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Abstract: Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional
antibiotics in order to overcome the growing problems of antibiotic resistance. Computational
prediction approaches receive an increasing interest to identify and design the best candidate
AMPs prior to the in-vitro tests. In this study, we focused on the linear cationic peptides with
non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and
Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values,
we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise the pep-
tide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against
Gram-negative and against Gram-positive bacteria separately, and we created two datasets ac-
cordingly. Ten different physico-chemical properties of the peptides are calculated and used as
features in our study. Following data exploration and data preprocessing steps, a variety of classi-
fication algorithms are used with 100-fold Monte Carlo Cross Validation to build models and to
predict the antimicrobial activity of the peptides. Among the generated models, Random For-
est has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98,
Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Ac-
curacy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimina-
tion is applied. This prediction approach might be useful to evaluate the antibacterial potential of a
candidate peptide sequence before moving to the experimental studies.

Keywords: antimicrobial peptide prediction; sequence analysis; random forest

1. Introduction

Antimicrobial peptides (AMPs) are part of innate immunity and are natural antibi-
otics encoded by specific genes [1]. They are produced by various tissues and cell types
of human, plant and animal species. These antimicrobial peptides usually contain 12 to
50 amino acids [2]. Nowadays, in parallel with the elevated use of antibiotics, resistance
to antibiotics is rapidly increasing. The World Health Organization (WHO) reported that
antimicrobial resistance continues to rise up all over the world and new resistance
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mechanisms emerge. Therefore, we could face up with an era when infections can no
longer be treated with antibiotics [3]. The increasing number of bacteria, which are re-
sistant to antibiotics, creates a need for the development of new antimicrobial agents that
can be applied in treatment [4]. Studying the properties of antimicrobial peptides in de-
tail is a very important topic for drug design [5]. Although AMPs are mainly used to kill
Gram-positive and negative bacteria, they have potential to fight against mycobacteria,
viruses, and cancerous cells. In this respect, AMPs are considered as a powerful alterna-
tive to antibiotics since they have lower risk to develop resistance [3], [4]. Hence, dis-
covering or designing novel antimicrobial peptides became a major field of interest.
Along this line, several computational approaches such as de novo computational design
[6]-[9], linguistic model [10], [11], pattern insertion algorithm [12]-[15], evolution-
ary-genetic algorithms [16]-[19] have been proposed for predicting the antimicrobial ac-
tivity of AMPs and for identifying promising AMP candidates without undertaking ex-
pensive wet-lab experiments. Among different computational methods for the estimation
of antimicrobial peptides [20], the use of machine learning methods became popular [21]-
[24]. Machine learning is a computational technique, where the generated models can
make predictions via learning the data [25]. Significant advancements in computational
power and easy-to-use statistical learning tools that have come to the fore in recent years
have increased the popularity of machine learning approaches. In this respect, machine
learning, which can leverage large datasets that are produced by high-throughput
methods, has become a viable option for the accurate classification of AMPs [26]. Lata et
al. used the SVM method for prediction and classification of peptides on data which was
collected from Antimicrobial Peptides Database [24]. Their model is based on aminoacid
composition; and using five-fold cross validation they obtained 92.14% accuracy [24].
Burdukiewicz et al. attempted to identify essential AMP potential regions via applying
random forest as a classification algorithm [27]. Chung et al. makes predictions for anti-
microbial peptides on different organisms including amphibians, humans, fish, insects,
plants, bacteria,and mammals [28]. Amino acid compositions, amino acid pairs, and the
physicochemical properties are used as features. They performed feature selection, and
applied random forest (RF), SVM, KNN algorithms. They reported that RF generated the
best result, which was over 92% accuracy on all tested organisms [28]. Bhadra et al. also
utilized a random forest algorithm for AMP prediction using physicochemical properties
as features [23]. They grouped each property into specific three classes. For example, for
hydrophobicity property three classes are polar, neutral, hydrophobic, while these three
classes are positive, neutral and negative for net charge property. They used AMP and
Non-AMP data with different ratios, where 19 different ratios were used in total. 1:3 ratio
yielded in high accuracy with 10 fold cross validation technique and reduced feature sets
[23]. Wang et al. combined sequence alignment with feature selection methods for classi-
fication of AMPs [29]. Xiao et al. modeled a two-level classifier. First level is for classifying
peptide sequences as an AMP, and the second level is to separate these AMPs into 10
functional categories [21]. There are many computational tools to predict AMPs based on
machine learning approaches [17], [30]-[34]. Also, deep learning methods have been
started to apply to antimicrobial peptides prediction problems. Bhadra et al. presents a
method called deepAMP for sequences with length shorter than 30. In their method they
use an optimal feature set of reduced amino acid composition with convolutional neural
network and get 77% accuracy. They also compare their results with RF and SVM algo-
rithms [35]. Su et al. designed a deep neural network which consists of an embedding
layer and multi-convolutional layers [36]. Schneider et al. used self organizing maps as
input layers for their feedforward neural network [37]. Witten et al. reported a convolu-
tional neural network model for the classification and regression of AMPs [38]. Recently,
deep neural networks have also been used for the prediction of antimicrobial peptides in
different studies [39]-[42]. However, there is no standardization in terms of the use of
machine learning methods for the AMP prediction.
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Nowadays, antimicrobial peptide databases provide comprehensive information on
thousands of natural or synthetic antimicrobial peptides. The peptide sequences
deposited in these databases can be utilized for de novo design of AMPs using
computer-aided approaches [43], [44]. However, in silico tests of AMPs mostly do not
take into account the antimicrobial effect mechanism of the peptides against target
microorganisms. Therefore, in this study, we consider AMPs that are active against
Gram-negative and Gram-positive bacterias separately. Different classification models
are generated on each dataset and the results are compared using performance
evaluation metrics in terms of accuracy, recall, specificity, precision, Area Under Curve,
and F1 measure. The rest of this paper is organized as follows. Materials and Methods
Section presents our dataset, or data preprocessing steps and the machine learning
algorithms that we used to predict AMPs. Results Section highlights our findings and
provides an extensive evaluation of our method. Discussions Section discusses the
biological relevance of our findings. Finally, Conclusions Section concludes the paper
and summarizes avenues for further research.

2. Materials and Methods

2.1 Dataset and Data Preprocessing

In this study, one of the most comprehensive AMP databases called "Database of
Antimicrobial Activity and Structure of Peptides (DBAASP v.2. Http://dbaasp.org)" is
used [45]. This database provides users detailed information about the chemical structure
and activity of thousands of peptides, whose antimicrobial activity has been tested
experimentally or in silico against more than 4200 different organisms (bacteria, fungi,
some parasites, viruses and cancer cells). In Figure 1 we illustrate our data
preprocessing steps. Linear cationic antimicrobial peptides (LCAMPs) are the largest
class of AMPs and they are widely found in different organisms [46]. Therefore, LCAMPs
which have antimicrobial activity against Gram-negative bacteria including E. coli, P.
aeruginosa, A. baumannii species and Gram-positive bacteria including S. aureus, L.
monocytogenes, B. cereus species are selected as target AMP class from the DBAASP. We
have selected the peptides with lengths ranging from 20 to 50 amino acid (aa). As a
continuation of this work, we plan to perform de novo antimicrobial peptide design by
using the dataset that we have compiled in this study. Along this line, in therapeutic
applications the prediction of non-hemolytic peptides are reported as more important
than the hemolytic peptides for the elimination of the detrimental effects of AMPs on the
host [47]. Hence, here we focused on non-hemolytic peptides.

In this study, the class labels of peptides are assigned according to the antimicrobial
peptide activities against target organisms. In this respect, Minimum Inhibition
Concentration (MIC) values are widely used to assess the in vitro levels of susceptibility
or resistance of specific bacterial strains to a particular AMP [48]. Hence, we utilized MIC
values provided at DBAASP for each protein against different target organisms. While
the peptides having MIC value<25 against one of our target organisms are assigned as
positive (antimicrobial); the peptides having MIC>100 assigned as negative
(non-antimicrobial). This procedure is repeated separately for our Gram-negative and
Gram-positive datasets. Hence, we assign class labels to each peptide in our dataset. The
CD-HIT [49] program was used to eliminate the sequences that have more than 80%
identity. The CD-HIT program is widely used in the AMP prediction problem for
removing highly similar sequences [50]-[57]. The final dataset includes 231 positive
(AMP) and 114 negative (Non-AMP) labeled peptides in the Gram-negative dataset; and
165 positive and 194 negative samples in the Gram-positive dataset. In other words, the
Gram-negative dataset includes 231 peptides that show activity against Gram-negative
bacteria (having MIC value < 25) and 114 peptides that do not show activity against
Gram-negative bacteria (having MIC value >100). Similarly, the Gram-positive dataset is
composed of 165 peptides that show activity against Gram-positive bacteria (having MIC
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value < 25) and 194 peptides that do not show activity against Gram-positive bacteria
(having MIC value >100).

DBAASP Dataset }

Group of Bacteria

[ Peptides Active Against A J
[ between 20 and 50 aa in length

Select Linear Cationic Peptides J

r ™y

Select Non-Hemolytic Peptides

e A

(" Filter Peptides (Samples) )
According to Similarity
" (CD-HIT) J

Assign Class Labels According to MIC Values

(Peptides having MIC<25 assigned as positive and MIC=100
as negative)

Figure 1. Workflow of data preprocessing

2.1.1.Feature Generation

Most AMPs exhibit their antimicrobial effects mainly by perturbing bacterial mem-
brane integrity. Therefore, the development of an effective predictive model strongly
depends on the deep understanding of physicochemical parameters, especially those that
affect the AMP-membrane interaction. For AMPs, the sequence length of the peptide,
normalized hydrophobic moment, normalized hydrophobicity, net charge, isoelectric
point, penetration depth, orientation of peptides relative to the surface of membrane (tilt
angle), propensity to disordering, linear moment and in vitro aggregation are widely
used physico-chemical properties [9], [58], [59]. These parameters strongly affect the
extent of peptide-membrane interactions and the depth of the penetration in lipid bilayer;
and determine the mode of action of membrane targeting AMPs [60]. For instance, net
charge reflects the propensity of electrostatic interaction of cationic peptides with the
negatively charged membrane while hydrophobicity is responsible for the insertion and
partition of the peptides into the hydrophobic core of the bilayer [5]. In our study, these
10 features were used as features to represent each peptide. All these features except
sequence length are calculated by the DBAASP web server. Table 1 presents example
sequences that are included in our Gram-negative dataset. As shown in Table 1, along
with 10 physico-chemical properties, each peptide has a class label as 0 or 1, where 0 im-
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plies that the peptide is not active against Gram-negative bacteria; and 1 implies that the
peptide is active against Gram-negative bacteria.

Table 1. An example of AMP and Non-AMP peptides included in our Gram-negative dataset and their physico-chemical
properties, excerpted from DBAASP.

Propensity
Name Seq. Norm.Hyd. Norm. Net Isoelectric Penet. Tilt Disordered Conf. Linear Class
Sequence in vitro MeanMIC
of Sequence Length  Moment Hyd. Charge Point Depth Angle Propensity Moment (AMP category)
Aggregation

GWASKIG
TQLGKM

XPE-B2 24 1,11 -0,25 3 10,7 15 76 0,09 0,16 0 256,81 0
AKVGLKE
FVQS
SNVMEER

Ovalbumin
KIKVYLPR 20 0,13 -0,28 1 9,38 30 67 -0,11 0,29 0 800 0

(271-290)
MKMEE
KWKSFIK
KLTSVLK

MBI 29 A1 26 1,03 -0,54 6 11,37 12 106 0,16 0,27 3,4 9,33 1
KVVTTAL
PALIS
FLNALKN

Cyanophlyctin FAKTAGK 21 1,69 -0,24 5 11,74 15 88 -0,03 0,25 0 12 1
RLKSLLN

2.2.Machine Learning Models

AdaBoost: Boosting technique creates a strong learner by bringing together several weak
learners. The basic approach of boosting methods is to train the estimators cumulatively.
In this model, the training set is first trained with a weak learner. For this algorithm,
incorrectly predicted samples after the training step are important. In the next training
phase, the incorrectly learned training data in the first iteration is retrained by giving
more priority [61].

LogitBoost: LogitBoost has been developed to provide solutions to the overfitting
problem experienced in AdaBoost. This algorithm linearly reduces the errors in the
training to solve the above-mentioned problem [62].

Decision Tree: The decision tree creates a classification or regression model in the form
of a tree structure. While dividing the dataset into smaller and smaller subsets, an
associated decision tree is progressively and concurrently developed [63].

Random Forest: Random forests are an ensemble learning method for classification,
regression and other tasks, by generating a large number of decision trees during the
training phase and estimating the class or number according to the type of problem [64].
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Support Vector Machine: A support vector machine can be defined as a vector space
based machine learning method that finds a decision boundary between the two classes
that are furthest away from any point in the training data [65].
K-Nearest Neighbor: The k-nearest neighbor (KNN) algorithm is one of the supervised
learning algorithms that is used in solving both classification and regression problems.
The algorithm is used by making use of the data in a sample set with known classes. The
distance of the new data, which will be added to the sample data set, is calculated
according to the existing data, and its k closest neighbors are examined [66].

The Konstanz Information Miner (KNIME) platform is used for the implementation
of our workflow [67]. Also, The Jupyter Notebook [68] was used for visualization.

2.2.1.Model Construction

As illustrated in Figure 2, we applied several machine learning algorithms that are
explained in the above section to classify antimicrobial and Non-antimicrobial peptides.
Also, we constructed stacking ensemble learners. All the findings we obtained in our
study were obtained using 100-fold Monte Carlo Cross-Validation (MCCV) [69]. MCCV
is a technique that selects a part of the data (unaltered) to create the training set, and then
assigns the remaining data as the test set. This process is then repeated many times ran-
domly, creating new training and testing segments each time. In our study, the training
set is 90% of the data and the test is 10%.

Dataset after
Preprocessing

(Active Against A
Group of
Bacteria)

[ Training Set ] Test Set ]

|

Machine Learning

Training 5

valuate

(AdaBoost, LogitBoost, X

Decision Tree, Random Trained Model Performance
X Metrics

Forest, SVM, SVM+KNN,
LogitBoost+KNN)

(Accuracy) (Recall) (Speciﬁcily) (Precision) ( AUC ) ( F1 )

Figure 2. Flowchart of our Model Construction
2.2.2.Performance Metrics
We have assessed the performance of our models using several performance evalu-
ation metrics such as accuracy, recall, specificity, area under curve and F1 measure. These

metrics are employed as follows where TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative.

A ~ TP + TN
CCUracy = Tp TN + FN + FP

M
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Recall(Sensitivity) = v (2)
ecall(Sensitivity) = TP T FN

TN

O s — 3

Specificity TN £ FP (3)

Fl— 2TP 4

~ 2TP +FP+FN @)

3. Results

In our experiments, we have used different machine learning methods i) to learn
whether the peptides in each of our datasets have antimicrobial activity or not; and ii) to
classify them accordingly. To this end, we have applied methods such as AdaBoost, De-
cision Tree, LogitBoost, Random Forest, and Support Vector Machines. As shown in
Tables 2 and 3, for both Gram-negative and Gram-positive datasets, Random Forest
classifier resulted in the best performance metrics. While the accuracy rate reached up to
87% for Gram-positive data, this rate was 89% for gram negative data. Not only for ac-
curacy rate, but also for other measures such as recall, specificity, precision, AUC and F1
measure, RF yielded the best performance metrics. Figure 3 displays the comparative
evaluation of different models using AUC values for (a) Gram-negative dataset, and (b)
Gram-positive dataset. As it can be seen in Figure 3a and in Table 3, while 0,92 AUC
value is obtained for gram negative dataset, 0,90 AUC value is obtained for
Gram-positive dataset (shown in Figure 3b and in Table 2) using RF classifier. While the
AUC values of other classifiers range between 0,77-0,87 for Gram-positive dataset
(shown in Figure 3b and in Table 2), it ranges between 0,78-0,89 for Gram-negative da-
taset.

Table 2. Comparison of different models according to different performance metrics for Gram-positive dataset.

Model Accuracy Recall Specificity Precision Area Under Curve F1
AdaBoost 0,84 0,85 0,83 0,83 0,86 0,83
Decision Tree 0,77 0,77 0,77 0,769 0,77 0,76
LogitBoost 0,83 0,84 0,82 0,83 0,87 0,83
Random Forest 0,87 0,87 0,87 0,87 0,90 0,87
SVM 0,77 0,85 0,71 0,75 0,81 0,78
SVM+KNN 0,76 0,81 0,72 0,76 0,80 0,77
LogitBoost+KNN 0,77 0,85 0,71 0,75 0,81 0,78

Table 3. Comparison of different models according to different performance metrics for Gram-negative dataset.

Model Accuracy Recall Specificity Precision Area Under Curve F1
AdaBoost 0,85 0,92 0,72 0,87 0,88 0,89
Decision Tree 0,79 0,87 0,66 0,84 0,78 0,85
LogitBoost 0,86 0,92 0,74 0,88 0,89 0,90
Random Forest 0,89 0,93 0,79 0,90 0,92 0,91
SVM 0,80 0,93 0,56 0,81 0,82 0,86
SVM+KNN 0,80 0,93 0,56 0,81 0,82 0,86

LogitBoost+KNN 0,80 0,93 0,56 0,81 0,82 0,86
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Figure 3. Comparison of the performances of different models in terms of their area under ROC
curve (AUC) values with standard deviation values for (a) Gram-negative, and (b) Gram-positive
dataset

3.1. Feature Scoring and Feature Ranking

Feature selection procedure tries to reduce the computational costs by removing
redundant or irrelevant variables from input data. This technique contributes to better
understanding the generated model and allows one to improve the model via focusing
on the important features. In order to perform this task, one needs to score or rank the
features in terms of how useful they are at predicting the output. There are different
approaches for feature ranking that are based on statistics measurements or wrapper
approaches that are based on machine learning [70]. Moreover, more advanced
approaches that integrate biological knowledge into the machine learning algorithm for
performing feature selection or for selecting groups of features are used in different
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recent tools. Such an approach was adopted by different tools such as SVM RCE,
SVM-RCE-R [71]-[73], maTE [74], CogNet [75], miRcorrNet [76], and Integrating Gene
Ontology Based Grouping and Ranking [77]. Recently, these tools and their competitors
were reviewed in [78].

In this study, for each tested machine learning algorithm, we have recorded the
scores assigned to each feature during the MCCV (100 iteration) procedure. Since we get
higher performance metrics using Random Forest classifier, we have utilized the feature
scores of this model throughout the rest of the paper. When we analyze the feature scores
(shown in Figures 4 and 5), we observe that Net Charge, Isoelectric Point, Disordered
Conformation Propensity, Normalized Hydrophobicity and Normalized Hydrophobic
Moment are more crucial features than others for both Gram-negative and positive
datasets.

Net Charge

Isoelectric Point

Disordered Conformation Propensity
Normalized Hydrophobicity
Normalized Hyrophobic Moment

Tilt Angle

FeatureName

Sequence Length
Linear Moment

Propensity In Vitro Aggregation

Penetration Depth

T T
0.0 0.2 0.4 0.6 0.8 1.0
FeaturelmportanceScore

Figure 4. Feature ranking according to their importances in classification using random forest
model in Gram-negative dataset.

Isoelectric Point

Net Charge

Disordered Conformation Propensity
Normalized Hydrophobicity
Normalized Hyrophobic Moment

Penetration Depth

FeatureName

Sequence Length
Linear Moment

Tilt Angle

Propensity In Vitro Aggregation

T T
0.0 0.2 0.4 0.6 0.8 1.0
FeaturelmportanceScore

Figure 5. Feature ranking according to their importances in classification using random forest
model in Gram-positive dataset.


https://www.zotero.org/google-docs/?VpgCk9
https://www.zotero.org/google-docs/?uwwwVl
https://www.zotero.org/google-docs/?r4kENl
https://www.zotero.org/google-docs/?ct4I3k
https://www.zotero.org/google-docs/?EQWu5T
https://www.zotero.org/google-docs/?HPhZJw
https://doi.org/10.20944/preprints202202.0175.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2022 d0i:10.20944/preprints202202.0175.v1

10 of 21

3.2.Data Exploration

In order to obtain the underlying structure of the data, we apply Principal
Component Analysis (PCA) on Gram-negative and Gram-positive datasets separately.
PCA is a dimensionality reduction technique that maps the data in high dimensional
space (here each dimension corresponds to a physico-chemical property of a peptide) to a
lower dimensional space (usually 2D or 3D) preserving the original structure of the data
[79]. This technique is commonly used to highlight variation in a dataset and to capture
strong patterns. Hence, PCA helps to visualize the data and the outliers. PCA has been
applied to antimicrobial peptide data in several studies for data exploration and outlier
detection purposes [80]-[83]. In our study, we also applied PCA to our dataset for
visualizing the AMP and Non-AMP samples. In Figure 6, we present PCA results of the
Gram-negative dataset (Figure 6a, 6¢c), and of the Gram-positive dataset (Figure 6b, 6d).
While Figures 6a, 6b refer to the PCA results in 3D, Figures 6c¢, 6d refer to the PCA results
in 2D. Interactive 3D plots are provided as supplementary material. We observe in Figure
6 that there are some outlier samples (peptides) in both Gram-negative and positive
datasets.
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(c) (d)
Figure 6. Principal component analysis results for Gram-negative dataset are shown in (a) and (c); for Gram-positive dataset are
shown in (b) and (d). While 3D plots are presented in (a) and (b), 2D plots are presented in (c) and (d).

3.3.0utlier Detection and Elimination

The presence of outliers can result in a poor fit and lower predictive modeling
performance in classification or regression problems. For most machine learning
datasets, due to the large number of input variables, the identification and removal of
outliers is challenging by only using simple statistical methods. There are different
computational approaches for outlier detection. One of those approaches depends on
novelty detection based on machine learning [84] more specifically on one-class

approaches [85], [86].

In this study, in order to have a more homogenous group of peptides having
antimicrobial activities, we wanted to eliminate outlier samples (peptides) if one of their
physico-chemical features acts as an outlier. To see the distribution of the attributes in
positive class (AMP) and negative class (Non-AMP), we plotted the histograms for each
feature. Figure 7 presents two histograms drawn for the Net Charge feature of the
Gram-positive dataset for a) AMP class, b) Non-AMP class. It can be observed from
Figure 7 that while the net charge values are in the range of [0, 31] for AMP class, it is in
the range of [-6, 16] for the negative class. Based on our analysis using such histograms,
we define a certain range of values for each feature for the positive class (AMP, the
peptides having antimicrobial activity). We perform this analysis separately for the
Gram-positive dataset and the Gram-negative dataset and we eliminate the peptides in
the positive class if their physico-chemical properties are outside of this predefined
range. The range for each attribute is shown in Table 4.

0,14 0,16

Density
Density

a 5 10 15 20 25 30 35 -10 5 0 5 10 15 20
Net Charge Net Charge

(a) (b)

Figure 7. Graphical representation of Net Charge feature of the Gram-positive dataset. Histogram of (a) AMP class, (b) Non-AMP
class.

Table 4. Minimum and maximum values of each feature that are used in outlier elimination

Features Gram-negative Dataset Gram-positive Dataset
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Minimum threshold Maximum threshold Minimum threshold Maximum threshold
Hydrophobic Moment 0.4 2 0.1 1.7
Normalized
-0.9 0.55 -0.8 1
Hydrophobicity
Net Charge 5 13 4 13
Isoelectric Point 10.5 13 10 13
Penetration Depth 13 30 12 30
Tilt Angle 40 150 30 152
Linear Moment 0.1 0.4 0.15 0.32
Propensity in vitro
P Y 0 250 0 87
Aggregation
Disordered Conformation
-0.5 0.08 -0.85 0.15

Propensity

At the end of the outlier elimination step, we get 194 Non-AMPs and 88 AMPs for
the Gram-positive dataset; 114 Non-AMPs and 90 AMPs for the Gram-negative dataset.
In Figure 8, we present PCA results of the Gram-negative dataset (shown in a, c); and of
the Gram-positive dataset (shown in b,d) after outlier detection and elimination. While
PCA plots are presented in 3D in (Figure 8a, b), they are presented in 2D in (Figure 8c, d).
While the red colors refer to Non-AMPs, blue colors indicate AMPs. Compared with
Figure 6, Figure 8 implies that the positive class members are better separated from neg-
ative class members for both datasets after outliers are eliminated.

(@) (b)
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PCA of Gram Negative Dataset after Outlier Detection

PCA of Gram Positive Dataset after Outlier Detection
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Figure 8. Principal component analysis of Gram-negative dataset (shown in a,c) and of Gram-positive dataset (shown in b,d) after
outlier detection and elimination, shown in 3D in (a,b) and in 2D in (c,d).

Using two of the datasets after outlier elimination, we repeated our classification
experiment as explained in the methods section. As shown in Tables 5 and 6, when out-
lier removal is applied, we have obtained higher performance metrics. As presented in
Tables 5 and 6, the accuracy rate increased by 9% and reached 98% accuracy for the
Gram-negative dataset, while this score is obtained as 95% for the Gram-positive dataset.

Table 5. Comparison of the models according to performance metrics for the Gram-negative dataset after outlier elimination

Model Accuracy Recall Specificity Precision Area Under Curve F1
AdaBoost 0,975 0,990 0,965 0,958 0,990 0,972
Decision Tree 0,914 0,920 0,910 0,895 0,915 0,903
LogitBoost 0,978 0,995 0,965 0,959 0,992 0,976
Random Forest 0,983 0,994 0,975 0,970 0,994 0,981
SVM 0,980 0,990 0,973 0,967 0,989 0,977
SVM+KNN 0,814 0,828 0,803 0,814 0,840 0,800
LogitBoost+KNN 0,980 0,990 0,973 0,967 0,989 0,977

Table 6. Comparison of the models according to performance metrics for the Gram-positive dataset after outlier elimination

Model Accuracy Recall Specificity Precision Area Under Curve F1
AdaBoost 0,939 0,927 0,945 0,898 0,965 0,906
Decision Tree 0,885 0,820 0,915 0,824 0,867 0,815
LogitBoost 0,936 0,935 0,936 0,886 0,965 0,903
Random Forest 0,951 0,951 0,951 0,909 0,977 0,925
SVM 0,914 0,903 0,919 0,853 0,939 0,867
SVM+KNN 0,776 0,752 0,787 0,686 0,810 0,685
LogitBoost+KNN 0,914 0,903 0,919 0,853 0,939 0,867
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4. Discussion

Antimicrobial peptides are characterized as positively charged, short-chain
compounds which act against a wide range of microorganisms by interacting with the
target cell components using different mechanisms [53]. The fact that AMPs have various
mechanisms of action on the membrane makes bacterial resistance formation against
them more complex compared to the conventional therapeutics. Therefore, AMPs are an
attractive alternative to combat resistant bacteria [9]. However, AMPs derived from
natural sources have some disadvantages such as low stability, salt tolerance and high
toxicity that limit their therapeutic applications. Computational studies on AMPs help us
to better understand the effect of the physicochemical properties of the peptides on
stability and activity of AMPs. With the help of computational approaches in the study of
AMPs, now it has become possible to overcome the above-mentioned difficulties and to
design peptides with broad-spectrum activities and good stability [5].

In this study, we attempted to develop a robust classification model for
antimicrobial peptide prediction problem. To this end, we have compiled two datasets
from Database of Antimicrobial Activity and Structure of Peptides (DBAASP). One
dataset included the peptides active against Gram-negative bacteria, another one
included the peptides active against Gram-positive bacteria. For each peptide, in order to
define the activity against a group of bacteria (positive class label), we have utilized
Minimum Inhibition Concentration (MIC) values. In our data preprocessing steps, as
shown in Figure 1, we have focused on linear cationic peptides with peptide lengths
varying between 20 and 50 aminoacids (aa). Since there are many peptides with very
similar sequences, we eliminated those with a similarity rate of 80% or more using the
CD-HIT program [49]. We carried out our classification procedure with the remaining
peptides. We have experimented with several machine learning methods including,
Adaboost, Logitboost, Decision Tree, Random Forest, Support Vector Machine, and
stacking classifiers using 100 fold Monte Carlo Cross Validation. In our experiments, we
have observed that Random Forest outperforms other classifiers as summarized in Table
2 and Table 3.

In order to understand the underlying structure of the data, we apply Principal
Component Analysis (PCA) on Gram-negative and Gram-positive datasets separately.
The PCA results in Figure 6A, 6B, 6C and 6D shows that when we visualize the AMP and
Non-AMP samples with PCA plots, we have noticed that there are some outlier samples
(peptides) in both Gram-negative and positive datasets. In order to understand more in
detail why these samples are outliers and to compile a more homogenous dataset, we
have examined the physico-chemical features of the peptides. To see the distribution of
each feature, we plotted histograms for the Gram-negative and the Gram-positive
datasets separately (Figure 7A, 7B). Based on our analysis using such histograms, we
define a certain range of values for each attribute for the positive class which represents
the peptides having antimicrobial activity as illustrated in Table 4. While the peptides
within the selected ranges are kept, other peptides are eliminated from our dataset. Once
again, PCA visualization has been applied to this outlier eliminated dataset and it has
been observed that the peptides can be better separated into two classes in this new
dataset (Figure 8A, 8B, 8C, 8D). For this outlier eliminated dataset, all classification
experiments have been repeated. As shown in Tables 5 and 6, we have achieved higher
performance metrics when outlier removal is applied.

The studies on the structure-activity relationship of AMPs emphasized that the
antimicrobial activity is affected by changes in many structural and physicochemical
parameters such as net charge, hydrophobicity, and peptide chain length. Therefore,
studying these properties of peptides and the similarities and differences between these
features provide important insights for the development of new antimicrobial peptide
prediction methods [88].
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In this study, the net charge was found as the most important feature for
gram-negative data set while it is identified as the second most important feature for
gram-positive dataset. The net charge is an important feature that shows the affinity of
cationic peptides to bind to anionic cell surface structures through electrostatic
interactions. Gram-positive and Gram-negative bacteria possess different cell wall
components such as teichoic acid and lipopolysaccharides (LPSs). The difference in the
importance of the net charge feature between the two datasets (peptides active against
Gram-positive bacteria vs. peptides active against Gram-negative bacteria) may be due to
the differences between the cell wall components of anionic characters.

On the other hand, for the gram-positive dataset, the isoelectric point (pl) was found
to be the most important feature, while it was the second most important feature for
gram-negative dataset. The pl feature refers to the solubility of the peptides under certain
pH conditions. When the pH of the environment is equal to the pl of the peptide, the
peptide loses its solubility and hereby its biological function [89]. pls of the AMPs are
generally at alkaline pH, and hereby maintain their activity at physiological pH. There is
a strong relationship between the isoelectric point and the antibacterial activity of AMPs
[90]. Ahn et al., reported that rather than the net charge, pl was a better parameter for
predicting the antibacterial activity [91].

The above-mentioned two features were followed by the disordered conformation
propensity, normalized hydrophobicity and normalized hydrophobic moment features
respectively for both bacterial groups. The majority of linear cationic AMPs are
disordered structures in aqueous solution and acquire their biologically active
conformation upon interaction with the membrane. The majority of linear AMPs adapt to
the alpha-helical conformation in lipid membrane environment and this regular structure
is important for antimicrobial activity for this AMP class [92]. Hence, the identification of
disordered conformation propensity feature as the third important feature in our analysis
makes sense in terms of the underlying biology.

Hydrophobicity and hydrophobic moment are two important physico-chemical
features that affect the antimicrobial activity of AMPs. In this study, the effect of these
determinants was found lower than expected. The hydrophobicity reflects the ratio of
hydrophobic residues within a peptide sequence. In the first step of peptide-lipid
interactions, AMPs attach to the cell surface by electrostatic interactions, and then the
hydrophobic interactions become a primary driving force for their insertion and
partitions into the lipid bilayer [93], [94]. In general, the increase of hydrophobicity
promotes antimicrobial activity in peptides [95]. However, some studies demonstrated
that an increase above a certain level in hydrophobicity leads to a decrease in
antimicrobial activity [95]. The hydrophobic moment is defined as a quantitative measure
of peptide amphipathicity [96]. The amphipathic a-helical AMPs have polar and
hydrophobic residues that are arranged in opposite faces. This arrangement facilitates the
interactions of AMPs to membranes. The increase of the hydrophobic moment results in a
significant elevation in antimicrobial activity, but it also leads to cytotoxicity [94].

5. Conclusions

The main contribution of this paper is the development of two accurate classifica-
tion models for the prediction of antimicrobial peptides active against i) Gram-negative
and ii) Gram-positive bacteria. To this end, we have compiled two different datasets for i)
peptides active against Gram-negative bacteria, and ii) peptides active against
Gram-positive bacteria; and evaluated different machine learning models for the predic-
tion of antimicrobial peptide activity. In our experiments with 100 fold MCCV, the
random forest algorithm achieved better results compared to other algorithms for both
datasets. At the end of our feature ranking procedure, the net charge was found as the
most important feature for gram-negative data set and second most important feature for
gram-positive dataset. Also, for the gram-positive dataset, the isoelectric point (pI) was
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found as the most important feature, while it was determined as the second most im-
portant feature for gram-negative dataset. In literature, both net charge and the isoelec-
tric point of a peptide are known to have a considerable effect in terms of determining the
activity of AMPs [90]. The PCA visualization is applied on Gram-negative and
Gram-positive dataset and some outlier samples have been observed. Based on the dis-
tribution of the positive and negative labelled samples (peptides having antimicrobial
activity vs. non AMP peptides), certain ranges are defined for each attribute. In our sec-
ondary experiments, in which the peptides outside those ranges were eliminated (outlier
detection), we observed that the results increased by 9% for the gram negative dataset
and 8% for the gram positive dataset.

Antimicrobial peptides are considered as the most promising alternatives to antibi-
otics. Therefore, accurate prediction of antimicrobial peptides contributes to the produc-
tion of more effective peptides with lower costs. Additionally, since computational pre-
diction approaches minimize the losses during production steps, they became popular in
this field. In this respect, the classification model that we have developed in this study
paves the way to the precise prediction and the design of antimicrobial peptides that are
highly effective against bacterial pathogens. Even though the classification approach that
we have developed here is only applied on the bacteria, it has the potential to be utilized
for the prediction of antifungal, antivirus, antiprotozoal, and anticancer agents in future
studies.

Supplementary Materials: Interactive 3D plots are provided as supplementary material.
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