11d) vs RRTM-Dudhai(Figure.11b) 435

and RRTM-RRTMG (Figure.11c). This result is consistent with previous sensitivity studies 436

over other regions [29](Yuan et al.2012; Awan et al.2011), that have found that shortwave 437

radiation schemes in particular to have a strong precipitation response. 438

Despite the complex algorithms utilized by RRTMG scheme (i.e.,overlapping cloud 439

fraction for determining grid cloudiness, take into account the concentrations of trace 440

gases, aerosols, ozone,and carbon dioxide[26,53]), the results above do not reflect the 441

complexity of the scheme.(i.e., RRTMG-Dudhai combination better than RRTMG-RRTMG 442

showed better performance ). In addition, it deviates from studies (xxx) have suggested that 443

schemes developed together tend to perform better. However, these performances are not 444

necessarily attributed to the limitation of the parameterization schemes but may possibly 445

be the result of other options used for other physics (Cu, PBL and MP). For example, 446

[22] found that the RRTMG radiation, KF cumulus,and YSU PBL physics combination to 447

perform consistently poorly for all their simulations of storm events in Eastern Australia 448

and all our radiation experiments use KF schmeme for CU. 449

Thus, we performed a preliminary experiment with the following combinations (but 450

keeping RRTMG for both LW and SW), to see how performance is affected by different 451

combinations: E31(KF-YSU-Lin), E32(KF-YSU-Mor), E33(KF-MYJ-WSM6), E34(KF-MYJ- 452

Lin) and E35(KF-MYJ-Mor). Comparison of the mean seasonal precipitation confirms to 453

our initial hypothesis that choices made for other schemes affect the performance. Among 454

the experiments using RRTMG for both LW and SW radiation (i.e., E30-E35), performance 455

seems to be sensitive to choice of Microphysic scheme with those utilizing WSM6 scheme 456

(E30 and E33) showing the least bias (6mm and xxmm respectively). On the other hand, 457

no differences were seen between use of either YSU or MYJ PBL schemes. Although not 458

robust, this might be an indication that RRTMG radiation scheme works well when used 459

with WSM6 MP scheme. However, it should be noted that all radiation experiments use KF 460

for CU and a higher sensitivity might be seen if other CU schemes are tested with RRTMG 461

option for both LW and SW. 462
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Figure 11. Comparison of Radiation schemes a)CHIRPS, b)LW: RRTM, c)RRTMG, d)SW: Dudhai and
e)RRTMG

Comparison of mean seasonal precipitation with gridded products (Figure 12) also 463

showed a similar result as station-based comparison. The RRTM-RRTMG combination 464

(i.e., E29) showed the largest wet bias over western and northwestern parts of the country. 465

The simulated precipitation is two folds of observed precipitation over large portion of the 466

highlands. Although all four radiation experiments overestimated precipitation, the spatial 467

extent of the bias reduces significantly for E1 (RRTM-Dudhai), E30(RRTMG-RRTMG) and 468

E28(RRTMG-Dudhai) in an increasing order. The above results suggest that use of Dudhai 469

scheme for shortwave radiation is the right choice but for longwave radiation, use of RRTM 470

scheme might be questionable or at least require further investigation to choose between 471

RRTM or the more complex RRTMG scheme. 472
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Figure 12. Comparison of Radiation schemes a)CHIRPS, b)ENACTS, c)LW: RRTM, d)RRTMG, e)SW:
Dudhai and e)RRTMG

3.4. Ranking 473

The ranking has been performed using aggregate score that is the summation of 474

normalized MAEStn, MAEGrd, ERD, R and PCC with equal weight assigned to each. Lower 475

and higher Agg Score indicates better and worse performance respectively. Among the 27 476

experiments ranked, none of the simulations performed uniformly the best or the worst on 477

all five statistics. However, simulations with Grell CU scheme performed the best in terms 478

of average MAE (both station and grid-based), R and PCC while performed relatively poor 479

in terms of capturing the number of rainy days in a season. It can also be noted that using 480

YSU and MYJ PBL schemes with Grell CU scheme improves performance in capturing 481

the spatial patterns of mean seasonal precipitation but on the expense of deteriorating 482

performance in terms o f rainy days. On the contrary, simulations with KF were poor in 483

terms of MAE and R and performed better in capturing number of rainy days and spatial 484

patterns of seasonal precipitation. The performance of simulations with BMJ CU scheme 485

were in between KF and Grell schemes for most of the statistics but performed the best in 486

terms of R while performance in terms of PCC are relatively poor when when used with 487

ACM2 PBL scheme. The same holds true for KF CU scheme where PCC scores are poor 488

when used with ACM2. However, for statistics other than PCC, simulations that use ACM2 489

PBL with KF performed better than those using YSU and MYJ. 490

To better visualize rank scores, we subjectively defined performance category of very 491

good (AS<1.0), good (1.0<AS<2.0), Moderate (2.0<A.0), Poor (3.0<AS<4.0) and very poor 492

(AS>4.0) based on aggregate score and presented them in Figure.13. According to this 493

classification, 22.2%, 55.6%, 18.5% and 3.7% fall under good, moderate, poor and very poor 494

category respectively. It can be seen that there is no significant difference between the 495

MP used as their combinations with the same CU and PBL schemes fall within the same 496

performance category (in most cases). For the CU schemes, 5 out of 9 Grell combinations 497

produce good simulations while KF, on the contrary, performs poorly and very poorly 498

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2022                   doi:10.20944/preprints202202.0239.v1

https://doi.org/10.20944/preprints202202.0239.v1


Version February 16, 2022 submitted to Journal Not Specified 21 of 26

with YSU and MYJ PBL combinations. KF performance improved to moderate category 499

when combined with ACM2 PBL. Among the three CU physics options, BMJ CU fall under 500

moderate category for all combinations except one that includes WSM6 MP option which 501

falls under good performance category. 502

Rank ID Description MAEStn MAEGrd ERD R PCC Agg Score

1 E26 Grell -ACM2-Lin 0.00 0.00 0.63 0.15 0.28 1.06
2 E27 Grell -ACM2-Mor 0.00 0.00 0.73 0.16 0.30 1.19
3 E25 Grell -ACM2-WSM6 0.14 0.11 0.65 0.31 0.44 1.65
4 E16 BMJ-ACM2-WSM6 0.33 0.29 0.28 0.00 0.84 1.74
5 E21 Grell -YSU-Mor 0.20 0.31 0.89 0.36 0.05 1.81
6 E20 Grell -YSU-Lin 0.24 0.39 0.87 0.33 0.10 1.93
7 E22 Grell -MYJ-WSM6 0.23 0.33 1.00 0.46 0.03 2.04
8 E14 BMJ-MYJ-Lin 0.27 0.26 0.79 0.39 0.33 2.04
9 E24 Grell -MYJ-Mor 0.19 0.22 0.98 0.59 0.07 2.06
10 E13 BMJ-MYJ-WSM6 0.31 0.22 0.75 0.50 0.29 2.06
11 E19 Grell -YSU-WSM6 0.27 0.39 0.89 0.44 0.10 2.09
12 E17 BMJ-ACM2-Lin 0.36 0.30 0.26 0.21 1.00 2.13
13 E10 BMJ-YSU-WSM6 0.31 0.37 0.67 0.11 0.67 2.13
14 E15 BMJ-MYJ-Mor 0.43 0.45 0.88 0.41 0.04 2.20
15 E23 Grell -MYJ-Lin 0.27 0.34 1.00 0.61 0.00 2.21
16 E7 KF-ACM2-WSM6 0.59 0.45 0.01 0.49 0.75 2.29
17 E8 KF-ACM2-Lin 0.57 0.42 0.00 0.47 0.91 2.38
18 E18 BMJ-ACM2-Mor 0.48 0.40 0.54 0.26 0.75 2.43
19 E12 BMJ-YSU-Mor 0.52 0.56 0.77 0.23 0.40 2.47
20 E11 BMJ-YSU-Lin 0.38 0.38 0.70 0.32 0.71 2.49
21 E9 KF-ACM2-Mor 0.63 0.47 0.20 0.56 0.82 2.69
22 E1 KF-YSU-WSM6 0.83 0.79 0.47 0.56 0.68 3.33
23 E3 KF-YSU-Mor 0.92 0.85 0.45 0.71 0.43 3.36
24 E2 KF-YSU-Lin 0.90 0.88 0.52 0.64 0.66 3.61
25 E4 KF-MYJ-WSM6 0.98 0.93 0.71 0.81 0.35 3.78
26 E6 KF-MYJ-Mor 1.00 0.97 0.72 0.78 0.37 3.83
27 E5 KF-MYJ-Lin 1.00 1.00 0.77 1.00 0.38 4.15

Table 4. Rank of experiments based on Aggregate score. MAEStn stands for average MAE based on
station and MAEGrd stands for mean MAE based on average of all grid points from gridded data.
ERD is error in number of rainy days averaged over all weather stations. R is average temporal
correlation among all stations while PCC is pattern correlation between observed (gridded) and
simulated mean seasonal precipitation. All scores (except AS) are normalized over 27 experiments
and AS is the sum of the 5 normalized scores.
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Figure 13. Rank category based on Aggregate score

4. Conclusions 503

In this study, the performance of the WRF model has been investigated with respect to 504

the spatial and temporal rainfall distribution over a domain encompassing Ethiopia (nested 505

domain with 4km) for JJA season of 2002. Different combinations of three CU, three PBL, 506

three MP, two LW and two SW parameterization schemes have been tested in order to select 507

an optimum WRF configuration for further study aimed at assessing the performance of 508

WRF to dynamically downscale seasonal climate prediction from coarse resolution global 509

models over the region. All of the simulations were run over 4-month period from May 510

to August 2002 but evaluation was conducted on 3-month (June-August) with May left as 511

a model spin-up period. WRF simulations were compared with both gridded and gauge 512

observed data. Mean bias, PCC, R and bias in rainy day frequency were used as a criteria 513

to evaluate performance with respect to both spatial and temporal distribution of rainfall. 514

The findings of this study have demonstrated that a suitable selection of parame- 515

terizations can improve performance of simulation which is evident from the range of 516

skill scores among the different experiments (e.g., mean bias xx-xxx, bias in rainy days 517

xxx-xxx). While changing different physical parameterizations, we found out that changes 518

in cumulus parameterization influenced different aspects of summer precipitation the most, 519

with pbl schemes coming next. Out of the 27 simulations (which used Dudhai for SW, 520

RRTM for LW and NOAH land surface model) the combination of Grell -3D convective 521

scheme, ACM2 PBL scheme and Lin Microphysics scheme ranked the top and provided the 522

most realistic simulation in terms of spatial distribution, rainfall totals, and MA bias when 523

compared to observations. A preliminary assessment also revealed that Dudhai shortwave 524

parameterization scheme which was used throughout the 27 simulations, performs better 525

than RRTMG scheme while no conclusive evidence was found between RRTMG and RRTM 526

(default used in this study) longwave schemes. Thus, this set up was chosen for continued 527

study. 528

We cannot exclude that configurations that were not tested here might potentially 529

perform better. In addition, parameterizations kept fixed in this study, such as (land surface 530

model) or other simulation setups like number of vertical level, size and placement of 531

domains and source of initial and boundary conditions) can also affect the results and likely 532

reduce the model biases. However, any additional consideration of these factors would 533

tremendously increase number of simulations (e.g., consideration of only one additional 534

land surface model would double number of simulations), being prohibitive with respect to 535

the available computational resources and time. In addition, Note that these errors should 536

also be evaluated in view of the uncertainties present in observational data sets,which can 537

be high especially over remote areas or mountainous regions[17]. Nevertheless, this study 538

can serve as a reference for potential WRF users in the region to further investigate use 539

of WRF as a dynamical downscaling tool for seasonal rainfall forecasting or for climate 540

variability and change studies over the region. For climate purposes, although longer 541

periods (including both wet and dry years) are preferable when identifying configurations 542

that describe as correctly as possible the local climate rather than particular periods [38], 543

we have conducted the experiment over a single season (i.e., dry summer of 2002) which 544

might limit the robustness of results. Thus, extending the study with additional "wet" and 545

"normal" seasons will possibly improve reliability of results. In this study, we followed the 546

traditional technique where model results are directly compared with in situ observations, 547
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although this is not a like-with-like comparison. Site-specific measurements describe 548

conditions at single stations affected by very local characteristics, whereas the WRF outputs 549

define average values of the variables over a gridbox[38]. In areas with complex terrain, 550

the "representation error" is of particular importance because the station might be at the 551

extreme of the cell topographical diversity. Thus, other suggested techniques of evaluation 552

such as use of upscaled observations [64] should be tested. 553

Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 554

10.3390/1010000/s1, Figure S1: Mean absolute error in WRF simulated mean JJA precipitation 555

compared to weather stations, Figure S2: . 556
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Appendix A Mean seasonal precipitation 564

Figure A1. Bias in simulated JJA mean precipitation (mm/day) during 2002 compared to weather
stations. First column KF CU scheme, 2nd BMJ CU scheme and 3rd Grell CU scheme. 2-4 row YSU
PBL scheme, 5-7 MYJ PBL scheme and 8-10 ACM2 PBL scheme. Rows 2, 5 and 8 WSM6 MP scheme;
rows 3,6,and 9 Lin scheme and rows 5,7 and 10 Morrison MP scheme.
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Figure A2. Mean absolute error in WRF simulated mean JJA precipitation (mm/day) during 2002
compared to station data for 58 stations (x-axis) and 27 WRF simulations(y-axis).
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