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Abstract: A 3-month (June-August) regime of the year 2002 summer rainfall (JJA2002) was simulated
with 30 physics combinations using the Weather Research and Forecasting (WRF) model at 12-km
horizontal grid resolution. The objective is to examine summer rainfall sensitivity to parameter-
ization of microphysical, convective, and boundary layer processes and identify an best possible
combination of parameterization options that performs relatively better in simulating spatial and
temporal distribution of summer rains over Ethiopia. The WRF simulated rainfall was evaluated
against station data and satellite rainfall products (CHIRPS and ENACTS) using mean absolute error,
Pearson and Pattern correlation coefficients (PCC), pattern correlation and and error in number of
rainy days as evaluation metrics. Summer rainfall is found to be most sensitive to choice of cumulus
parameterization and least sensitive to cloud microphysics. All simulations captured the spatial dis-
tribution of mean seasonal precipitation with PCC ranging from 0.89-0.94. However, all simulations
overestimated precipitation amount and number of rainy days. Out of the 30, the simulations that
uses a combination of Grell-3D cumulus scheme, ACM2 boundary layer, Lin Microphysics, Dudhai
shortwave radiation and RRTM longwave radiation scheme ranked the top and provided the most
realistic simulation in terms of amount and spatio-temporal distribution of summer rainfall.
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1. Introduction

Advancements in scientific understanding of the climate system and climate modeling
have promoted seasonal forecasting to be a well-established operational area at several
national centers[1]. As a result, different centres around the world (e.g., the National Center
for Environmental Prediction-NCEP, the European Center for Medium Range Weather
Forecast-ECMWF, Australian Bureau of Meteorology) run seasonal forecasting systems (e.g.,
the Climate Forecast System version 2 [CFSV2, 2], seasonal forecast system [SEAS5, 3], and
the Australian Ocean-Atmosphere Model for Climate Prediction [POAMA, 4] respectively
on a global scale. These seasonal forecast products provide reasonable global perspectives
and outlooks of the climate several months in advance. However, despite their potential
applications for different socio-economic sectors, the usefulness of these forecasts has been
limited because of their coarse spatial resolutions [1,5]. In order for such climate forecasts to
be of practical societal value, it is essential for them to be issued at spatial scales appropriate
to the decision maker or at the scale needed to exploit them further (e.g., using them as an
input for hydrologic or crop simulation models) [5]. To address the scale problem and meet
the need for regional information, downscaling seasonal forecast by using regional climate
models (RCMs) became an emerging area during the last decade [5-7].

Several studies around the world have demonstrated the potential advantages of
using RCMs to downscale coarse resolution climate predictions [e.g., 1,8-15]. Although
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fewer in number and scope (i.e., experimental and/or research only), RCMs have been
tested over Greater Horn of Africa (GHA) region. For example, in their dynamical seasonal
hindcast study over East Africa, [11] found that the Regional Climate Model system 4
(RegCM4) reproduces both spatial and inter-annual variability of seasonal rainfall and
captures the teleconnection between El Nino Southern Oscillation (ENSO) and regional
precipitation structure. Cheneka et al. [16] evaluated downscaling of global seasonal
hindcasts from the Max Planck Institute for Meteorology Earth System Model (MPI-ESM)
using the COSMO-CLM (CCLM) RCM over East Africa during summer season over ten-
year period (2000-2009). They found that although COSMO-CLM didn’t remove wet
bias in summer precipitation over the Ethiopian highlands and in parts of the lowland,
it managed to add value in capturing extreme precipitation years, especially over the
Ethiopian highlands.

However, despite such promising results and the widely accepted notion that RCMs
can improve the simulation of precipitation compared with global forecasts owing to their
more comprehensive representation of the important physical processes at a finer resolution
[17-19], dynamical downscaling cannot be applied universally. This is due to a range of
options available in RCMs for different physical and dynamical parameterizations. For
example, WRF model (which is the focus of this study) currently provides more tha 15
cumulus (CU), 15 planetary boundary layer (PBL) and 20 microphysics (MP) parameteriza-
tions options [20]. These range of options are meant to allow users to select physics and
dynamics settings that optimise the model for their particular needs [21-23]. However, the
the variety of configurations that WRF can be operated can lead to varying results. Selection
of an optimum combination of options depends on quality of lateral boundary condition,
scales, geographic location, application, domains size, spin up, vertical resolution or nesting
architecture [19] and any change in the configuration of these factors can lead to varying
result. Hence, it is crucial to test for the most appropriate model setup for a particular
purpose over a given region through numerical experiments [21]. Consequently, numerous
sensitivity studies have been conducted over different parts of the world to identify an
optimum WRF configuration [e.g., 22,24-28].

Despite the crucial importance of sensitivity studies, only a handful of such studies
have been conducted over the GHA region [e.g., 9,29]. In addition, the above few studies
either cover a specific season or a small portion of the region. Given the high spatial variabil-
ity of climate over the region and the vast possible combination of physical paramerization
options, the available studies are almost insignificant. Thus, in this study a range of physics
combinations in WRF model are used to simulate a summer rainfall during drought year of
2002 across GHA (with focus on Ethiopia) for identifying the best possible configurations
that would latter be used to dynamically downscale global seasonal precipitation forecast
from global models.

2. Materials and Methods
2.1. Verification data

In order to address observation uncertainty, we used three data sets to evaluate the
performance of each combination of parameterization options: daily precipitation from
58 meteorological stations obtained from National Meteorology Agency (NMA) archive,
gridded monthly precipitation from the Climate Hazards Infrared Precipitation with Sta-
tions version 2 [CHIRPS, 30] and gauge-satellite blended rainfall estimate from Enhancing
National Climate Services initiative [ENACTS, 31,32]. CHIRPS has a resolution of 0.05°
x 0.05° while ENACT has around 0.1° x 0.1° (10km) resolution and were mainly used to
evaluate performance in terms of capturing magnitude and spatial distribution of mean
seasonal precipitation. To facilitate grid-to-grid comparison with WRF simulation, both
CHIRPS and ENACTS datasets were regridded from their native grid to WRF simulation
grid configuration using bilinear interpolation routine from the Earth System Modelling
Framework (ESMF) in NCAR Command Language (NCL) Version 6.3 [33].
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Despite having comparable spatial resolution to WRF simulation, the two gridded
datasets exhibit lower spatial details in precipitation compared to WRF likely owing to the
sparse network of weather stations used in the blending process (e.g., spatial distribution
of mean seasonal precipitation shown in Figure 3). Thus, it is important to note the possible
implications of this mismatch on results of evaluations. However, as these datasets are
relatively the best available products over the region ([34,35] and the station network over
the area is sparse and uneven, they have been utilized for the evaluation. In addition,
evaluation of performance related to intensity and frequency of rainfall events performed
with respect to weather stations only as the gridded products either lack data or are
unreliable on daily time scales. For evaluations involving weather stations, data for WRF
grid points nearest to respective stations were extracted.

2.2. Initial and boundary data

The initial and lateral boundary conditions including SST used to drive WRF are
obtained from the Climate Forecast System Reanalysis(CFSR) data set [36] where surface
variables have 0.312° x 0.312° resolution while pressure level data have 0.5° x 0.5 resolu-
tion with model top at 1mb. These datasets (i.e., temperature, humidity, surface pressure,
geopotential heights and winds) were prescribed at 6-h intervals starting on 15t May and
were obtained from the NCAR Research Data Archive (https://rda.ucar.edu/datasets/).

2.3. Model Description

All experiments in this study were conducted with WRF model, version 3.8.1 [20]. The
WRF model is a state-of-the-art, next-generation mesoscale numerical weather prediction
system designed to serve both operational forecasting and atmospheric research needs
(http:/ /www.wrf-model.org). It is a non-hydrostatic model, with several available dynamic
cores as well as many different choices for physical parameterizations suitable for a broad
spectrum of applications across scales ranging from meters to thousands of kilometers. The
physics package includes microphysics, cumulus parameterization, planetary boundary
layer (PBL), land surface models (LSM), longwave (LWR) and shortwave radiation (SWR)
radiation. An in depth description of WRF model can be found in [20].

2.4. Model Setup: domain and integration time

We used a two-domain configuration with one-way nesting for all simulations: parent
domain (D01) and nested domain (D02) with resolution of 12km and 4km respectively
(Fig 1). The parent domain (DO01) is centered on Ethiopia and extends from 15%S to 22N
and 1518E to 55°E. It comprises the entire Greater Horn of Africa, central Africa, parts of
southern Africa, Red Sea, parts of North Africa and the Middle East, Arabian Sea and
western half of Indian Ocean. It is intended to encompass, to the extent feasible, regions
that include synoptic features and circulations which directly influence summer climate
over Ethiopia [17]. Although the domain is not large enough to incorporate synoptic
systems starting from their source regions (e.g., low level flow from Atlantic Ocean to
Ethiopia begins from southern Atlantic ocean where St. Elena high is located), findings
from previous studies ([e.g., 11,37] suggest that the domain is large enough for systems to
develop fully. For example, Diro et al. [11] carried out sensitivity experiment using RegCM3
driven by ECMWEF seasonal hindcast to quantify the impact of domain size in simulating
the spatial pattern of summer rainfall over Ethiopia using two-domain set up, one covering
the horn of Africa (23°E to 57°E, 5%S to 23YN) and the second smaller domain covering
only Ethiopia. The comparison showed that the larger domain was far better reproducing
the correct precipitation pattern while the smaller domain performed relatively poor to
the extent that the location of precipitation maxima is misplaced. The above study, while
showing the importance of domain size in simulating summer precipitation over Ethiopia,
it also partly justifies that the size of the outer domain used in our study (which extends
further south and west by 10 degrees compared to larger domain used in Diro et al. [11] is
sufficiently large not to be too constrained to reproduce errors in the driving reanalysis [17].
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The nested domain (D02) on the other hand covers the whole Ethiopia with few extra grid
cells on all sides to account for relaxation zone. Results discussed in subsequent sections
will be based on simulation outputs from D02.

As in horizontal resolution, a uniform vertical resolution 40 eta levels spaced closer
together in the PBL were used across all simulation. It cover the whole troposphere with
resolution decreasing slowly with height in order to allow low-level flow details to be
captured. The first 20 levels are inside atmospheric boundary layer (below 1500 m), with
the first level at approximately 16 meters, and the domain top at 100 hPa. Although it is
recognized that the choice of model horizontal and vertical resolution, size and location of
domain boundary and choice of boundary conditions can be equally important to the choice
of physics options [e.g., 17,29], identifying the optimum configuration for these options is
beyond the scope of this study. This sensitivity experiment is conducted for anomalously
dry summer season of 2002 with each simulation covering period from May 1 to August
31%t. The first month of the simulation (i.e., May) was considered as model spin-up and
only the simulations from June through August were used for model evaluation.
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Figure 1. The model domain and topography

2.5. Experimental setup

The accuracy of the model configured with a certain scheme cannot be uniquely at-
tributed to a single parameterization but rather to the combination of them, since feedbacks
are usually as important as the schemes themselves[38]. Furthermore, the suitability of a
specific configuration strongly depends on the region, the season, or even the particular
event considered and hence, there is no single configuration appropriate for every situa-
tion. Since testing all the possible combinations of physics options is not computationally
affordable, a representative sample of the physics packages was chosen with a different
level of complexity and formulation [38].

The WRF model comprises multiple options for most parameterization schemes that
can be combined in any different way, enabling the user to optimize the model for a range
of spatial and temporal resolutions and climatologically different geographical regions
[22]. The options typically range from simple and efficient, to sophisticated and more
computationally costly, and from newly developed schemes to well-tried schemes such
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as those in current operational models. Since testing the extremely large ensemble of all
possible combinations of physics options is not computationally feasible, we considered
a small subset based on the most commonly used physics options for cumulus (CU),
planetary boundary layer (PBL), microphysics (MP) and radiation parametrization. Figure
2 shows the schemes tested and how the different physics options for each are combined.
The CU is the scheme with highest impact on precipitation simulation and is used to predict
the collective effects of convective clouds at smaller scales as a function of larger-scale
processes and conditions. The CU options tested are Kain-Fritsch [KF, 39], Betts-Miller-
Janjic [BM], 40,41] and Grell 3D [Grell, 42,43]. The PBL and surface layer schemes define
boundary layer fluxes (heat, moisture, momentum) and the vertical diffusion processes.
For PBL (and surface layer) the Yonsei University [YSU, 44], Mellor-Yamada-Janjic scheme
[MY], 40] and Asymmetric Convective Model [ACM?2, 45] were tested. In the WRF model,
some PBL schemes are tied to particular surface layer schemes [20], so a single common
surface layer scheme could not be used here. Thus, Revised MM5 Monin-Obukhov scheme
[46] scheme was used with YSU and ACM2 and Monin-Obukhov (Janjic Eta) scheme
[47] scheme was used with MY] scheme. The MP schemes allows to predict water phase
transitions in the atmosphere and to consider snow and hail. The MP options tested were
the WRF Single-Moment 6-class [WSM6, 48], LIN [Lin, 49] and Morrison double-moment
scheme [MOR, 50]. The combination of 3 options from CU, PBL and MP resulted in 27
simulations with longwave (LW) and shortwave radiation (SW) parameterizations set to
the Rapid Radiative Transfer Model [RRTM, 51] and Dudhia Shortwave Scheme [Dudh, 52]
respectively. In addition to the above 27 simulations, 3 more simulations were conducted
to test sensitivity to selection of radiation schemes where the RRTMG Shortwave and
Longwave Schemes [RRTMG, 53] was combined with Dudhai and RRTM schemes (Table
1). The following options were used for the other parametrization schemes: KF for CU,
YSU for PBL, WSM6 for MP. Unlike the RRTM/Dudhia schemes that consider a binary
measure of grid cloudiness, the RRTMG schemes use overlapping cloud fraction algorithms
to determine the cloudiness of the grid. Furthermore, RRTMG schemes take into account
the concentrations of trace gases, aerosols, ozone,and carbondioxide, and they consider
reflected shortwave radiation fluxes [26]. All the 30 experiments use the Noah land surface
model [54], and MODIS 21 class landuse data.

PBL
LW(|SW
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Figure 2. Experimental set up. Each row contains experiments with KF, BMJ and Grell 3D CU
schemes. First 3 columns YSU PBL, columns 4-6 experiments with MY]J PBL scheme and columns 7-9
ACM2 PBL scheme. Columns 1,4,7 WSM6 MP scheme; columns 2,5,8 Lin MP scheme and columns
3,6,9 Morrison MP scheme. All 27 experiments utilize RRTM LW and Dudhai SW radiation schemes.
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WRFRun Cu PBL MP LW SW

E28 KF YSU WSM6 RRTMG Dudhia
E29 KF YSU WSMé6 RRTM RRTMG
E30 KF YSU WSM6 RRTMG RRTMG

Table 1. Additional set of experiments for Radiation parameterization sensitivity

2.6. Evaluation Statistics

The WRF simulated and observed precipitation values from meteorological stations
as well as gridded precipitation products are compared using four different statistics: the
Mean Absolute Error (MAE), pattern correlation coefficient (PCC), Pearson Correlation
Coefficient (R), daily intensity index and frequency of rainy days in the season. Gridded
rainfall products (i.e., CHIRPS and ENACT) were used as observational references in
calculating the first two statistics only while daily precipitation from meteorological stations
is used to calculate all but PCC. MAE is used to measure the closeness of the modeled
and observed values. For grid-based comparison, mean seasonal precipitation was first
computed for observation and WRF simulations and MAE was calculated over each grid-
point pairs with respect to both gridded data sets. For station-based comparison, absolute
value of bias is calculated for each day and averaged over 92 days in the season. The
PCC is computed from observed and simulated mean JJA precipitation according to the
usual Pearson correlation operating on the M grid point pairs from WRF and gridded
observations [55]:

M
Y (ym —y)(om —0)

PCC= — m=1 v » 1)
§1<ym —7)? §1<om —0)?

where y and o are WRF simulated and observed seasonal mean precipitation at the m*" grid
point and the over-bars refer to these variables averaged over M grid points (i.e., here, M
refers to grid points within the boundary of Ethiopia. The PCC ranges from -1 to 1 [56] with
values closer to one indicating the higher skill of WRF in capturing the observed spatial
patterns of mean seasonal precipitation over Ethiopia. The PCC is calculated with respect
to both CHIRPS and ENACT and values reported in this paper are average of the two. The
Ris used to quantify the ability of WRF simulations in capturing intra-seasonal variation
of daily precipitation and is calculated from time series of daily precipitation from June
15t to August 31, 2002 between gauging stations and WRF grid-points where respective
stations fall. The error in frequency of rainy days (ERD) is computed as the difference
between simulated and observed total number of rainy days (i.e., daily precipitation is
greater than 1 mm) over WRF grid-points and gauging station. Similarly, mean Daily
intensity is compared by dividing total precipitation in the season with total number of
rainy days in the season.

To rank the different combination of physics options based on performance statistics,
a new aggregate score (AS) is defined and computed. As the above statistics have different
units, range and orientation, simple manipulations are applied to the scores before aggre-
gation. First, evaluation metrics that are computed over multiple grid-points or stations
(i-e., all except PCC) are averaged (spatially) to create one score for each experiment. In
terms of score orientation, R and PCC are positively oriented (larger value indicating higher
performance) while MAE, MB and ERD are negatively oriented. To facilitate aggregation,
R and PCC were converted to negative orientation by subtracting the scores from 1 (1-R or
1-PCC). All statistical scores are then normalized using Equation.2 to change their range to
0-1.
Xi — Xinin

_— 2
Xinax — Xmin ( )

Xnorm =
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where X is a score and Xpin and Xmax are defined by the best and worst of the 27 simulations
for any given score.
Thereafter, the AS were computed as the sum of the normalized (Xnorm) values of
R, PCC, MAE, MBias and ERD (Equation 3). As each of the five normalized terms have
values ranging from O (for the best) to 1 (for the worst), AS will range between 0 (best) and
5 (worst).
AS = Ryorm + PCCrorm + MAEorm + MAE2y0rm + ERDyorm (3)

3. Result and Discussion
3.1. Mean seasonal precipitation

According to analysis of long term precipitation records from CHIRPS and ENACTS,
northwestern, western, and central mountainous regions of Ethiopia (where summer is the
main rainy season), receive 500 mm to 1200 mm of mean seasonal rainfall. The semiarid
regions of northeastern, eastern, southeastern and southern Ethiopia on the other hand
receive comparably less precipitation during JJA season that accounts for less than 25%
their mean annual precipitation respectively. Although 2002 is one of the driest years over
Ethiopia, the CHIRPS and ENACTS rainfall distribution for J[JA2002 (Figure. 3a and b) is
similar to the long term climatology except for the relatively wetter highlands that drier
compared to climatology.

Figure. 3 (2" to 4™ column) show mean seasonal precipitation for JJA2002 for 27
WREF simulations shown in Figure 2 and the PCC scores for these simulations with respect
to both gridded products are presented in Figure 6. In general, all 27 experiments have
reproduced the spatial patterns of JJA precipitation over Ethiopia that includes the north-
south and east-west precipitation gradients, precipitation gradient within and either sides
of central rift valley, fine scale patterns associated with the topography; the maximum
precipitation over the Bale mountain ridges in southern Ethiopia and over the western
side of the Semien mountains. This is evident from the PCC ranging from 0.92 to 0.96
(Figure.6a) when compared with CHIRPS and 0.86 to 0.93 when compared with ENACTS.
Although the observed fine scale rainfall patterns are well reproduced, the exaggerated
details in WRF simulations (compared to CHIRPS and ENACTS that have comparable
resolution as WRF simulations) over the mountainous regions suggest an over-sensitivity
to the topography. Diro et al. [11] also found a similar result while comparing RegCM3
simulations (driven by ERA-Intrim) with TRMM gridded precipitation and suggested
that this might be due to misrepresented topographic forcing and the diagnostic nature of
convective parametrization schemes that prevent advection of evolving convective systems
from one grid cell to another [57].

Although WRF simulations have captured spatial patterns reasonable well, all simu-
lations have consistently overestimated JJA precipitation prominently over the Ethiopian
highlands (i.e., west and northwestern Ethiopia as well as Bale Mountains on eastern side
of the Rift Valley) and north eastern lowlands to a lesser extent (and for selected exper-
iments) and slightly underestimating over southwestern and northeastern peripheries.
Zeleke et al. [58] also found a similar pattern where RegCM4 simulations although repro-
ducing climatological rainfall pattern show positive and negative biases over the western
mountainous regions and some isolated lowland areas (e.g., area extending from north to
south between northwestern highlands and northeastern lowlands respectively(large dry
bias),mountainous regions on the eastern side of rift valley) respectively when compared
with RegCM4 simulation of JJAS rainfall averaged over period from 1989 to 2005.
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f : CHIRPS

ENACTS

E47

Figure 3. Seasonal (JJA) mean precipitation (mm/day) during 2002 for a) CHIRPS, b)ENACTS and
WRF Simulation. First column KF CU scheme, 2nd BMJ CU scheme and 3rd Grell CU scheme. 2-4
row YSU PBL scheme, 5-7 MY] PBL scheme and 8-10 ACM2 PBL scheme. Rows 2, 5 and 8 WSM6 MP
scheme; rows 3,6,and 9 Lin scheme and rows 5,7 and 10 Morrison MP scheme. Refer to Figure 2 for
more details.

The wet bias is the highest for simulations using KF CU scheme followed by BM] and
the least for Grell CU scheme (Figure.3 and ??). Over some of these locations, wet bias
exceeds 10mm/day and covers the largest area under KF scheme followed by BM] that
shows localized spots. Such wet bias magnitudes are however seen only at a single location
for Grell scheme. Although Grell scheme has outperformed KF and BM] schemes in terms
of mean seasonal precipitation magnitude, it has a false wet spot over northeastern dry
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lowlands of Ethiopia where precipitation is overestimated by as much as 6mm/day when
compared with both gridded datasets. Although not as extensive and as large as Grell,

this wet bias is also exhibited for KF scheme.

The wet bias for simulations involving KF

scheme show no change regardless of changes in PBL schemes (YSU and MY]J) and MP
schemes (all three) except when used together with ACM2 PBL. There is still a considerable
wet bias but smaller than the other KF simulations. When KF and Grell CU schemes are
used with MY] PBL scheme results in a notable increase in wet bias over northeastern
lowlands (among other locations). For KF CU scheme, the wet bias increases in magnitude
and extends further east when used with MY] PBL scheme. For Grell CU scheme, the
wet bias is present across all simulations but magnitude increases when used with MY]
scheme. Unlike KF and Grell , BM] CU scheme performed better when used with MY]
PBL scheme with significantly smaller wet bias over highlands and better representation
of precipitation gradient on either sides of the rift valley. This confirms to the findings
of Gbode et al. [59] who pointed out that schemes that are developed together tend to
perform better. Precipitation is least sensitive to Microphysics schemes with only noticeable
response seen when BM] Cu and YSU PBL schemes are used with Morrison MP scheme
which results in a relatively higher wet bias use of WSM6 and Lin MP schemes.
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Figure 4. Seasonal (JJA) mean precipitation (mm/day) during 2002 for a) CHIRPS, b)ENACTS, WRF
Simulation with c-e) CU sensitivity with KF, BM] and Grell CU physics option, f-h) PBL sensitivity
with YSU, MJY and ACM?2 options respectively, i-k) Microphysics sensitivity with WSM6, Lin and
Morrison options respectively. The WRF simulated rainfall for each group (CU, PBL and MP) are

mean of 9 members with different combinations.
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group (CU, PBL and MP) are mean of 9 members with different combinations.
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Zone B
Zone A
Ethiopia

El E3 E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 =

b) PCC (WRF vs ENACTS) -

Zone C
Zone B
Zone A

Ethiopia
El E3 E5 E7 ES9 E11 E13 E15 E17 E19 E21 E23 E25 E27
| | DNl | BN
0.6 0.7 0.8 0.9

Figure 6. Pattern Correlation Coefficient of seasonal mean JJA precipitation between WRF simulations
and CHIRPS a) and ENACTS b) for 3 homogeneous rainfall zones and entire country
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Figure 7. Bias in spatially averaged JJA mean precipitation (mm/day) during 2002 against CHIRPS
(red) and ENACTS (blue) datasets for a) Homogeneous zone A, b) and C) Zone C.

The large wet bias over highlands of Ethiopia is in line with previous studies [37,
60,61] that showed biases of simulated rainfall to be large in mountainous regions. For
example, Endris et al. [61] evaluated the ability of WRF (and other 9 RCMs in CORDEX
experiment) to simulate the characteristics of rainfall patterns over East Africa and found
that WRF overestimated JJAS rainfall climatology over the Ethiopian highlands. Although
the horizontal resolution in this study is quite different from 50km resolution used by
Endris ef al. [61], the model setup used coincides with E1 (i.e., KF CU, WSM5 MP, YSU PBL,
Dudhia SW, and RRTM LW radiation schemes).

The performance of WRF simulations in capturing JJA2002 rainfall is further evaluated
by spatially averaging seasonal rainfall over three homogeneous rainfall zones (after Diro
et al. [62]) shown in Fig.6. Figure.” illustrates simulation bias in JJA2002 mean rainfall
spatially averaged over homogeneous zones with respect to CHIRPS and ENACTS datasets.
Bias with respect to the two reference datasets show reasonable agreement in terms of both
magnitude and inter-simulation differences. However, over Zone A and B, bias magnitude
is higher when CHIRPS is used as a reference (by 1.17 mm/day and 0.17 mm/day on
average respectively) while for Zone C magnitudes become slightly higher when ENACT
is used as reference. As expected, bias is larger for Zone A which encompasses wetter and
summer rain receiving areas and ranges from 3.5 mm (E26) to 9.5 mm (E6). For Zone C,
which is characterized by a dry summer, all simulations exhibit very similar rainfall rates
but slight bias differences can be seen among experiment.
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When compared across simulations, the bias is consistently smaller for simulations
with Grell CU (i.e., 4.5 mm for zone A) compared to KF and BM]J CU schemes (5.7 mm and
8.1 mm for zone A respectively). For all experiments, bais is smallest when ACM2 PBL is
used. The difference is relatively higher when ACM2 is used with KF and BMJ CU schemes.
As in the grid-by-grid comparison, no notable pattern can be seen between different MP
schemes. The spatial averaging has further demonstrated that KF and Grell CU perform
better when used with ACM2 PBL. For example, for zone A out of the 9 simulations using
KF CU (i.e., E1-E9) simulations with ACM2 PBL (E7-E9) have an average bias 2.4 mm/day
and 3 mm/day smaller than simulations with YSU PBL (E1-E3) and MY] PBL (E4-E6)
respectively. In addition, BMJ CU simulations (E10-18) perform relatively better when used
with ACM2 over Zones B and C. Although JJA2002 precipitation is least sensitive to MP
schemes and lack notable pattern as compared to CU and PBL schemes, Figures 3, 4 and 7
show some kind of pattern where Morrison MP scheme when used with BMJ CU scheme
results in higher magnitude of bias over Zone A. However, a similar pattern seen over Zone
B (Figure.7b), E12, E15 and E18) is mostly due to the cancellation of wet and dry biases
during spatial averaging.

In terms of sensitivity, the differences exhibited among CU schemes are far more
greater than differences seen among PBL and MP schemes indicating that precipitation is
most sensitive to changes in CU parameterization. This is expected as the use of different
convection schemes leads to substantially different simulations of lower tropospheric circu-
lations and thus significantly affecting simulated rainfall amounts[17,63]. To demonstrate
the differences in level of sensitivity among CU, PBL and MP parameterizations, ensemble
means are created for three schemes from each parameterization option and presented in
Figure 4 and 5 compared to gridded and weather station data respectively. For example,
ensemble mean of all 9 experiments using KF, BMJ and Grell CU (Figure 4A-C and Fig-
ure 5A-C), regardless of PBL and MP schemes, clearly shows that there is a substantial
difference among CU schemes with Grell ensemble showing the least wet bias and KF
the largest wet bias. Although there are some notable differences among ensemble means
for PBL and MP ensembles, they are significantly smaller than differences among CU
schemes. This is expected as the use of different convection schemes leads to substantially
different simulations of lower tropospheric circulations and thus significantly affecting
simulated rainfall amounts [17,63]. All the above comparisons (i.e., WRF simulation vs
gridded observations) were made using weather station precipitation as a reference and
show similar bias and sensitivity patterns as in the gridded comparison (Figure. A1 and
A2,
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Exp No. of stations in each bias category Max Bias Avg. Bias Avg. Bias/

0-10 10-20 20-30 3040 40-50 50-70 (inDays) (inDays) physics option
El 5 12 13 10 7 0 46 22.9 KF Only=26.7
E2 6 13 15 7 9 0 47 23.7 BM]J Only=27.8
E3 4 17 10 10 8 0 46 22.7 Grell Only=30.9
E4 4 10 10 8 10 3 53 26.7 YSU Only=26.2
E5 4 9 12 7 13 1 52 27.3 MY]J Only=28.7
E6 5 12 12 6 11 3 54 26.9 ACM2 Only=21.1
E7 12 19 11 6 1 0 44 16.0 WSM6 Only=24.8
E8 13 14 13 5 1 0 42 15.5 LIN Only=25.0
E9 7 15 14 8 2 0 44 18.9 Morr Only=26.2
E10 3 14 12 14 4 1 53 25.6
E1ll 4 13 14 17 3 1 52 26.1
E12 5 9 18 14 4 2 56 27.1
E13 4 12 19 10 6 2 52 27.1
El4 4 9 15 16 5 2 53 27.8
E15 3 12 13 11 8 2 56 29.2
El6 6 18 17 6 2 0 47 19.3
E17 10 15 18 5 2 0 43 18.8
E18 6 14 16 12 4 0 47 23.7
E19 6 7 10 14 8 6 62 29.2
E20 4 9 10 14 9 4 59 29.2
E21 4 10 9 12 10 4 61 29.4
E22 3 10 10 8 12 6 68 30.9
E23 3 7 11 8 11 7 65 313
E24 4 9 11 10 11 6 69 30.9
E25 7 9 16 13 5 2 56 25.4
E26 3 14 12 14 6 2 56 25.3
E27 4 13 14 14 4 3 60 26.6

Table 2. Bias in simulated number of rainy days compared to weather station and number of stations
in different rainy day bias categories for 27 WRF simulations. Last column is bias averaged over 9
experiments with similar parameterization schemes for each physics options. For example, KF Only
bias is average of 9 experiments with KF CU scheme regardless of parameterization schemes used for
PBL and MP.
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Figure 8. Observed number of rainy days over weather station (top) and bias in WRF simulated
number of rainy days during JJA season of 2002 compared to weather stations

3.2. Rainy day frequency and intensity

In this section, WRF simulations are evaluated for their performance in reproducing
the observed frequency of rainy days and the various categories of rainfall intensities
over the 92-day simulation period. Rainy days are defined as days with the amount of
rainfall recorded/simulated at a station/grid-point greater than 1 mm. The observed
rainy day frequency (Figure. 8,top) show large spatial variability ranging from 0 days
in south and southeastern lowlands where JJA is not main rainy season (e.g., 0, 0, 2 and
3 days over Kebridehar, Gode, Negelle and Degehabour stations) to more than 75 days
over stations located in western and northwestern highlands (e.g., Bahirdar, Debremarkos,
Chagni, Nekemte and Shambu). The significantly larger magnitude of rainy days over
western and northwestern Ethiopia is however expected as these locations receive larger
proportion of annual rainfall during summer months. Overall, all WRF simulations have
overestimated rainy days except for 4 stations in south and southeast (i.e., Arba Minch,
Negelle, Jijiga and Degehabour) that underestimated number rainy days by 1 to 6 days
for selected experiments. However, the above cases account only 1.3% of the total station-
experiment combination (i.e., 20 cases out of 1512). Out of the 20, 55% occur over Negelle
station located in southern Ethiopia while in terms of experiment 50% and 40% involve KF
and Grell CU schemes respectively.

Unlike the underestimation, magnitude of the positive bias is significantly large and
reaches as high as 69 days over the arid northeastern lowlands for simulation E24 that
uses Grell CU, MY] PBL and MOR MP. As seen in Fig.8, rainy days bias follows a similar
spatial pattern across experiments. The most prominent is the larger bias magnitudes over
stations located around western escarpment of the Rift Valley (stretching from north to
central Ethiopia) and eastern escarpment of Rift Valley (from Bale to eastern highlands)
despite these stations having significantly fewer number of observed rainy days (in orders
of 30-40 days) compared to those over west and northwest. The other similar pattern is
related to stations over south and south eastern lowlands which have the least number of
rainy days (less than 15 days) still show the least bias. On the contrary, two station over
northeast lowlands show a very high bias that go as high as 69 days for simulations using
Grell CU.
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Parametrization Mean Rainyday Bias| , .. e Rainyday Bias
Physics Options Schemes (across 54 stations) | average range

KF 24.82 18.20 16.6 - 30.8
cuU BMJ 26.29 21.10 18.8-31.0
Grell 31.13 25.80 25.4-35.6
] 28.91 NA 25.7-32.7
PBL MY 31.64 NA 28.4-356
ACM2 21.69 NA 16.6 - 26.0
WSM6 26.95 21.00 17.3-35.0
MP Lin 26.96 20.30 16.6 - 35.6
Mor 28.33 23.80 20.8 -34.7

Figure 9. Summary statistics for rainy day averaged over stations

When comparing rainy days bias among experiments, some notable differences can
be seen. In general, all simulations involving Grell CU scheme (E19-E27) show larger bias
compared to corresponding experiments utilizing KF and BMJ CU schemes but with similar
PBL and MP schemes (Figure 8 and Table 9). When averaged over the 54 stations and
experiments, rainy days bias for Grell -only experiments show average bias of around 31
days while KF-only and BMJ-only simulations showing 26.7 and 27.8 days respectively.
Rainy days frequency shows an even more sensitivity to choice of PBL schemes where a
significant difference in mean bias is seen among experiments using YSU, MY] and ACM2
(i.e., 28.9, 31.6 and 21.7 days respectively). However, for MP paramerization, the difference
among the three schemes is relatively very small (24.8, 25 and 26.2 days for WSM6-, Lin- and
Morrison-only schemes respectively). Another notable pattern among experiments is that
all CU and MP schemes performed better when used together with ACM2 PBL scheme. For
example, for experiments using KF CU and ACM2 PBL (E7, E8 and E9) average bias is 16.8
days and increases to 23.1 days and 27 days when YSU (E1-E3) and MY] (E4-E6) PBL are is
used respectively. As shown above, the same also holds true when bias is averaged over
ACM2-, YSU- and MY]J-only experiments. In addition, out of the 9 experiments with the
least bias averaged over stations, 6 use ACM2 PBL or KF CU schemes. When considering
frequency of rainy days as evaluation criteria, the above findings suggest that E8 (KF CU,
ACM2 PBL and Lin MP) followed by E7 (KF CU, ACM2 PBL and Morrison MP) schemes
performed relatively better (Table 2).

In terms of daily rainfall intensity, simulations show a general spatial pattern where
intensity is overestimated over the highlands (i.e., central, west and northwest Ethiopia)
and either slightly overestimated or underestimated the elsewhere (Figure 10. This is
somehow a reversed pattern compared to rainy days as areas with larger/smaller rainy
day bias have relatively smaller/larger bias in rainfall intensity. This is more evident over
station located around the eastern escarpment of the Rift Valley that showed a small positive
bias for KF CU simulations and small negative bias for BMJ and Grell CU simulations. As
in mean seasonal rainfall, rainfall intensity showed the most sensitivity to choice of CU
parameterization options followed by PBL and MP options. This can be seen from the
differences among simulations that are the largest when CU options are changed (Table
3). For example, summary of mean absolute bias in intensity (MAB) (Table 3, last column)
shows that MAB averaged over similar CU options has a relatively larger differences
(1.6mm) compared to differences in PBL (0.4mm) and MP (0.2mm) parameterizations.

Overall, simulations with KF CU showed the largest MAB of 5mm averaged over
stations and highest number of stations with MAB > 5mm/day (i.e., 22 stations) and
MAB > 10mm/day (9.3 stations). Simulations with Grell CU on the other hand performed
relatively better with the lowest MAB 3.4mm/day and lowest number of station with MAB
> 5mm/day (15.1 stations) and MAB > 10mm/day (1.4 stations). Even though KF CU
simulations have the least bias magnitude in terms of rainy day frequency, this significantly
large bias in intensity has resulted in KF simulations to have the highest wet bias in terms
of seasonal mean precipitation. Another notable pattern is that BMJ CU performs better
when used with MJY PBL (developed together with MY]J CU scheme). For example, MAB
increases from 3.2mm/day when BM]J CU is used together with MY]J PBL to 4.2mm/day
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and 4.7mm when used with YSU and ACM2 PBL options respectively. The same also
holds true for the other statistics in Table 3. When comparing biases in seasonal total
precipitation, rainy days, and intensity, the patterns suggested that wet bias over the
highlands is still significantly higher compared to the areas showing larger rainy day bias
which indicates that source of bias for seasonal precipitation for the highlands is mostly
overestimated precipitation intensity while for areas like eastern escapement of the Rift
Valley overestimated rainy days mostly accounts for wet bias.

Bias across stations

No. Station

Exp MAB MAB/option
Avg Min Max MAB>5 MAB >10

El 41 83 151 52 24 10 KF-Only =5.0

E2 41 80 171 54 24 10 BM]J-Only=4.0

E3 43 -70 165 54 24 9 Grell -Only=3.4

E4 40 -80 173 52 22 11 YSU-Only=4.3

E5 40 -76 168 51 23 9 MYJ-Only=3.9

E6 42 73 175 53 22 13 ACM2-Only=4.2

E7 32 76 147 4.4 21 6 WSM6-Only=4.1

E8 29 83 155 4.7 20 6 Lin-Only=4.1

E9 31 -89 179 4.6 18 10 Morrison-Only=4.3

E10 06 -104 120 3.8 16 3

E11l 08 99 9.4 42 18 0

E12 20 -99 150 4.5 21 6

E13 02 -11.0 71 3.1 10 2

E14 00 -10.7 69 3.0 10 1

E15 12 -101 109 3.5 14 2

El6 11 -102 1438 4.4 17 4

E17 11 -116 157 4.8 18 6

E18 19 95 179 4.8 22 6

E19 02 -102 89 3.4 18 2

E20 03 -103 94 3.6 18 2

E21 -06 -11.3 82 3.6 19 2

E22 -06 -98 7.6 3.3 14 0

E23 -04 93 8.8 3.2 13 0

E24 09 -101 69 3.3 12 1

E25 -1.0 -11.7 96 3.7 13 2

E26 -1.8 -11.7 8.1 3.3 14 2

E27 -18 -121 79 3.3 15 2

Table 3. Summary statistics from comparison of simulated and observed (weather stations) rainfall

intensity across experiments over grid-points where stations are located in. Last column is bias

averaged over physics options (9 members for each).
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Figure 10. Bias in the mean rainfall intensity (Rainy day total /number of rainy days) during JJA season of 2002 compared to 54 weather stations for 27 WRF experiments
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3.3. Radiation scheme

As stated in the methods section, assessing the sensitivity of radiation schemes (long- and
short wave) was not part of the primary objectives of this study and additional set of
simulations were run (E28, E29 and E30 Table xx) after completion of the other simulations
which use fixed options for radiation (i.e., Dudhai for SW and RRTM for LW). All three
simulations were compared with E1 which use similar options for CU (KF), PBL (YSU) and
MP (WSMB6) as the three experiments. E1 uses RRTM scheme for LW and Dudhai for SW;
E28 uses RRTMG for LW and Dudhai for SW; E29 used RRTM for LW and RRTMG for SW;
E30 uses RRTMG scheme for both LW and SW radiation.

Figures.11 shows comparison of seasonal mean precipitation between radiation ex-
periments with station observation. Given the fact that KF CU scheme is used in all the
four simulations, it can be seen that all four simulations have consistently overestimated
seasonal mean precipitation with only a single station showing dry bias of 1 mm for ex-
periments E1 and E28. However, significant differences can be observed among them. E29
(RRTM for LW and RRTMG) performed the least with average wet bias of 9.1 mm (range
0-23 mm). Out of the 59 stations used for comparison, E29 showed the highest bias for 41
stations and for 26 out 59 stations show wet bias of 10mm or more. On the other hand,
E28 (RRTMG-Dudhai) performed relatively better with wet bias of 5 mm averaged over
stations (range -1 mm to 16 mm). In addition, E28 showed the least bias for 43 stations
out of 59. E30 and E1 show a similar (close) performance with mean bias of 6 mm (range
0-13mm) and 6.4 mm (range -1-16mm) respectively. It can also be seen that there is a marked
difference in wet bias when physics option for SW is changed than LW (i.e., comparing
RRTM-Dudhai(Figure.11b) and RRTM-RRTMG (Figure.11d) vs RRTM-Dudhai(Figure.11b)
and RRTM-RRTMG (Figure.11c). This result is consistent with previous sensitivity studies
over other regions [29](Yuan et al.2012; Awan et al.2011), that have found that shortwave
radiation schemes in particular to have a strong precipitation response.

Despite the complex algorithms utilized by RRTMG scheme (i.e.,overlapping cloud
fraction for determining grid cloudiness, take into account the concentrations of trace
gases, aerosols, ozone,and carbon dioxide[26,53]), the results above do not reflect the
complexity of the scheme.(i.e., RRTMG-Dudhai combination better than RRTMG-RRTMG
showed better performance ). In addition, it deviates from studies (xxx) have suggested that
schemes developed together tend to perform better. However, these performances are not
necessarily attributed to the limitation of the parameterization schemes but may possibly
be the result of other options used for other physics (Cu, PBL and MP). For example,
[22] found that the RRTMG radiation, KF cumulus,and YSU PBL physics combination to
perform consistently poorly for all their simulations of storm events in Eastern Australia
and all our radiation experiments use KF schmeme for CU.

Thus, we performed a preliminary experiment with the following combinations (but
keeping RRTMG for both LW and SW), to see how performance is affected by different
combinations: E31(KF-YSU-Lin), E32(KF-YSU-Mor), E33(KF-MY]J-WSM6), E34(KF-MY]-
Lin) and E35(KF-MY]-Mor). Comparison of the mean seasonal precipitation confirms to
our initial hypothesis that choices made for other schemes affect the performance. Among
the experiments using RRTMG for both LW and SW radiation (i.e., E30-E35), performance
seems to be sensitive to choice of Microphysic scheme with those utilizing WSM6 scheme
(E30 and E33) showing the least bias (bmm and xxmm respectively). On the other hand,
no differences were seen between use of either YSU or MY] PBL schemes. Although not
robust, this might be an indication that RRTMG radiation scheme works well when used
with WSM6 MP scheme. However, it should be noted that all radiation experiments use KF
for CU and a higher sensitivity might be seen if other CU schemes are tested with RRTMG
option for both LW and SW.
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Figure 11. Comparison of Radiation schemes a)CHIRPS, b)LW: RRTM, c)RRTMG, d)SW: Dudhai and
e)RRTMG

Comparison of mean seasonal precipitation with gridded products (Figure 12) also
showed a similar result as station-based comparison. The RRTM-RRTMG combination
(i.e., E29) showed the largest wet bias over western and northwestern parts of the country.
The simulated precipitation is two folds of observed precipitation over large portion of the
highlands. Although all four radiation experiments overestimated precipitation, the spatial
extent of the bias reduces significantly for E1 (RRTM-Dudhai), E30(RRTMG-RRTMG) and
E28(RRTMG-Dudhai) in an increasing order. The above results suggest that use of Dudhai
scheme for shortwave radiation is the right choice but for longwave radiation, use of RRTM
scheme might be questionable or at least require further investigation to choose between
RRTM or the more complex RRTMG scheme.
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Figure 12. Comparison of Radiation schemes a)CHIRPS, b)ENACTS, ¢)LW: RRTM, d)RRTMG, e)SW:
Dudhai and €)RRTMG

3.4. Ranking

The ranking has been performed using aggregate score that is the summation of
normalized MAEg;,, MAEg,4, ERD, R and PCC with equal weight assigned to each. Lower
and higher Agg Score indicates better and worse performance respectively. Among the 27
experiments ranked, none of the simulations performed uniformly the best or the worst on
all five statistics. However, simulations with Grell CU scheme performed the best in terms
of average MAE (both station and grid-based), R and PCC while performed relatively poor
in terms of capturing the number of rainy days in a season. It can also be noted that using
YSU and MY]J PBL schemes with Grell CU scheme improves performance in capturing
the spatial patterns of mean seasonal precipitation but on the expense of deteriorating
performance in terms o f rainy days. On the contrary, simulations with KF were poor in
terms of MAE and R and performed better in capturing number of rainy days and spatial
patterns of seasonal precipitation. The performance of simulations with BMJ CU scheme
were in between KF and Grell schemes for most of the statistics but performed the best in
terms of R while performance in terms of PCC are relatively poor when when used with
ACM?2 PBL scheme. The same holds true for KF CU scheme where PCC scores are poor
when used with ACM2. However, for statistics other than PCC, simulations that use ACM2
PBL with KF performed better than those using YSU and MY].

To better visualize rank scores, we subjectively defined performance category of very
good (AS<1.0), good (1.0<AS<2.0), Moderate (2.0<A.0), Poor (3.0<AS5<4.0) and very poor
(AS>4.0) based on aggregate score and presented them in Figure.13. According to this
classification, 22.2%, 55.6%, 18.5% and 3.7% fall under good, moderate, poor and very poor
category respectively. It can be seen that there is no significant difference between the
MP used as their combinations with the same CU and PBL schemes fall within the same
performance category (in most cases). For the CU schemes, 5 out of 9 Grell combinations
produce good simulations while KF, on the contrary, performs poorly and very poorly
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with YSU and MY] PBL combinations. KF performance improved to moderate category
when combined with ACM2 PBL. Among the three CU physics options, BMJ CU fall under
moderate category for all combinations except one that includes WSM6 MP option which
falls under good performance category.

Rank ID  Description MAEg,, MAEg,; ERD R PCC Agg Score
1 E26  Grell -ACM2-Lin 0.00 0.00 063 015 0.28 1.06
2 E27  Grell -ACM2-Mor 0.00 0.00 073 016 030 1.19
3 E25 Grell -ACM2-WSM6  0.14 0.11 065 031 044 1.65
4 El6 BMJ-ACM2-WSM6  0.33 0.29 028 000 084 1.74
5 E21  Grell -YSU-Mor 0.20 0.31 089 036 0.05 1.81
6 E20 Grell -YSU-Lin 0.24 0.39 0.87 033 010 1.93
7 E22  Grell -MYJ-WSM6 0.23 0.33 1.00 046 0.03 204
8 E14 BMJ-MY]J-Lin 0.27 0.26 079 039 033 204
9 E24  Grell -MYJ-Mor 0.19 0.22 098 059 0.07 2.06
10 E13 BMJ-MYJ-WSM6 0.31 0.22 075 050 0.29 2.06
11 E19 Grell -YSU-WSM6 0.27 0.39 089 044 010 2.09
12 E17 BMJ-ACM2-Lin 0.36 0.30 026 021 1.00 213
13 E10 BMJ-YSU-WSM6 0.31 0.37 0.67 011 0.67 213
14 E15 BM]J-MY]J-Mor 0.43 0.45 0.88 041 0.04 220
15 E23  Grell -MY]J-Lin 0.27 0.34 1.00 0.61 0.00 2.21
16 E7 KF-ACM2-WSMé6 0.59 0.45 001 049 075 229
17 E8 KF-ACM2-Lin 0.57 0.42 0.00 047 091 238
18 E18 BMJ-ACM2-Mor 0.48 0.40 054 026 075 243
19 E12 BMJ-YSU-Mor 0.52 0.56 077 023 040 247
20 E11 BMJ-YSU-Lin 0.38 0.38 070 032 071 249
21 E9  KF-ACM2-Mor 0.63 0.47 020 056 0.82 2.69
22 E1  KF-YSU-WSM6 0.83 0.79 047 056 0.68 3.33
23 E3  KF-YSU-Mor 0.92 0.85 045 071 043 3.36
24 E2  KF-YSU-Lin 0.90 0.88 052 064 066 3.61
25 E4  KF-MYJ-WSM6 0.98 0.93 071 081 035 3.78
26 E6 KF-MY]J-Mor 1.00 0.97 072 078 0.37 3.83
27 E5 KF-MY]J-Lin 1.00 1.00 077 1.00 0.38 4.15

Table 4. Rank of experiments based on Aggregate score. MAEg;, stands for average MAE based on

station and MAEg,; stands for mean MAE based on average of all grid points from gridded data.

ERD is error in number of rainy days averaged over all weather stations. R is average temporal

correlation among all stations while PCC is pattern correlation between observed (gridded) and

simulated mean seasonal precipitation. All scores (except AS) are normalized over 27 experiments

and AS is the sum of the 5 normalized scores.
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Figure 13. Rank category based on Aggregate score

4. Conclusions

In this study, the performance of the WRF model has been investigated with respect to
the spatial and temporal rainfall distribution over a domain encompassing Ethiopia (nested
domain with 4km) for JJA season of 2002. Different combinations of three CU, three PBL,
three MP, two LW and two SW parameterization schemes have been tested in order to select
an optimum WREF configuration for further study aimed at assessing the performance of
WREF to dynamically downscale seasonal climate prediction from coarse resolution global
models over the region. All of the simulations were run over 4-month period from May
to August 2002 but evaluation was conducted on 3-month (June-August) with May left as
a model spin-up period. WRF simulations were compared with both gridded and gauge
observed data. Mean bias, PCC, R and bias in rainy day frequency were used as a criteria
to evaluate performance with respect to both spatial and temporal distribution of rainfall.

The findings of this study have demonstrated that a suitable selection of parame-
terizations can improve performance of simulation which is evident from the range of
skill scores among the different experiments (e.g., mean bias xx-xxx, bias in rainy days
xxx-xxx). While changing different physical parameterizations, we found out that changes
in cumulus parameterization influenced different aspects of summer precipitation the most,
with pbl schemes coming next. Out of the 27 simulations (which used Dudhai for SW,
RRTM for LW and NOAH land surface model) the combination of Grell -3D convective
scheme, ACM2 PBL scheme and Lin Microphysics scheme ranked the top and provided the
most realistic simulation in terms of spatial distribution, rainfall totals, and MA bias when
compared to observations. A preliminary assessment also revealed that Dudhai shortwave
parameterization scheme which was used throughout the 27 simulations, performs better
than RRTMG scheme while no conclusive evidence was found between RRTMG and RRTM
(default used in this study) longwave schemes. Thus, this set up was chosen for continued
study.

We cannot exclude that configurations that were not tested here might potentially
perform better. In addition, parameterizations kept fixed in this study, such as (land surface
model) or other simulation setups like number of vertical level, size and placement of
domains and source of initial and boundary conditions) can also affect the results and likely
reduce the model biases. However, any additional consideration of these factors would
tremendously increase number of simulations (e.g., consideration of only one additional
land surface model would double number of simulations), being prohibitive with respect to
the available computational resources and time. In addition, Note that these errors should
also be evaluated in view of the uncertainties present in observational data sets,which can
be high especially over remote areas or mountainous regions[17]. Nevertheless, this study
can serve as a reference for potential WRF users in the region to further investigate use
of WRF as a dynamical downscaling tool for seasonal rainfall forecasting or for climate
variability and change studies over the region. For climate purposes, although longer
periods (including both wet and dry years) are preferable when identifying configurations
that describe as correctly as possible the local climate rather than particular periods [38],
we have conducted the experiment over a single season (i.e., dry summer of 2002) which
might limit the robustness of results. Thus, extending the study with additional "wet" and
"normal” seasons will possibly improve reliability of results. In this study, we followed the
traditional technique where model results are directly compared with in situ observations,
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although this is not a like-with-like comparison. Site-specific measurements describe
conditions at single stations affected by very local characteristics, whereas the WRF outputs
define average values of the variables over a gridbox[38]. In areas with complex terrain,
the "representation error" is of particular importance because the station might be at the
extreme of the cell topographical diversity. Thus, other suggested techniques of evaluation
such as use of upscaled observations [64] should be tested.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/1010000/s1, Figure S1: Mean absolute error in WRF simulated mean JJA precipitation
compared to weather stations, Figure S2: .
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Appendix A Mean seasonal precipitation
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Figure A1l. Bias in simulated JJA mean precipitation (mm/day) during 2002 compared to weather
stations. First column KF CU scheme, 2nd BM]J CU scheme and 3rd Grell CU scheme. 2-4 row YSU
PBL scheme, 5-7 MY] PBL scheme and 8-10 ACM2 PBL scheme. Rows 2, 5 and 8 WSM6 MP scheme;
rows 3,6,and 9 Lin scheme and rows 5,7 and 10 Morrison MP scheme.
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Figure A2. Mean absolute error in WRF simulated mean JJA precipitation (mm/day) during 2002
compared to station data for 58 stations (x-axis) and 27 WRF simulations(y-axis).
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