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Abstract: Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional 18 

antibiotics in order to overcome the growing problems of antibiotic resistance. Computational 19 

prediction approaches receive an increasing interest to identify and design the best candidate 20 

AMPs prior to the in-vitro tests. In this study, we focused on the linear cationic peptides with 21 

non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and 22 

Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, 23 

we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise the pep- 24 

tide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against 25 

Gram-negative and against Gram-positive bacteria separately, and we created two datasets ac- 26 

cordingly. Ten different physico-chemical properties of the peptides are calculated and used as 27 

features in our study. Following data exploration and data preprocessing steps, a variety of classi- 28 

fication algorithms are used with 100-fold Monte Carlo Cross Validation to build models and to 29 

predict the antimicrobial activity of the peptides. Among the generated models, Random For- 30 

est  has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, 31 

Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Ac- 32 

curacy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimina- 33 

tion is applied. This prediction approach might be useful to evaluate the antibacterial potential of a 34 

candidate peptide sequence before moving to the experimental studies.  35 

Keywords: antimicrobial peptide prediction; sequence analysis; random forest  36 

 37 

1. Introduction 38 

Antimicrobial peptides (AMPs) are part of innate immunity and are natural antibi- 39 

otics encoded by specific genes [1]. They are produced by various tissues and cell types 40 

of human, plant and animal species. These antimicrobial peptides usually contain 12 to 41 

50 amino acids [2]. Nowadays, in parallel with the elevated use of antibiotics, resistance 42 

to antibiotics is rapidly increasing. The World Health Organization (WHO) reported that 43 

antimicrobial resistance continues to rise up all over the world and new resistance 44 
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mechanisms emerge. Therefore,  we could face up with an era when infections can no 45 

longer be treated with antibiotics [3]. The increasing number of bacteria, which are re- 46 

sistant to antibiotics, creates a need for the development of new antimicrobial agents that 47 

can be applied in treatment [4]. Studying the properties of antimicrobial peptides in de- 48 

tail is a very important topic for drug design [5]. Although AMPs are mainly used to kill 49 

Gram-positive and negative bacteria, they have potential to fight against mycobacteria, 50 

viruses, and cancerous cells. In this respect, AMPs are considered as a powerful alterna- 51 

tive to antibiotics since they have lower risk to develop resistance [3], [4]. Hence, dis- 52 

covering or designing novel antimicrobial peptides became a major field of interest. 53 

Along this line, several computational approaches such as de novo computational design 54 

[6]–[9], linguistic model [10], [11], pattern insertion algorithm [12]–[15], evolution- 55 

ary-genetic algorithms [16]–[19] have been proposed for predicting the antimicrobial ac- 56 

tivity of AMPs and for identifying promising AMP candidates without undertaking ex- 57 

pensive wet-lab experiments. Among different computational methods for the estimation 58 

of antimicrobial peptides [20], the use of machine learning methods became popular [21]– 59 

[24]. Machine learning is a computational technique, where the generated models can 60 

make predictions via learning the data [25]. Significant advancements in computational 61 

power and easy-to-use statistical learning tools that have come to the fore in recent years 62 

have increased the popularity of machine learning approaches. In this respect, machine 63 

learning, which can leverage large datasets that are produced by high-throughput 64 

methods, has become a viable option for the accurate classification of AMPs [26]. Lata et 65 

al. used the SVM method for prediction and classification of peptides on data which was 66 

collected from Antimicrobial Peptides Database  [24]. Their model is based on aminoacid 67 

composition; and using five-fold cross validation they obtained 92.14% accuracy [24]. 68 

Burdukiewicz et al. attempted to identify essential AMP potential regions via applying 69 

random forest as a classification algorithm [27]. Chung et al. makes predictions for anti- 70 

microbial peptides on different organisms including amphibians, humans, fish, insects, 71 

plants, bacteria,and mammals [28]. Amino acid compositions, amino acid pairs, and the 72 

physicochemical properties are used as features. They performed feature selection, and 73 

applied random forest (RF), SVM, KNN algorithms. They reported that RF generated the 74 

best result, which was over 92% accuracy on all tested organisms [28]. Bhadra et al. also 75 

utilized a random forest algorithm for AMP prediction using physicochemical properties 76 

as features [23]. They grouped each property into specific three classes. For example, for 77 

hydrophobicity property three classes are polar, neutral, hydrophobic, while these three 78 

classes are positive, neutral and negative for net charge property. They used AMP and 79 

Non-AMP data with different ratios, where 19 different ratios were used in total. 1:3 ratio 80 

yielded in high accuracy with 10 fold cross validation technique and reduced feature sets 81 

[23]. Wang et al. combined sequence alignment with feature selection methods for classi- 82 

fication of AMPs [29]. Xiao et al. modeled a two-level classifier. First level is for classifying 83 

peptide sequences as an AMP, and the second level is to separate these AMPs into 10 84 

functional categories [21]. There are many computational tools to predict AMPs based on 85 

machine learning approaches [17], [30]–[34]. Also, deep learning methods have been 86 

started to apply to antimicrobial peptides prediction problems. Bhadra et al. presents a 87 

method called deepAMP for sequences with length shorter than 30. In their method they 88 

use an optimal feature set of reduced amino acid composition with convolutional neural 89 

network and get 77% accuracy. They also compare their results with RF and SVM algo- 90 

rithms [35]. Su et al. designed a deep neural network which consists of an embedding 91 

layer and multi-convolutional layers [36]. Schneider et al. used self organizing maps as 92 

input layers for  their feedforward neural network [37]. Witten et al. reported a convolu- 93 

tional neural network model for the classification and regression of AMPs [38]. Recently, 94 

deep neural networks have also been used for the prediction of antimicrobial peptides in 95 

different studies [39]–[42]. However, there is no standardization in terms of the use of 96 

machine learning methods for the AMP prediction. 97 
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Nowadays, antimicrobial peptide databases provide comprehensive information on 98 

thousands of natural or synthetic antimicrobial peptides. The peptide sequences 99 

deposited in these databases can be utilized for de novo design of AMPs using 100 

computer-aided approaches [43], [44]. However, in silico tests of AMPs mostly do not 101 

take into account the antimicrobial effect mechanism of the peptides against target 102 

microorganisms. Therefore, in this study, we consider AMPs that are active against 103 

Gram-negative and Gram-positive bacterias separately. Different classification models 104 

are generated on each dataset and the results are compared using performance 105 

evaluation metrics in terms of accuracy, recall, specificity, precision, Area Under Curve, 106 

and F1 measure. The rest of this paper is organized as follows. Materials and Methods 107 

Section presents our dataset, or data preprocessing steps and the machine learning 108 

algorithms that we used to predict AMPs. Results Section highlights our findings and 109 

provides an extensive evaluation of our method. Discussions Section discusses the 110 

biological relevance of our findings. Finally, Conclusions Section concludes the paper 111 

and summarizes avenues for further research. 112 

2. Materials and Methods  113 

2.1 Dataset and Data Preprocessing 114 

In this study, one of the most comprehensive AMP databases called "Database of 115 

Antimicrobial Activity and Structure of Peptides (DBAASP v.2. Http://dbaasp.org)" is 116 

used [45]. This database provides users detailed information about the chemical structure 117 

and activity of thousands of peptides, whose antimicrobial activity has been tested 118 

experimentally or in silico against more than 4200 different organisms (bacteria, fungi, 119 

some parasites, viruses and cancer cells). In Figure 1 we illustrate our data 120 

preprocessing  steps. Linear cationic antimicrobial peptides (LCAMPs) are the largest 121 

class of AMPs and they are widely found in different organisms [46]. Therefore, LCAMPs 122 

which have  antimicrobial activity against Gram-negative bacteria including E. coli, P. 123 

aeruginosa, A. baumannii species and Gram-positive bacteria including S. aureus, L. 124 

monocytogenes, B. cereus species are selected as target AMP class from the DBAASP. We 125 

have selected the peptides with lengths ranging from 20 to 50 amino acid (aa). As a 126 

continuation of this work, we plan to perform de novo antimicrobial peptide design by 127 

using the dataset that we have compiled in this study. Along this line, in therapeutic 128 

applications the prediction of non-hemolytic peptides are reported as more important 129 

than the hemolytic peptides for the elimination of the detrimental effects of AMPs on the 130 

host [47]. Hence, here we focused on non-hemolytic peptides.  131 

In this study, the class labels of peptides are assigned according to the antimicrobial 132 

peptide activities against target organisms. In this respect, Minimum Inhibition 133 

Concentration (MIC) values are widely used to assess the in vitro levels of susceptibility 134 

or resistance of specific bacterial strains to a particular AMP [48]. Hence, we utilized MIC 135 

values provided at DBAASP for each protein against different target organisms. While 136 

the peptides having MIC value<25 against one of our target organisms are assigned as 137 

positive (antimicrobial); the peptides having MIC>100 assigned as negative 138 

(non-antimicrobial). This procedure is repeated separately for our Gram-negative and 139 

Gram-positive datasets. Hence, we assign class labels to each peptide in our dataset. The 140 

CD-HIT [49] program was used to eliminate the sequences that have more than 80% 141 

identity. The CD-HIT program is widely used in the AMP prediction problem for 142 

removing highly similar sequences [50]–[57]. The final dataset includes 231 positive 143 

(AMP) and 114 negative (Non-AMP) labeled peptides in the Gram-negative dataset; and 144 

165 positive and 194 negative samples in the Gram-positive dataset. In other words,  the 145 

Gram-negative dataset includes 231 peptides that show activity against Gram-negative 146 

bacteria (having MIC value < 25) and 114 peptides that do not show activity against 147 

Gram-negative bacteria (having MIC value >100). Similarly, the Gram-positive dataset is 148 

composed of 165 peptides that show activity against Gram-positive bacteria (having MIC 149 
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value < 25)  and 194 peptides that do not show activity against Gram-positive bacteria 150 

(having MIC value >100). 151 

 152 

 153 
                    Figure 1. Workflow of data preprocessing 154 

2.1.1.Feature Generation 155 

Most AMPs exhibit their antimicrobial effects mainly by perturbing bacterial mem- 156 

brane integrity. Therefore, the development of an effective predictive model strongly 157 

depends on the deep understanding of physicochemical parameters, especially those that 158 

affect the AMP–membrane interaction. For AMPs, the sequence length of the peptide, 159 

normalized hydrophobic moment, normalized hydrophobicity, net charge, isoelectric 160 

point, penetration depth, orientation of peptides relative to the surface of membrane (tilt 161 

angle), propensity to disordering, linear moment and in vitro aggregation are widely 162 

used physico-chemical properties [9], [58], [59].  These parameters strongly affect the 163 

extent of peptide-membrane interactions and the depth of the penetration in lipid bilayer; 164 

and determine the mode of action of membrane targeting AMPs [60]. For instance, net 165 

charge reflects the propensity of electrostatic interaction of cationic peptides with the 166 

negatively charged membrane while hydrophobicity is responsible for the insertion and 167 

partition of the peptides into the hydrophobic core of the bilayer [5]. In our study, these 168 

10 features were used as features to represent each peptide. All these features except 169 

sequence length are calculated by the DBAASP web server. Table 1 presents example 170 

sequences that are included in our Gram-negative dataset. As shown in Table 1, along 171 

with 10 physico-chemical properties, each peptide has a class label as 0 or 1, where 0 im- 172 
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plies that the peptide is not active against Gram-negative bacteria; and 1 implies that the 173 

peptide is active against Gram-negative bacteria. 174 

Table 1. An example of AMP and Non-AMP peptides included in our Gram-negative dataset and their physico-chemical 175 

properties, excerpted from DBAASP. 176 

Name 

of Sequence 
Sequence 

Seq. 

Length 

Norm. Hyd. 

Moment 

Norm. 

Hyd. 

Net 

Charge 

Isoelectric 

Point 

Penet. 

Depth 

Tilt 

Angle 

Disordered Conf. 

Propensity 

Linear 

Moment 

Propensity 

in vitro 

Aggregation 

MeanMIC 
Class 

(AMP category) 

XPF-B2 

GWASKIG

TQLGKM

AKVGLKE

FVQS 

24 1,11 -0,25 3 10,7 15 76 0,09 0,16 0 256,81 0 

Ovalbumin 

(271-290) 

SNVMEER

KIKVYLPR

MKMEE 

20 0,13 -0,28 1 9,38 30 67 -0,11 0,29 0 800 0 

MBI 29 A1 

KWKSFIK

KLTSVLK

KVVTTAL

PALIS 

26 1,03 -0,54 6 11,37 12 106 0,16 0,27 3,4 9,33 1 

Cyanophlyctin 

FLNALKN

FAKTAGK

RLKSLLN 

21 1,69 -0,24 5 11,74 15 88 -0,03 0,25 0 12 1 

 

… 

… 

 177 

2.2.Machine Learning Models 178 

AdaBoost: Boosting technique creates a strong learner by bringing together several weak 179 

learners. The basic approach of boosting methods is to train the estimators cumulatively. 180 

In this model, the training set is first trained with a weak learner. For this algorithm, 181 

incorrectly predicted samples after the training step are important. In the next training 182 

phase, the incorrectly learned training data in the first iteration is retrained by giving 183 

more priority [61]. 184 

LogitBoost: LogitBoost has been developed to provide solutions to the overfitting 185 

problem experienced in AdaBoost. This algorithm linearly reduces the errors in the 186 

training to solve the above-mentioned problem [62]. 187 

Decision Tree: The decision tree creates a classification or regression model in the form 188 

of a tree structure. While dividing the dataset into smaller and smaller subsets, an 189 

associated decision tree is progressively and concurrently developed [63]. 190 

Random Forest: Random forests are an ensemble learning method for classification, 191 

regression and other tasks, by generating a large number of decision trees during the 192 

training phase and estimating the class or number according to the type of problem [64]. 193 
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Support Vector Machine: A support vector machine can be defined as a vector space 194 

based machine learning method that finds a decision boundary between the two classes 195 

that are furthest away from any point in the training data [65]. 196 

K-Nearest Neighbor: The k-nearest neighbor (KNN) algorithm is one of the supervised 197 

learning algorithms that is used in solving both classification and regression problems. 198 

The algorithm is used by making use of the data in a sample set with known classes. The 199 

distance of the new data, which will be added to the sample data set, is calculated 200 

according to the existing data, and its k closest neighbors are examined [66]. 201 

The Konstanz Information Miner (KNIME) platform is used for the implementation 202 

of our workflow [67]. Also, The Jupyter Notebook [68] was used for visualization. 203 

2.2.1.Model Construction 204 

As illustrated in Figure 2, we applied several machine learning algorithms that are 205 

explained in the above section to classify antimicrobial and Non-antimicrobial peptides. 206 

Also, we constructed stacking ensemble learners. All the findings we obtained in our 207 

study were obtained using 100-fold Monte Carlo Cross-Validation (MCCV) [69]. MCCV 208 

is a technique that selects a part of the data (unaltered) to create the training set, and then 209 

assigns the remaining data as the test set. This process is then repeated many times ran- 210 

domly, creating new training and testing segments each time. In our study, the training 211 

set is 90% of the data and the test is 10%.  212 

 213 

 214 
Figure 2. Flowchart of our Model Construction 215 

2.2.2.Performance Metrics 216 

We have assessed the performance of our models using several performance evalu- 217 

ation metrics such as accuracy, recall, specificity, area under curve and F1 measure. These 218 

metrics are employed as follows where TP: True Positive, TN: True Negative, FP: False 219 

Positive, FN: False Negative. 220 

 221 

 Accuracy =
TP + TN

TP + TN + FN + FP
 (1) 
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 Recall(Sensitivity) =
TP

TP + FN
 (2) 

 Specificity =
TN

TN + FP
 (3) 

 F1 =
2TP

2TP + FP + FN
 (4) 

 222 

3. Results 223 

In our experiments, we have used different machine learning methods i) to learn 224 

whether the peptides in each of our datasets have antimicrobial activity or not; and ii) to 225 

classify them accordingly. To this end, we have applied methods such as AdaBoost, De- 226 

cision Tree, LogitBoost, Random Forest, and Support Vector Machines.  As shown in 227 

Tables 2 and 3, for both Gram-negative and Gram-positive datasets, Random Forest 228 

classifier resulted in the best performance metrics. While the accuracy rate reached up to 229 

87% for Gram-positive data, this rate was 89% for gram negative data. Not only for ac- 230 

curacy rate, but also for other measures such as recall, specificity, precision, AUC and F1 231 

measure, RF yielded the best performance metrics. Figure 3 displays the comparative 232 

evaluation of different models using AUC values for (a) Gram-negative dataset, and (b) 233 

Gram-positive dataset. As it can be seen in Figure 3a and in Table 3, while 0,92 AUC 234 

value is obtained for gram negative dataset, 0,90 AUC value is obtained for 235 

Gram-positive dataset (shown in Figure 3b and in Table 2) using RF classifier. While the 236 

AUC values of other classifiers range between 0,77-0,87 for Gram-positive dataset 237 

(shown in Figure 3b and in Table 2), it ranges between 0,78-0,89 for Gram-negative da- 238 

taset. 239 

Table 2. Comparison of different models according to different performance metrics for Gram-positive dataset. 240 

Model Accuracy Recall Specificity Precision Area Under Curve F1 

AdaBoost 0,84 0,85 0,83 0,83 0,86 0,83 

Decision Tree 0,77 0,77 0,77 0,769 0,77 0,76 

LogitBoost 0,83 0,84 0,82 0,83 0,87 0,83 

Random Forest 0,87 0,87 0,87 0,87 0,90 0,87 

SVM 0,77 0,85 0,71 0,75 0,81 0,78 

SVM+KNN 0,76 0,81 0,72 0,76 0,80 0,77 

LogitBoost+KNN 0,77 0,85 0,71 0,75 0,81 0,78 

Table 3. Comparison of different models according to different performance metrics for Gram-negative dataset. 241 

Model Accuracy Recall Specificity Precision Area Under Curve F1 

AdaBoost 0,85 0,92 0,72 0,87 0,88 0,89 

Decision Tree 0,79 0,87 0,66 0,84 0,78 0,85 

LogitBoost 0,86 0,92 0,74 0,88 0,89 0,90 

Random Forest 0,89 0,93 0,79 0,90 0,92 0,91 

SVM 0,80 0,93 0,56 0,81 0,82 0,86 

SVM+KNN 0,80 0,93 0,56 0,81 0,82 0,86 

LogitBoost+KNN 0,80 0,93 0,56 0,81 0,82 0,86 
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 242 

 243 

(a) 244 

 245 

(b) 246 

Figure 3. Comparison of the performances of different models in terms of their area under ROC 247 
curve (AUC) values with standard deviation values for (a) Gram-negative, and (b) Gram-positive 248 
dataset 249 

3.1. Feature Scoring and Feature Ranking 250 

Feature selection procedure tries to reduce the computational costs by removing 251 

redundant or irrelevant variables from input data. This technique contributes to better 252 

understanding the generated model and allows one to improve the model via focusing 253 

on the important features. In order to perform this task, one needs to score or rank the 254 

features in terms of how useful they are at predicting the output. There are different 255 

approaches for feature ranking that are based on statistics measurements or wrapper 256 

approaches that are based on machine learning [70]. Moreover, more advanced 257 

approaches that integrate biological knowledge into the machine learning algorithm for 258 

performing feature selection or for selecting groups of features are used in different 259 
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recent tools.  Such an approach was adopted by different tools such as SVM RCE, 260 

SVM-RCE-R [71]–[73], maTE [74], CogNet [75], miRcorrNet [76], and Integrating Gene 261 

Ontology Based Grouping and Ranking [77]. Recently, these tools and their competitors 262 

were reviewed in [78].  263 

In this study, for each tested machine learning algorithm, we have recorded the 264 

scores assigned to each feature during the MCCV (100 iteration) procedure. Since we get 265 

higher performance metrics using Random Forest classifier, we have utilized the feature 266 

scores of this model throughout the rest of the paper. When we analyze the feature scores 267 

(shown in Figures 4 and 5), we observe that Net Charge, Isoelectric Point, Disordered 268 

Conformation Propensity, Normalized Hydrophobicity and Normalized Hydrophobic 269 

Moment are more crucial features than others for both Gram-negative and positive 270 

datasets. 271 

 272 

 273 

Figure 4. Feature ranking according to their importances in classification using random forest 274 
model in Gram-negative dataset. 275 

 276 

 277 

Figure 5. Feature ranking according to their importances in classification using random forest 278 
model in Gram-positive dataset. 279 

 280 
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3.2.Data Exploration 281 

In order to obtain the underlying structure of the data, we apply Principal 282 

Component Analysis (PCA) on Gram-negative and Gram-positive datasets separately. 283 

PCA is a dimensionality reduction technique that maps the data in high dimensional 284 

space (here each dimension corresponds to a physico-chemical property of a peptide) to a 285 

lower dimensional space (usually 2D or 3D) preserving the original structure of the data 286 

[79]. This technique is commonly used to highlight variation in a dataset and to capture 287 

strong patterns. Hence, PCA helps to visualize the data and the outliers. PCA has been 288 

applied to antimicrobial peptide data in several studies for data exploration and outlier 289 

detection purposes [80]–[83]. In our study, we also applied PCA to our dataset for 290 

visualizing the AMP and Non-AMP samples. In Figure 6, we present PCA results of the 291 

Gram-negative dataset (Figure 6a, 6c), and of the Gram-positive dataset (Figure 6b, 6d). 292 

While Figures 6a, 6b refer to the PCA results in 3D, Figures 6c, 6d refer to the PCA results 293 

in 2D. Interactive 3D plots are provided as supplementary material. We observe in Figure 294 

6 that there are some outlier samples (peptides) in both Gram-negative and positive 295 

datasets. 296 

 297 

   (a)               (b) 298 

 299 
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(c)             (d) 300 

Figure 6. Principal component analysis results for Gram-negative dataset are shown in (a) and (c); for Gram-positive dataset are 301 
shown in (b) and (d). While 3D plots are presented in (a) and (b), 2D plots are presented in (c) and (d). 302 

3.3.Outlier Detection and Elimination 303 

The presence of outliers can result in a poor fit and lower predictive modeling 304 

performance in classification or regression problems. For most machine learning 305 

datasets, due to the large number of input variables, the identification and removal of 306 

outliers is challenging by only using simple statistical methods. There are different 307 

computational approaches for outlier detection. One of those approaches depends on 308 

novelty detection based on machine learning [84], more specifically on one-class 309 

approaches [85], [86].  310 

In this study, in order to have a more homogenous group of peptides having 311 

antimicrobial activities, we wanted to eliminate outlier samples (peptides) if one of their 312 

physico-chemical features acts as an outlier. To see the distribution of the attributes in 313 

positive class (AMP) and negative class (Non-AMP), we plotted the histograms for each 314 

feature. Figure 7 presents two histograms drawn for the Net Charge feature of the 315 

Gram-positive dataset for a) AMP class, b) Non-AMP class. It can be observed from 316 

Figure 7 that while the net charge values are in the range of [0 , 31] for AMP class, it is in 317 

the range of [-6, 16] for the negative class. Based on our analysis using such histograms, 318 

we define a certain range of values for each feature for the positive class (AMP, the 319 

peptides having antimicrobial activity). We perform this analysis separately for the 320 

Gram-positive dataset and the Gram-negative dataset and we eliminate the peptides in 321 

the positive class if their physico-chemical properties are outside of this predefined 322 

range. The range for each attribute is shown in Table 4. 323 

 324 

  (a)                     (b) 325 

 326 

Figure 7. Graphical representation of Net Charge feature of the Gram-positive dataset. Histogram of (a) AMP class, (b) Non-AMP 327 
class. 328 

Table 4. Minimum and maximum values of each feature that are used in outlier elimination 329 

Features Gram-negative Dataset Gram-positive Dataset 
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At the end of the outlier elimination step, we get 194 Non-AMPs and 88 AMPs for 330 

the Gram-positive dataset; 114 Non-AMPs and 90 AMPs for the Gram-negative dataset. 331 

In Figure 8, we  present PCA results of the Gram-negative dataset (shown in a, c); and of 332 

the Gram-positive dataset (shown in b,d) after outlier detection and elimination. While 333 

PCA plots are presented in 3D in (Figure 8a, b), they are presented in 2D in (Figure 8c, d). 334 

While the red colors refer to Non-AMPs, blue colors indicate AMPs. Compared with 335 

Figure 6, Figure 8 implies that the positive class members are better separated from neg- 336 

ative class members for both datasets after outliers are eliminated. 337 

 338 
(a)         (b) 339 

 340 

Minimum threshold Maximum threshold Minimum threshold Maximum threshold 

Hydrophobic Moment 0.4 2 0.1 1.7 

Normalized 

Hydrophobicity 
-0.9 0.55 -0.8 1 

Net Charge 5 13 4 13 

Isoelectric Point 10.5 13 10 13 

Penetration Depth 13 30 12 30 

Tilt Angle 40 150 30 152 

Linear Moment 0.1 0.4 0.15 0.32 

Propensity in vitro 

Aggregation 
0 250 0 87 

Disordered Conformation 

Propensity 
-0.5 0.08 -0.85 0.15 
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 341 

(c)          (d) 342 

Figure 8. Principal component analysis of Gram-negative dataset (shown in a,c) and of Gram-positive dataset (shown in b,d) after 343 
outlier detection and elimination, shown in 3D in (a,b) and in 2D in (c,d). 344 

Using two of the datasets after outlier elimination, we repeated our classification 345 

experiment as explained in the methods section. As shown in Tables 5 and 6, when out- 346 

lier removal is applied, we have obtained higher performance metrics. As presented in 347 

Tables 5 and 6, the accuracy rate increased by 9% and reached 98% accuracy for the 348 

Gram-negative dataset, while this score is obtained as 95% for the Gram-positive dataset. 349 

Table 5. Comparison of the models according to performance metrics for the Gram-negative dataset after outlier elimination 350 

Model Accuracy Recall Specificity Precision Area Under Curve F1 

AdaBoost 0,975 0,990 0,965 0,958 0,990 0,972 

Decision Tree 0,914 0,920 0,910 0,895 0,915 0,903 

LogitBoost 0,978 0,995 0,965 0,959 0,992 0,976 

Random Forest 0,983 0,994 0,975 0,970 0,994 0,981 

SVM 0,980 0,990 0,973 0,967 0,989 0,977 

SVM+KNN 0,814 0,828 0,803 0,814 0,840 0,800 

LogitBoost+KNN 0,980 0,990 0,973 0,967 0,989 0,977 

 351 

Table 6. Comparison of the models according to performance metrics for the Gram-positive dataset after outlier elimination 352 

Model Accuracy Recall Specificity Precision Area Under Curve F1 

AdaBoost 0,939 0,927 0,945 0,898 0,965 0,906 

Decision Tree 0,885 0,820 0,915 0,824 0,867 0,815 

LogitBoost 0,936 0,935 0,936 0,886 0,965 0,903 

Random Forest 0,951 0,951 0,951 0,909 0,977 0,925 

SVM 0,914 0,903 0,919 0,853 0,939 0,867 

SVM+KNN 0,776 0,752 0,787 0,686 0,810 0,685 

LogitBoost+KNN 0,914 0,903 0,919 0,853 0,939 0,867 

 353 
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4. Discussion 354 

Antimicrobial peptides are characterized as positively charged, short-chain 355 

compounds which act against a wide range of microorganisms by interacting with the 356 

target cell components using different mechanisms [53]. The fact that AMPs have various 357 

mechanisms of action on the membrane makes bacterial resistance formation against 358 

them more complex compared to the conventional therapeutics. Therefore, AMPs are an 359 

attractive alternative to combat resistant bacteria [9]. However, AMPs derived from 360 

natural sources have some disadvantages such as low stability, salt tolerance and high 361 

toxicity that limit their therapeutic applications. Computational studies on AMPs help us 362 

to better understand the effect of the physicochemical properties of the peptides on 363 

stability and activity of AMPs. With the help of computational approaches in the study of 364 

AMPs, now it has become possible to overcome the above-mentioned difficulties and to 365 

design peptides with broad-spectrum activities and good stability [5].  366 

In this study, we attempted to develop a robust classification model for 367 

antimicrobial peptide prediction problem. To this end, we have compiled two datasets 368 

from Database of Antimicrobial Activity and Structure of Peptides (DBAASP). One 369 

dataset included the peptides active against Gram-negative bacteria, another one 370 

included the peptides active against Gram-positive bacteria. For each peptide, in order to 371 

define the activity against a group of bacteria (positive class label), we have utilized 372 

Minimum Inhibition Concentration (MIC) values. In our data preprocessing steps, as 373 

shown in Figure 1, we have focused on linear cationic peptides with peptide lengths 374 

varying between 20 and 50 aminoacids (aa). Since there are many peptides with very 375 

similar sequences, we eliminated those with a similarity rate of 80% or more using the 376 

CD-HIT program [49]. We carried out our classification procedure with the remaining 377 

peptides. We have experimented with several machine learning methods including, 378 

Adaboost, Logitboost, Decision Tree, Random Forest, Support Vector Machine, and 379 

stacking classifiers using 100 fold Monte Carlo Cross Validation. In our experiments, we 380 

have observed that Random Forest outperforms other classifiers as summarized in Table 381 

2 and Table 3.  382 

In order to understand the underlying structure of the data, we apply Principal 383 

Component Analysis (PCA) on Gram-negative and Gram-positive datasets separately. 384 

The PCA results in Figure 6A, 6B, 6C and 6D shows that when we visualize the AMP and 385 

Non-AMP samples with PCA plots, we have noticed that there are some outlier samples 386 

(peptides) in both Gram-negative and positive datasets. In order to understand more in 387 

detail why these samples are outliers and to compile a more homogenous dataset, we 388 

have examined the physico-chemical features of the peptides. To see the distribution of 389 

each feature, we plotted histograms for the Gram-negative and the Gram-positive 390 

datasets separately (Figure 7A, 7B). Based on our analysis using such histograms, we 391 

define a certain range of values for each attribute for the positive class which represents 392 

the peptides having antimicrobial activity as illustrated in Table 4. While the peptides 393 

within the selected ranges are kept, other peptides are eliminated from our dataset. Once 394 

again, PCA visualization has been applied to this outlier eliminated dataset and it has 395 

been observed that the peptides can be better separated into two classes in this new 396 

dataset (Figure 8A, 8B, 8C, 8D). For this outlier eliminated dataset, all classification 397 

experiments have been repeated. As shown in Tables 5 and 6, we have achieved higher 398 

performance metrics when outlier removal is applied. 399 

The studies on the structure-activity relationship of AMPs emphasized that the 400 

antimicrobial activity is affected by changes in many structural and physicochemical 401 

parameters such as net charge, hydrophobicity, and peptide chain length. Therefore, 402 

studying these properties of peptides and the similarities and differences between these 403 

features provide important insights for the development of new antimicrobial peptide 404 

prediction methods [88]. 405 
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In this study, the net charge was found as the most important feature for 406 

gram-negative data set while it is identified as the second most important feature for 407 

gram-positive dataset. The net charge is an important feature that shows the affinity of 408 

cationic peptides to bind to anionic cell surface structures through electrostatic 409 

interactions. Gram-positive and Gram-negative bacteria possess different cell wall 410 

components such as teichoic acid and lipopolysaccharides (LPSs).  The difference in the 411 

importance of the net charge feature between the two datasets (peptides active against 412 

Gram-positive bacteria vs. peptides active against Gram-negative bacteria) may be due to 413 

the differences between the cell wall components of anionic characters. 414 

On the other hand, for the gram-positive dataset, the isoelectric point (pI) was found 415 

to be the most important feature, while it was the second most important feature for 416 

gram-negative dataset. The pI feature refers to the solubility of the peptides under certain 417 

pH conditions. When the pH of the environment is equal to the pI of the peptide, the 418 

peptide loses its solubility and hereby its biological function [89]. pIs of the AMPs are 419 

generally at alkaline pH, and hereby maintain their activity at physiological pH. There is 420 

a strong relationship between the isoelectric point and the antibacterial activity of AMPs 421 

[90]. Ahn et al., reported that rather than the net charge, pI was a better parameter for 422 

predicting the antibacterial activity [91]. 423 

The above-mentioned two features were followed by the disordered conformation 424 

propensity,  normalized hydrophobicity and normalized hydrophobic moment features 425 

respectively for both bacterial groups. The majority of linear cationic AMPs are 426 

disordered structures in aqueous solution and acquire their biologically active 427 

conformation upon interaction with the membrane. The majority of linear AMPs adapt to 428 

the alpha-helical conformation in lipid membrane environment and this regular structure 429 

is important for antimicrobial activity for this AMP class [92]. Hence, the identification of 430 

disordered conformation propensity feature as the third important feature in our analysis 431 

makes sense in terms of the underlying biology. 432 

Hydrophobicity and hydrophobic moment are two important physico-chemical 433 

features that affect the antimicrobial activity of AMPs. In this study, the effect of these 434 

determinants was found lower than expected. The hydrophobicity reflects the ratio of 435 

hydrophobic residues within a peptide sequence. In the first step of peptide-lipid 436 

interactions, AMPs attach to the cell surface by electrostatic interactions, and then the 437 

hydrophobic interactions become a primary driving force for their insertion and 438 

partitions into the lipid bilayer [93], [94]. In general, the increase of hydrophobicity 439 

promotes antimicrobial activity in peptides [95]. However, some studies demonstrated 440 

that an increase above a certain level in hydrophobicity leads to a decrease in 441 

antimicrobial activity [95]. The hydrophobic moment is defined as a quantitative measure 442 

of peptide amphipathicity [96]. The amphipathic α-helical AMPs have polar and 443 

hydrophobic residues that are arranged in opposite faces. This arrangement facilitates the 444 

interactions of AMPs to membranes. The increase of the hydrophobic moment results in a 445 

significant elevation in antimicrobial activity, but it also leads to cytotoxicity [94]. 446 

5. Conclusions 447 

The main contribution of this paper is the development of two accurate classifica- 448 

tion models for the prediction of antimicrobial peptides active against i) Gram-negative 449 

and ii) Gram-positive bacteria. To this end, we have compiled two different datasets for i) 450 

peptides active against Gram-negative bacteria, and ii) peptides active against 451 

Gram-positive bacteria; and evaluated different machine learning models for the predic- 452 

tion of  antimicrobial peptide activity. In our experiments with 100 fold MCCV, the 453 

random forest algorithm achieved better results compared to other algorithms for both 454 

datasets. At the end of our feature ranking procedure, the net charge was found as the 455 

most important feature for gram-negative data set and second most important feature for 456 

gram-positive dataset. Also, for the gram-positive dataset, the isoelectric point (pI) was 457 
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found as the most important feature, while it was determined as the second most im- 458 

portant feature for gram-negative dataset. In literature, both net charge and the isoelec- 459 

tric point of a peptide are known to have a considerable effect in terms of determining the 460 

activity of AMPs [90]. The PCA visualization is applied on Gram-negative and 461 

Gram-positive dataset and some outlier samples have been observed. Based on the dis- 462 

tribution of the positive and negative labelled samples (peptides having antimicrobial 463 

activity vs. non AMP peptides), certain ranges are defined for each attribute. In our sec- 464 

ondary experiments, in which the peptides outside those ranges were eliminated (outlier 465 

detection), we observed that the results increased by 9% for the gram negative dataset 466 

and 8% for the gram positive dataset. 467 

Antimicrobial peptides are considered as the most promising alternatives to antibi- 468 

otics. Therefore, accurate prediction of antimicrobial peptides contributes to the produc- 469 

tion of more effective peptides with lower costs. Additionally, since computational pre- 470 

diction approaches minimize the losses during production steps, they became popular in 471 

this field. In this respect, the classification model that we have developed in this study 472 

paves the way to the precise prediction and the design of antimicrobial peptides that are 473 

highly effective against bacterial pathogens. Even though the classification approach that 474 

we have developed here is only applied on the bacteria, it has the potential to be utilized 475 

for the prediction of antifungal, antivirus, antiprotozoal, and anticancer agents in future 476 

studies. 477 

Supplementary Materials: Interactive 3D plots are provided as supplementary material. 478 
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