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Abstract: Proteins, as gifts from nature, provide structure, sequence, and function templates for de-
signing biomaterials. Here, we reported an engineered toolkit derived from a natural block copoly-
mer, RfA1. RfA1 is composed of positively charged polyelectrolyte linker regions interspersed with
highly conserved polyampholyte motifs. These linkers and motifs are constructional fragments and
ready-to-use building blocks for synthetic design and construction. One functional and editable fea-
ture of RfA1 derivatives is their preferential distribution to cytoplasm or nucleoplasm, in a frag-
ment-replication-determined manner. Based on this property, a prices spatiotemporal Tet-on demo
was established, which effectively transports cargo peptides into nuclei at selective time points.
Moreover, the functional homogeneities of either motifs or linkers were also verified, making them
standardized building blocks for synthetic biology. In summary, this study provides a modularized,
orthotropic and well-characterized toolkit for precise and spatiotemporal regulation of protein nu-
cleocytoplasmic localization.
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1. Introduction

Due to the richness of the amino acid arrangements and combinations available, pep-
tides and their derivatives are highly versatile structural, and functional building blocks

[1-3]. On one hand, artificial designed peptides are able to generate various architectures
(including fibres, tapes, tubes, sheets and spheres [3]) in vitro, which demonstrates con-
siderable potential for carrier-mediated drug delivery, tissue engineering, antimicrobial
agents, imaging tools, energy storage, biomineralization, and membrane protein stabili-
zation [4]. On the other hand, peptides and relative derivatives have been developed as
effective “navigation system” to selectively target to organelles, e.g., endoplasmic reticu-
lum[5,6], mitocondria [7,8], or nucleus [9,10]. Since exact localization of proteins is re-
quired to fulfill their biological functions[11], transportation of functional proteins or pep-
tides to orientated intracellular localization is a prerequisite to intensify their functions in
application areas [12,13], or to properly study their mechanism in basic research fields
[14,15]. Bidirectional transportation of proteins in or out nuclear membrane is such a dog-
matic example. Inwards, proteins are translated in the cytoplasm, but many need to be
transport into the nucleus to perform their functions [16]. Outwards, RNA-protein com-
plex need to be dynamically exported out from the nucleus into cytoplasm [17,18].
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In this point, molecular tools able to quantitatively regulate the entry and exit of tar-
get proteins into and out of nucleus are of great value, which bring in various novel ap-
plications in synthetic and cell biology fields [9,18,19].

Genetical construction of nuclear localization signal (NLS) sequences into cargo pro-
teins is the most routine approach, which has successfully transport functional proteins
[9,10], genome-editing elements [20,21], and transcriptional circuits [22,23] into nucleus.
Similar but in the opposite direction, the utilization of NES (nuclear export signal) allows
the translocation of molecular components out of nucleus [9,24]. By embedding light-ac-
tivated domains into NLS or NES, the orientated trafficking can further present light-re-
sponsive properties [24-26]. Besides, various NLS sequences have been used as delivery
agents to enhance cellular uptaking and nuclear targeting of plasmid DNA [27-29], or
other functional nano cargoes [30-32]. In this regard, identification and engineering of
guiding sequences such as NLSs and NESs will bring in prosperous advanced applica-
tions.

Here, we report a novel guiding system based on programmable RfAl sequences,
which is able to temporal regulate the nucleo-cytoplasmic localization of peptide cargoes.
RfA1 is a natural block copolymer composed of positively charged polyelectrolyte linker
regions (reflectin linkers, RLs) interspersed with highly conserved polyampholyte seg-
ments (reflectin motifs, RMs) [33,34]. In this system, RLs and RMs are well-prepared and
ready-to-use building blocks for the construction of synthetic functional molecules. As the
first step, four native reflectins RfA1, RfA2, RfB1 and RfC were introduced into HEK-293T
cells, and were found to preferentially enrich in nuclei or cytoplasm. Considering their
sequence differences, the repetition of conserved motifs is likely to in charge of the selec-
tive intracellular localization. To verify this hypothesis, RtA1 and its derivatives were de-
signed and engineered into cells. RLntwi, RLxtz and RLnws were found to effectively
transport GFP (as a cargo molecule) into nucleus, while RLntws causes an exclusively cyto-
plasmic enrichment of GFP outside the nucleus. This strict intracellular localization of
RfA1 derivatives confirms the motif-repetition-dependent hypothesis, and suggests them
as editable guiding tags to transport molecular cargoes to selective regions. Subsequently,
by integrating Tet-On system [35,36] with RLnws, the precise nuclear enrichment was then
temporal regulated by doxycycline administration. In this case, Tet-On components works
as the launch button, while RfAl derived sequences are guided missiles which carry mo-
lecular cargos to prefixed targets. At last, to verify the functional homogeneity of RMs and
RLs during subcellular localization, genes of two de novo designed peptides RMn+RM1*5
and RM1*3+RL2*2 were synthesized. For these two peptides, the subtle differences among
motifs or linkers were eliminated. In this assay, the distribution of these two de novo pep-
tides is exactly similar to comparable RfAl derivatives, indicating that these peptide
building blocks can be unified and standardized.

Briefly, this study identified series of building blocks from reflectins amino acid se-
quences. Reorganization of these building blocks leads to an exclusive cytoplasmic or nu-
cleoplasmic enrichment of ligated molecular cargos (e.g., GFP), which quantificationally
determined by times of RMs and RLs repetition. Combined with other synthetic biology-
based tools, this programmable RfA1 derived strategy can be further upgraded as a spa-
tiotemporal controllable toolkit to realize precise intracellular delivery.

2. Results
2.1. Subcellular localization of reflectin proteins and deconstruction of RfA1 sequence

Two types of patterned ~25 amino acid methionine-rich motifs are reported in reflec-
tin sequence: the N-terminal motif (RM~) [MEPMSRM(T/S)MDF(H/Q)-
GR(Y/L)Y(I/M)DS(M/Q)(G/D)R(I/M)VDP(R/G)] and a series of conserved reflectin motifs
(RMs) [M/FD(X)5MD(X)5MDX3/4][37] (Fig.1a). The N-terminal region is more evolution-
arily conserved across species and reflectin isoforms than the canonical RMn[38], while
almost all “X” sites are populated largely by one specific residue with minor alternative
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residues usually represented in only one or a few reflectin motifs in the entire known
library [39].

At present, studies are mostly focused on their self-assemly properties in vitro
[33,40,41]. The dynamic reflectin assembly properties have already inspired the develop-
ment of various next-generation tunable photonic [42-44] and electronic platforms and
devices [45-47]. However, our knowledge about their performance in cells is relatively
limited.

To investigate their characteristics in cell, four reflectin proteins were constructed
into pEGFP-C1 vectors and transfected into human embryonic kidney (HEK) 293T cells.
Compared with cells transfected by no-load pEGFP-C1, all these four reflectins tends to
form protein condensates or spherical droplets in cell. The formation of proteinaceous
condensates is consistent with computational analysis, which suggests reflectins ass po-
tential intrinsically disordered protein to execute phase separation [33]. More signifi-
cantly, the RfA1 condensates exclusively distribute in cytoplasm, while RfA2, RfB1 and
RfC droplets were highly enriched in nuclei (Fig. 1b).

Viewing from their sequence composition, the most obvious commonality is the ex-
istence of RMs, while the most significant difference is the times of RMs and RLs repeti-
tions.

To explore the role of conserved RMs during the protein condensation and selective
localization, we cloned the six RMs of RfAl (RMn, and RMi2345 primers in Supplement
Table. 1) and introduced them into cells, respectively. Results shown that all individual
RMs distribute freely in both cytoplasm and nucleoplasm, with no phase separation ten-
dency (Fig. 1c). Therefore, other than conserved amino acid composition, the cytoplasmic
enrichment and phase separation of reflectins should be driven by its segmented sequence
structure. That is to say, the formation of reflectin condensates or droplets follows a ca-
nonical rule: multivalent interaction between repeated motifs and flexible likers is essen-
tial for the biomolecular liquid-liquid phase separation [48,49].
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Figure 1. Selective Intracellular Localization of Reflectins and Free-Distribution of Single Motifs.
a Schematics of reflectin proteins sequences. Conserved Reflectin Motifs (RM~ and repeated RM1-5)
are designated by boxes, while reflectin linkers (RLs) are lines. b,c Fluorescence microscopy images
of transfected HEK-293T cells stained with DAPI, DiD, while reflectins and variants are visualized
by tandem EGFP, Scalebar = 10 pm.
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2.2. Reconstruction of block amino acid sequence

Considering the composition necessity of an intrinsically disorder protein, five pairs
of primers were designed to clone the DNA sequences from RfAl gene (primers in Sup-
plement Table. 2), to gradually extend peptide sequences and restore their segmented
structure. The PCR products responsible for coding RLnt1, RLNto2, RLNto3, RLNtos+ and RLntos
are subsequently ligated to the vector pEGFP-CL1. For cells expressed with RLxto1, RLnto2,
RLnto3, the common characteristics is their enrichment in nuclei. This is totally different
from the cytoplasmic-localization-preference of RfAl or free-distribution of single RMs,
but quite similar to simpler reflectins (RfA2, RfB1, RfC). Besides, RLxt2, RLntos not only
enriched in cytoplasm, but also began to phase out from the crowded cellular milieu. As
sharp contrasts, longer RLnt4 and RLntws started to escape from the nuclei and form con-
densates in cytoplasm, extremely resemble their “ancestor” RfA1.

a DAPI GFP_RfA1 DiD Merge b
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Figure 2. Recurrence of phase separation and cyto-/nucleo-localization preferences of RfAl-derived
peptides in fixed HEK-293T cells. a Nuclei and membrane are stained with DAPI (blue) and DiD
(red), RfAl-derived peptides are indicated by tandem EGFP (green), Scale bars 10um. b Schematics
of RfA1 derivatives. ¢ Illustration of subcellular localization of RLnto1, RLNto2, RLNto3, RLNto4 and RLntos.

In 2017, Guan et.al. reported that reflectin motifs may be traced to a 24-bp trans-
poson-like DNA fragment from the symbiotic bioluminescent bacterium Vibrio fischeri
[50]. Afterward, million years of self-replication and translocation of that transposon leads
to the formation of prosperous reflectin family. Here, the distinguished characteristics of
short RfA1 truncations and their comparable behaviors with RfA2, RfB1 and RfC is a
strong clue to support Guan’s evolution hypothesis.

Otherwise, seeing from an application perspective, the distinct repetition-dependent
nucleocytoplasmic localization preference strongly recommends RfA1l as a programmable
and editable intracellular guiding/navigation tag. If we take GFP as a molecular cargo,
reflectin derivatives can be regarded as intelligent vehicles to transport cargoes to pre-
selected destinations (cytoplasm or nucleoplasm). Based on this consideration, we began
to test the application potentials of RfA1 variants as synthetic biology tools. As the shortest
peptide targets to nuclei and phase out from the nucleoplasm, RLxw2 was used in the fol-
lowing studies and regarded as a guiding tag.

2.3. Dose-dependent and Time-scale Expression of RLnte

For dose-dependent assays, the final concentrations of recombinant pEGFP-C1-RLxto2
plasmids were adjusted from 0.2 to 1.2 ug/mL (Fig. 3a). As the plasmid concentration went
up, numbers of transfected cells and corresponding Statistical Areas increased gradually
(Fig. 3b). However, the GFP_RLxtw2 expression level (indicated as Average Intensity) of
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each cell reached its upper limit when the plasmid concentration was merely 0.4ug/mL.
That is to say, the pEGFP-C1-RLnw2 concentration mainly influences transfection effi-
ciency, with minor effects on the quantity of plasmid uptook by each cell or the expression
level of each cell. Accordingly, the upward trend of gross production of GFP_RLnw2 (Total
Intensity, Fig. 3d) is more relevant and similar to the increasing number of transfected
cells (indicated by Statistical Area).
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Figure 3. Dose-dependent Expression of RLxtw2. a. Confocal observation of HEK-29ET cells trans-
fected with different plasmid concentrations. Nuclei and membrane are stained with DAPI (blue)
and DiD (red), RLnw:2 is indicated by tandem EGFP (green), Scale bars 50um. b. Statistical Area,
refers to the area indicated by GFP green fluorescent signal; c. Average Intensity, refers to the aver-
age fluorescent intensity and indicates the expression level; d. Total Intensity, represents the gross
expression of GFP_RLnto2.
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Figure 4. Time-scale Expression of RLxtw2. a. Confocal observation of HEK-29ET cells transfected
with Tug/mL plasmids, at different time points. Nuclei and membrane are stained with DAPI (blue)
and DiD (red), RLnte2 is indicated by tandem EGFP (green), Scale bars 50um. b. Statistical Area,
refers to the area indicated by GFP green fluorescent signal; c. Average Intensity, refers to the aver-
age fluorescent intensity and indicates the expression level; d. Total Intensity, represents the gross
expression of GFP_RLnto2.

Similarly, the time-scale expression of RLxw2 was also surveyed. When the confluence
reached ~70%, cells were fed with pEGFP-C1-RLnt2 plasmids at concentration of 1pg/mL.
For each batch, 6 dishes of cells were used, and took for observation one by one for every
2 h (Fig. 4a). From a time-span of 2 to 10 h, the transfection efficiency (Fig. 4b) gradually
increased, resulting in the steadily rising of GFP-RLnwe2 gross production (Fig.5d). After 10
h, the expression level tended to be stable. For each transfected cell, expression level
reached the peak around 6 to 8 hr (Fig. 4c).

2.4. A Doxycycline-induced Teton system integrated with RLnte2

To further exhibit its application potential as a synthetic biology component, RLxto2
was constructed into Teton plasmids, which can be easily switched on or off by doxycy-
cline (dox) administration (Fig. 5a). When the cell confluence reached ~30%, transfection
was conducted according to a standard protocol. Transfection efficiency was checked by
fluorescent images after 24 h. Cells were then treated with concentration-gradient dox and
cultivated for another 24 h. Afterwards, the nuclei-targeted expression of RLnw2 was ob-
served (Fig. 5b) by confocal system. Obviously, the expression level of RLnt2 was en-
hanced synchronously with the dox concentration gradient. This implies the successful
activate of this Teton system and its controllability based on the dox dose-dependent per-
formance.
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Figure 5. A dose-dependent nuclei-targeted TetOn-RLnt:2 system mediated by doxycycline. a schematic diagram of Te-
tOn-Rfs system. b Activation of TetOn-Rfs system. Transfected cells were indicated by GFP (green), the localization of
RLxwo2 was labeled by tandem Cherry (Red), Scale bars 100 pm.

Foreseeable, if reporter gene mCherry was replaced by other functional or therapeu-
tical peptides, this TetOn-Rfs system is able to precisely transport the molecular cargos
into nuclei, to amplify their biological effects. Besides, if certain components prefer to fulfil
their functions in cytoplasm, RLxt2 could be replaced by RLntos or RLatos. In this point, the
programmable RfA1 sequences provides an editable and selectable engineered toolkit,
which can be used to regulate precise spatiotemporal localization of proteins in cells.

2.5. Verification of standardisation of reflectin-derived building blocks

Truncated peptides discussed previously are regionally 100% match to the original
RfA1 amino acid sequence. To further testify their potential as standard elements for syn-
thetic biology applications, two de novo peptide sequences are designed: a RMn+RM:1*5
peptide, with all RM1-s replaced by a unified RM1; a RM1*3+RL2*2 peptide, while RLz refers
to the linker between RM1 and RM: (sequence information refers to Supplementary Table.
3, sketches of artificial peptides shown in Fig6. b,d). Highly consistent with full-length
RfA1 in Fig. 1, RM~+RM1*5 triggers a remarkable phase separation in cytoplasm. In the
meanwhile, RM1*3+RL2*2 molecules are somehow transported into nuclei and underwent
phase separation afterwards (Fig. 6¢). These results suggest that the building blocks or
functional components derived from reflectin amino acid sequences can be standardized
without losing their intracellular localization preferences, which favors their application
in synthetic biology fields.

GFP_RfA1 DiD

DAPI GFP_RfA1 DiD DAPI

o RMun:RM*5 o

Figure 6. a,c Fluorescence images of fixed HEK-293T transfected with pEGFP-C1-(RMn+RM:*5) and pEGFP-C1-
(RM1*3+RL2*2), respectively. Nucleus and cytomembrane are stained with DAPI and DiD. b,d Schematics of RMn+RM1*5
and RM1*3+RL2*2 sequences.
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3. Discussions

As essential biomacromolecules, the exact localization of proteins is required for or-
ganelles to work correctly [11]. Proteins are translated in the cytoplasm, but many need to
be transport into the nucleus to perform their functions [16]. On the other hand, the dy-
namic export of RNA-protein complex out from nucleus is also a central but not fully
understood process for molecular biology [17,18]. Hence, molecular tools which are able
to qualitatively and quantitatively regulate the entry and exit of target proteins into and
out of nucleus bring in various novel applications in synthetic and cell biology [9,18,19].

Here, a novel guiding toolkit derived from reflectin amino acid sequence is devel-
oped.

Being curious about their intracellular functions and properties, genes of four native
reflectins (RfA1, RfA2, RfB1 and RfC) were introduced into HKE-293T cells. Interestingly,
though share some compositional homologies, the localization preferences of reflectins
were distinguishable: RfA1 exclusively located in cytoplasm, while RfA2, RfB1 and RfC
were highly enriched in nucleoplasm. According to Guan’s report, reflectin genes in ceph-
alopods come from a transposon in symbiotic Vibrio fischeri [50]. In this point of view,
shorter and simpler RfC should originally emerge as the ancestor molecular in nucleus.
Then longer reflectins began to be assembled and to escape from the nucleus into cyto-
plasm.

In the meanwhile, from a biosynthetic application perspective, reflectin sequences
provide programmable building blocks to guide cargo molecules and achieve selective
orientation. Take RfA1 as the initial template, by cutting RMs off one by one from RfA1l
amino acid sequence via gene engineering, longer RfA1 derivatives with more RMs repe-
titions tends to stay in cytoplasm, while shorter RfAl truncates started to enter nuclei.
Moreover, we integrated the RfA1 derived guiding peptides with Tet-On system. In this
demo, Tet-On elements work as a trigger, allowing precise activation at scheduled time
point under the regulation of doxycycline; while RfA1 derivatives RLntw2 works as preci-
sion-guided missiles, which effectively carry the molecule cargo (e.g., mCherry) into nu-
clei.

At last, by replacing RM2345 in RfA1 with unified RM1 or de novo designing an artifi-
cial peptide “RM1*3+RL2*2”, the functional homogeneity of RMs and RLs were verified. It
means that, for cyto- or nucleo-targeting, guiding sequences derived from RfAl amino
acid sequence can be modified as unified and standardized building blocks. By combining
with other responsive synthetic biology components, this RfAl-derived strategy and
standadized building blocks can be further programmed and developed as versatile and
spatiotemporal controllable toolkit.

4. Materials and Methods
4.1. Construction of recombinant pEGFP-C1 vectors

Nucleotide sequence of D. (Loligo) pealeii reflectin A1 (RfA1) (Genbank: ACZ57764.1)
and D. (Loligo) Opalescens reflectin C (Genbank: AIN36559.1) were optimized for human
cell expression, then synthesized and sequencing-identified by Sangon Biotech® (Shang-
hai, China) Primers (F-GAATTCTAT GAATAGATATTTGAATAGACA; R-
GGATCCATACATATGATAATCATAATA ATTT) were designed to introduce EcoR I
and BamH I cutting sites, so the modified RfA1 CDS can be constructed into pEGFP-C1
via a standard restriction enzyme cloning process. As for truncated RfA1 derivatives, six
pairs of primers were coupled used. Take this for example, if RMn-F and RMs-R primers
were selected, then a nucleotide sequence responsible for the coding of RMn-RL1-RM:-
RL2-RM:2-RL3-RMs3 (which is simplified as RMntwos in this paper) will be obtained after PCR.
In the meanwhile, 5° GCATGGACGAGCTGTACAAG 3’ and 5 TTATGATCAG-
TTATCTAGAT 3’ were added to those F-primers and R-primers respectively during pri-
mers synthesis, which enables sequences to be ligated to pEGFP-C1 by Ready-to-Use
Seamless Cloning Kit from Sangon Biotech® (Shanghai, China).
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4.2. Growth and transfection of human cells

HEK-293T cells (ATCC®, CRL-3216™) were cultured on plastic dishes in Dulbecco's
Modified Eagle Medium (DMEM, Gibco™) supplemented with 10% fetal bovine serum
(FBS, Gibco™) at a temperature of 37 °C and under 5% CO:. One day before transfection,
cells were seeded at ~33% of the confluent density for the glass bottom dishes from Cellvis
(California, USA), and grown for another 24 h. Then transfection mixture containing
Lipofectamine 3000 (Thermo Scientific) and recombinant vectors was added to the me-
dium, incubating for ~16 to ~24 h. For CCK-8 tests, 1x10* cells were seeded into each hole
of 96-well plates one day before transfection, then transfected with recombinant vectors
and incubated for another 24 h. After that, 10ul of CCK-8 solution will be added into wells
for a ~2 to ~4 h chromogenic reaction. ODsso was detected by Multiskan FC (Thermo Sci-
entific).

4.3. Fluorescence microscopy of stained cells

Transfected HEK-293T cells grown in Cellvis plastic dishes were firstly fixed with 4%
paraformaldehyde at room temperature for 30 mins, then stained with DiD or ActinRed
(diluted in 0.5% triton X-100 PBS) for ~30 mins after PBS rinses. After washing off the
fluorescent dye with PBS, fixed cells will be embedded in DAPI-Fluoromount (Beyotime,
Shanghai, China) and characterized with a Leica TCS SP8 imaging system in fluorescence
imaging mode. The resulting images were analyzed with Image] (Java 1.8.0_172/1.52b)
[51].

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1, Table S1, S2, S3.
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