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Abstract: Low charge density nanometric ions were recently shown to bind strongly to neutral 
hydrated matter in aqueous solution. This phenomenon, called (super-)chaotropic effect, arises from 
the partial dehydration of both, the nano-ion and the solute, leading to a high gain in enthalpy. Here, 
we investigate the chaotropic effect of the polyoxometalate α-PW12O403- on the triblock copolymer 
P84: (EO)19(PO)43(EO)19 with (EO)19 the polyethoxylated and (PO)43 the polypropoxylated chains. 
The combination of phase diagrams, spectroscopic (nuclear magnetic resonance) and scattering 
(small angle neutron/X-ray scattering) techniques reveals that (i) below the micellization 
temperature of P84, PW12O403- exclusively binds to the propylene oxide moiety of P84 unimers and 
(ii) above the micellization temperature, PW12O403- mostly adsorbs on the ethylene oxide micellar 
corona. The preferential binding of the PW12O403- to the PPO chain over the PEO chains suggests that 
the binding is driven by the chaotropic effect and reinforced by the hydrophobic effect. At higher 
temperatures, the copolymer micellization leads to the displacement of PW12O403- from the PPO 
chain to the PEO chains. This study deepens the understanding of the subtle interplay between the 
chaotropic and hydrophobic effects in complex salt-organic matter solutions. 

Keywords: chaotropic effect; hydrophobic effect; polyoxometalates; polymeric surfactants; small 
angle scattering, salt effects 
 

1. Introduction 
Polyoxometalates (POMs) show a continuously growing interest in chemistry due to 

their outstanding properties, e.g. their (photo-)catalytic activity[1–3], applications in 
medicine[4–6] and many more[7,8].  Currently, the solution behavior of POMs in 
aqueous medium has attracted much attention in the literature.[9,10] It was demonstrated 
that POMs with a low charge density, such as phosphotungstate (α-PW12O403-, PW), see 
Error! Reference source not found.a, bind strongly and non-covalently to neutral 
hydrated surfaces of non-ionic micelles in aqueous solution.[11] This phenomenon – 
known as the (super-)chaotropic effect – has been described as a water-mediated effect: 
the hydration shells of both the POM and (surface) moieties are partially stripped off 
during binding. The superchaotropic effect is an enthalpy driven process which has been 
discussed as an extension of the well-known Hofmeister series observed for smaller 
classical chaotropic ions, such as I- or SCN-, on many physico-chemical and biological 
phenomena.[12,13] The association constants of superchaotropic POMs and other nano-
ions (NIs), e.g. ionic boron clusters, with neutral organic solutes/surfaces is typically 
around three orders of magnitude stronger than for common chaotropic ions. For this 
reason low charge density NIs were called “superchaotropes”.[11,14–16] 
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A broad spectrum of non-ionic systems was probed regarding their binding with 
superchaotropic NIs, such as small aromatic molecules,[17] surfactant self-
assemblies,[11,15,18,19] oligo- and polymers,[18,20,21] macrocyclic molecules [14,16,22–24] 
and short-chain amphiphiles.[25]  

In a previous contribution, our group has explicitly drawn a focus on the interaction 
of PW with polyethylene oxide (PEO) oligomers. We showed that PW in its acidic form, i.e. 
H3PW12O40 (HPW), and PEO form nano-assemblies comprising one PW and approximately 
two PEO oligomers.[20] Such strong binding of POMs on PEO chains was also observed 
on PEO non-ionic surfactant micelles.[11] The binding of NIs to the PEO corona of these 
PEO surfactant micelles was monitored by the surfactant`s cloud point (CP) evolution 
which was used as a powerful tool to rank the NIs according to their 
superchaotropicity.[15,19,23] Later, the interaction of HPW with polypropylene oxide 
(PPO) chain based was investigated. In the presence of dipropylene oxide n-propylether 
(C3P2), HPW forms nano- to mesoscopic self-assemblies in aqueous solution.[25]  

As a conclusion, the interaction of HPW was intensively investigated with (i) 
polymers, (ii) non-ionic surfactant micelles, (iii) PEO-based and (iv) PPO-based 
compounds. A class of compounds, gathering all four features (i-iv), are triblock 
copolymers with an ABA architecture (A: PEO and B: PPO). ABA triblock copolymers are 
present as unimers (unaggregated form) at low temperature and as micellar aggregates at 
elevated temperatures (above their critical micellization temperature (CMT)) in aqueous 
solution.[26–29] Such well-known polymeric surfactants (Pluronic® or Polaxamer®) are 
used in a broad field of applications, as they solubilize oily compounds,[26,30] are used as 
drug delivery systems[31,32] or templates in the synthesis of mesoporous materials.[33,34] 

Here, we investigate the superchaotropic effect of HPW on the Pluronic® surfactant 
P84, (EO)19(PO)43(EO)19, see Error! Reference source not found.b. We monitored the CP of 
P84 as a function of HPW concentration to investigate the HPW-P84 association in water. 
At low temperatures (P84 unimers), 1H-nuclear magnetic resonance (1H-NMR) was used 
to probe the local environment of the PPO and PEO blocks. Above the CMT (P84 micelles), 
scattering techniques, i.e. small angle X-ray and neutron scattering (SAXS and SANS, 
respectively), were used to investigate shape/charge of the micellar assemblies. The 
obtained experimental results are discussed in the context of the two water mediated 

Figure 1. Molecular representation of (a) the α-Keggin-type anion phosphotungstate 
(PW12O403-, PW) and (b) the triblock copolymer P84, providing an ABA architecture (Plu-
ronic®-type) with A: ethylene oxide and B: propylene oxide. A sketch of P84 is shown 
below the molecular structure.  
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driving forces[16]: the chaotropic effect (interaction of POM and P84) and the hydrophobic 
effect (micellization of P84). 

2. Materials and Methods 

2.1. Materials 
Phosphotungstic acid hydrate (H3PW12O40 ∙ xH2O, HPW, M = 2898 g/mol, 99.995% 

purity) was purchased from Sigma Aldrich. Concentration calculations were done with 
xHPW = 7. P84 (M = 4200 g/mol) was received as a gift from BASF and used as obtained. 
Milli-Q water was used with a conductivity lower than 10.5 µS/cm and a total organic 
carbon content of 400 ppb. 

2.2. Cloud point (CP) measurements/phase diagrams 
For phase diagrams, 3 g of binary/ternary mixtures were prepared into screwable 

tubes from borosilicate glass and the samples were heated in a thermostat 
(Thermomix_1460, B.Braun Melsungen AG) in special tube holders. The thermostat was 
heated with a rate of 1 °C min-1. The expected precision of the measurements is ±1 °C. 

2.3. 1H-nuclear magnetic resonance (1H-NMR) 
  Solution 1H-NMR spectra were recorded with an Avance300 (Bruker) spectrometer 
using tetramethyl silane as an internal standard. Chemical shifts (δ) are provided in parts 
per million (ppm) and coupling constants (J) are reported in Hertz (Hz). D2O was used 
instead of H2O. 

2.4. Small angle X-ray scattering (SAXS) 
SAXS measurements, using Mo radiation (λMo = 0.071 nm), were performed on a 

bench built by XENOCS. The scattered beam was recorded using a large online scanner 
detector (diameter: 345 mm, from MAR Research). A large q-range (0.2 to 40 nm-1) was 
covered with an off-center detection. The collimation was applied using a 12:∝ multilayer 
Xenocs mirror (for Mo radiation) coupled to two sets of scatter less FORVIS slits providing 
a 0.8 × 0.8 mm X-ray beam at the sample position. Pre analysis of data was performed using 
FIT2D software. 1 and 2 mm quartz capillaries were used as sample containers for the 
solutions. The samples were thermostated at given temperatures. Usual corrections for 
background (empty cell and detector noise) subtractions and intensity normalization using 
a high density polyethylene film as a standard were applied. Experimental resolution was 
∆Q/Q = 0.05. Silver behenate in a sealed capillary was used as the scattering vector 
calibration standard. 

2.5. Small angle neutron scattering (SANS) 
All measurements were performed on beamline D33 at the Institut Laue-Langevin 

(ILL) in Grenoble. The applied measurement mode was a monochromatic mode (λneutron = 
0.6 nm). Detection was done at 2 and 5 m. Quartz cuvettes from Helma with thicknesses 
of 1 mm or 2 mm were used as sample containers. The samples were thermostated at given 
temperatures. The acquisition times were set to 15 minutes taking into consideration 
sample thickness and composition, i.e. the scattering. Water was used as a calibrant in 
order to obtain absolute intensities. The spectra were treated and normalized using the 
available software on site. Note, that the presented SANS spectra are subtracted by the 
signal of D2O but do contain incoherent scattering. The apparatus was controlled by the 
NOMAD software and the data treatment was done with the GRASP software on site.[35]  

2.6. Light scattering 
Samples were measured using a Zetasizer Nano ZS from Malvern Instruments. The 

samples were illuminated with a 632.8 nm laser and detection was done in backscattering 
position at an angle of 173°. 1 cm quartz glass cuvettes with a plastic cap served as sample 
containers. Once set into the measurement chamber the samples were equilibrated for 300 
s at the set temperature before the acquisition started. Count rates were collected in 
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triplicates for each sample where one measurement consisted of 10 runs of 10 seconds each, 
which would then be automatically averaged.  

3. Results and Discussion 

3.1. P84: phase diagram and aggregation 
We investigated first the binary phase diagram of P84 and water at c(P84) ≤ 10 wt%, 

see Fig. 2a. This phase diagram shows three different regions, i.e. a transparent (black star), 
a blueish (red star) and a turbid phase (green star), see pictures in Fig. 2a.  For c(P84) > 1 
wt%, the phase transitions appear at rather constant temperatures: 60 ± 4°C (transparent 
to blueish) and 74 ± 3 °C (blueish to turbid), respectively. Here, the blueish to turbid phase 
transition temperature is attributed to the CP.[29,36] For c(P84) < 1 wt%, the two phase 
transitions are shifted to much higher temperatures by decreasing P84 concentration. In 
the following, a concentration of P84 of 2.5 wt% (6 mmol L-1) was chosen to ensure (i) low 
concentration dependence on the phase transitions of P84 and (ii) weak inter-micellar 
interaction that is required for a more convenient fitting and interpretation of the scattering 
experiments.  

The count rate of a 2.5 wt% P84 solution was measured as a function of temperature 
(along red line in Fig. 2a), see Fig. 2b. The count rate evolution can be divided in three 
different temperature regimes, called (I), (II) and (III) hereafter. In regime (I) (20-28 °C) the 
count rate is low (around 300 kcps) as expected for the scattering of unaggregated P84 
unimers. In regime (II) (28-54°C) the count rate increases strongly upon heating. This 
increase in the scattered light intensity can be attributed to the formation of spherical 
micelles above 28°C, which corresponds to the CMT as expected from previous works.[37] 
Above the CMT, the micellar core is formed by the partially dehydrated PPO chains and 

Figure 2. (a) The binary phase diagram of water and P84 up to c(P84) = 10 wt% shows the presence of a 
transparent, a blueish and a turbid phase, which is related to the CP of P84. (b) Count rate of 2.5 wt% 
P84 as a function of temperature, see red line in a), indicating the presence of three types of aggregation 
of P84((I) - (III)). (c) Schematic representation of the P84 transition with increasing temperature. At room 
temperature (I) unimers are present which self-assemble to spherical micelles in (II) and to rod-like mi-
celles in (III). In the following emphasis is put on unimers and spherical micelles. 

CMT 
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the micellar corona contains the well-hydrated PEO chains.[37,38] At higher temperatures 
in regime (III), above 55 °C, a drastic increase in the count rate is observed. This high 
increase in the scattered intensity is attributed to the formation of rod-like micelles, see 
Fig. 2c. Indeed, this is in agreement with previous works where a transition from spherical 
to rod-like micelles was reported at 55°C.[38] Reasonably, the blueish phase obtained in 
Fig. 2a, is likely to arise from elongating rod-like micelles (Tyndall scattering typically in 
the (sub-)µm regime). In the present study the focus was made on unimers and spherical 
micelles.Therefore we investigated P84 (2.5 wt%) at 20 °C (unimers) and 50°C (spherical 
micelles). 

3.2. P84: Cloud point evolution upon addition of HPW 

The CP evolution of a non-ionic surfactant upon the addition of POMs was estab-
lished as a simple but efficient tool to classify the adsorption of NIs on  micelles.[15] 
Hence, the CP and occurrence of the blueish phase at 2.5 wt% P84 is recorded as a function 
of c(HPW), see Fig. 3. In absence of HPW the blueish phase occurs at 62 °C and the CP at 
72.5 °C. The blueish phase shifts to higher temperatures upon increasing HPW concentra-
tion (87 °C for 1 mmol kg-1 HPW), while the temperature of the transparent-to-blueish tran-
sition increases and then levels off upon HPW addition. The CP increase is tremendous, as 
it increases from 72.5 °C up to 100 °C in a very narrow range of concentration (from 0 to 
0.05 mmol kg-1 HPW). Such a strong CP increase at low HPW concentration indicates a 
strong association constant, that can be estimated (KA ~ 20.0 mM-1, see the fitting results, 
red curve in Fig. 3) from a Langmuir fit according to a previous procedure.[15] The asso-
ciation of HPW with P84 is then around one order of magnitude stronger than with previ-
ously investigated systems (using CP measurement to estimate the association constant): 
poly-N-isopropylamide (PNiPAM10000, KA ~ 2.1 mM-1)[21], polyethoxylated micelles 
(C8E4, KA ~ 1.4 mM-1)[15]. This stronger association constant obtained with P84 is likely to 
be due to stronger binding to the more hydrophobic (but still hydrated) PPO chains. 

Note, that above 6 mmol kg-1 HPW the system phase demixes (precipitation) which 
is likely to arise from the strong HPW-P84 binding. The ternary phase diagram water-P84-
HPW at room temperature is given in Fig. S1.  

Figure 3. Phase diagram of 2.5 wt% P84 as a function of c(HPW) showing a tremendous 
CP increase (dark squares) and a strong increase in the temperature of appearance of the 
blueish phase (blue circles). 
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3.3. Association of HPW with P84 unimers 
To access detailed information on the interaction of HPW with P84, unimeric P84 

(20 °C, 2.5 wt%) is investigated by 1H-NMR in the presence of HPW. First, we checked 
that P84 remains in the unimeric form in the presence of HPW by SANS (Fig.S2) and SAXS 
(Fig.S3-4), see the corresponding discussion in section S2. 

1H NMR spectrum for P84 2.5 wt% in D2O is given in Fig. 4b. P84 exhibits several 
NMR-active protons: (i) CH2 protons of the PEO moieties (red ellipse), (ii) the quaternary 
proton (yellow circle) in PPO, (iii) CH2 protons (green ellipse) in PPO and (iv) protons in 
the methyl group (blue ellipse) in PPO, see Fig. 4a. These protons were assigned using 
Shoolery`s rules, see Fig. 4b bottom spectrum.[39] 
(i) The CH2 protons of PEO produce a sharp singlet at 3.55 ppm. 
(ii) The quaternary proton of PPO produces a multiplet at around 3.49 ppm as it cou-

ples with all the neighboring CH2/CH3 protons in PPO via a 3J coupling. 
(iii) The CH2 protons of PPO are detected at around 3.41 ppm as a doublet that is over-

layed by the multiplet of the PPO quaternary proton (ii). 
(iv) The CH3 protons of PPO produce a doublet at 1.01 ppm. 

1H-NMR was measured for 2.5 wt% P84 in the presence of HPW, for 
c(HPW) ≤ 5.5 mmol kg-1, see Fig. 4b and Fig. S5. A broadening of all peaks is observed by 
increasing HPW concentration. This peak broadening results from a decreased diffusion 
of the P84 molecules in solution, i.e. due to the formation of [HPW-P84] assemblies, as 
previously observed by investigating the superchaotropic effect of HPW on PEO oligo-
mers[20] and γ-cyclodextrin.[23] 

Fig. 4c shows the shift of chemical shifts, Δδ, of signals stemming from P84 as a func-
tion of c(HPW). The CH2 protons of PEO moieties (singlet) is unaffected upon addition of 
HPW. On the contrary, the peak positions of CH2 and CH3 protons of the PPO moieties are 
strongly down-field shifted, i.e. shifted to higher chemical shifts (ppm): Δδ of 0.035 ppm 

Figure 4. (a) Molecular representation of P84 with 1H-NMR active protons marked in colored ellipses 
with following scheme: CH2 protons of the PEO moieties in red and the CH3 protons of the methyl group 
(blue), CH2 protons (green) and the quaternary proton (yellow) in the PPO moiety. (b) Evolution of the 
1H-NMR spectrum of 2.5 wt% P84 upon an increasing concentration of HPW (0, 2.75 and 5 mmol kg-1 
from bottom to top). Spectra measured at 20 °C. The color code corresponds to the colors in (a) and 
therefore indicates the signals stemming from these specific protons. (c) Shift of the chemical shift, i.e. 
Δδ, of protons in P84 as a function of c(HPW) indicating a strong interaction of HPW exclusively with 
the PPO part of P84. 
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and 0.05 ppm respectively for CH2 and CH3 protons upon addition of 5.5. mmol kg-1 HPW. 
Note, that Δδ cannot be determined for the quaternary proton in PPO due to a strong peak 
broadening, see Fig. S5. 

As a conclusion, HPW binds to P84 unimers which is due to its polymeric nature, 
while monomeric species (e.g. only one PO repetition unit) are not expected to associate 
with a chaotropic anion[40] such as PW. Here, the HPW binds selectively to the PPO moi-
ety over to the PEO moieties of P84 unimers. PPO is more hydrophobic than PEO and 
therefore less or weaker hydrated. Therefore, the stronger and selective adsorption of 
HPW to PPO results from a combination of the chaotropic and hydrophobic effects.  

3.4. Association of HPW with P84 micelles 
Figure 5a&b show the SANS and SAXS spectra respectively of 2.5 wt% P84 in water 

(green rectangles) at 50°C, i.e. above the CMT. The SANS spectrum of 2.5 wt% P84 in D2O 
(green symbols in Fig. 5a) shows the typical shape obtained for isotropic scattering objects 
which can be attributed to P84 micelles. To access more information on the micelles, a core 
(PPO-part)-shell (PEO-part) sphere model was used to fit the experimental data (red line 
in Fig. 5a). The influence of micelle-micelle interactions was considered by using a hard-
sphere structure factor S(q), see details in section S4.2 and Table S3. 

Figure 5. (a) SANS and (b) SAXS spectra of 2.5 wt% P84 in water (D2O or H2O respectively) and in the 
presence of 2 mmol kg-1 HPW at 50 °C including fits. (c) Scattering length density profiles of a P84 mi-
celle in aqueous solution showing that the major contrast giving moiety is PPO in SANS and PEO in 
SAXS in absence of POM. In presence of HPW, the scattering length density in SAXS is dominated by 
the PW anions, which are located mostly in the PEO corona. The sketch represents the size shrinkage of 
P84 micelles and the penetration of PW anions in the micellar PEO corona and partially the micellar 
PPO core. In the sketch, one P84 represents the whole micelle. 
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The fit could well reproduce the experimental data and revealed a micellar radius of 
6.5 nm, with a core radius is 4.1 nm (PPO part) and a shell thickness (PEO corona) of 2.4 nm, 
an aggregation number of around 60. These values are in well agreement with litera-
ture.[29][41]  

In Fig. 5b the SAXS spectrum of 2.5 wt% P84 in H2O (green rectangles) is shown. The 
SAXS spectrum differs a lot from the SANS spectrum because of the different scattering 
length density (ρ) profiles of the micelles in SAXS and SANS, see the orange (SAXS) and 
green (SANS) curves in Fig.5c. SAXS is mostly sensitive to the (higher electron density) 
PEO-corona whereas SANS is mostly sensitive to the micellar dehydrated PPO-core.[26] A 
fit was applied to the SAXS spectrum, which perfectly reproduces the experimental spec-
trum (details see section S4.2 and Table S4). The fitting results are in good agreement with 
literature.[29] 

SANS and SAXS spectra were collected in the presence of HPW (2 mmol kg-1) for 
2.5 wt% P84 (blue circles). HPW is “invisible” in SANS, as its scattering length density is 
close to the one of D2O, whereas it shows a large contrast with H2O and P84 in SAXS, see 
Table S1. The SANS spectrum of 2.5 wt% P84 - 2 mmol kg-1 HPW shows a similar shape as 
the spectrum of 2.5 wt% P84 for q > 0.4 nm-1. At q = 0.26 nm-1 a pronounced correlation 
peak occurs in the presence of HPW. The correlation peak and the low scattered intensity 
in the low q (< 0.26 nm-1) reflect strong repulsive micelle-micelle interactions (S(q)). The 
arising of these repulsive interactions upon addition of HPW is attributed to electrostatic 
repulsions resulting from the adsorption of the negatively charged PWs on the micelles. 
To access more information, the experimental SANS spectrum was fitted by using a core-
shell sphere model with a Hayter-MSA S(q) that takes into account for electrostatic repul-
sions.[42,43] The fit reproduces perfectly well the experimental data. The result of the fit 
revealed a micellar radius of 5.5 nm with a micellar core (PPO) radius of 3.6 nm and a shell 
thickness (PEO) of 1.9 nm (details see section S4.2 and Table S5). Therefore, SANS suggests 
that upon the addition of HPW, the radius of P84 micelles shrinks from 6.5 nm to 5.5 nm. 
This effect is reasonable, as especially PEO is known to “wrap around” PW upon their 
binding.[11,20] The charge of the micelles obtained from the fitting is 47. From the micelle 
charge, the number of PW anions per micelle was estimated at around 16, i.e. 47/3, if full 
dissociation of HPW is considered. 

The SAXS spectrum of 2.5 wt% P84 - 2 mmol kg-1 HPW (blue circles in Fig. 5b) differs 
greatly from the SAXS spectrum of 2.5 wt% P84 (green squares in Fig. 5b): (i) the overall 
scattered intensity is strongly increased (by a factor of ten), (ii) a correlation peak occurs at 
0.31 nm-1, (iii) an oscillation appears at 1.12 nm-1 and (iv) the scattered intensity decreases 
at q < 0.31 nm-1. The overall intensity increase is attributed to the adsorption of the high 
electron density (ρSAXS) HPW. The location of the correlation peak and the pronounced 
oscillation can only be explained by a tremendous change of the scattering length density 
profile of P84 micelles. The decreased scattered intensity in the low q-regime results from 
the adsorption of PW anions on the charged micelles, that induces strong electrostatic re-
pulsions between the micelles, as observed in the SANS spectrum (Fig.5a blue circles). 
Therefore, a core-shell model with a Hayter-MSA S(q) was used to fit the experimental 
data. The fit gives a micellar core radius is 2.3 nm, composed of PPO, and a shell thickness 
2.9 nm, composed partly of the PPO chains and of the PEO chains with adsorbed HPW 
(see section S4.2 and Table S6). HPW is mostly located in the well-hydrated PEO chains 
and only partly in the dehydrated PPO micellar core close the PEO-PPO region (as in the 
sketch in the lower part of Fig. 5c.). These results were precisely confirmed by evaluating 
the effect of each parameter in the fit, see section S4.2, Fig. S6 and Table S7. 

The SAXS/SANS fitting results are well summarized in Fig. 5c that shows the ρ pro-
files in 1D along the micelle (i.e. from its center to the surrounding water) in SANS (green 
and red curves) and SAXS (blue and orange curves) of P84 micelles in presence (green and 
blue curves) and absence (red and orange curves) of HPW. r is the distance from the center 
of the micelle to the surrounding (heavy) water. In SANS for P84 micelles in D2O (green 
line in Fig. 5c), ρ of the PPO micellar core and of the PEO corona were fitted 
(𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1.40 ∙ 1010 cm-2 and 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 5.55 ∙ 1010 cm-2) and the values were found to be well 
in agreement with the literature.[26] 𝜌𝜌𝐷𝐷2𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  for the solvent was fixed to 6.40 ∙ 1010 cm-2. 
Upon addition of HPW, the ρ profiles inform clearly on the micelle shrinkage (from green 
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to red curve in Fig. 5c). In SAXS for P84 micelles in H2O (orange line in Fig. 5c) the major 
contrast is produced between the PEO ( 𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = 9.75 ∙ 1010 cm-2) and PPO/H2O 
(𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 9.47 ∙ 1010 cm-2 ≈ 𝜌𝜌𝐻𝐻2𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 9.40 ∙ 1010 cm-2). Upon the addition of HPW, the ρSAXS pro-
file drastically changes (from orange to blue curve in Fig. 5c). A strong increase in ρ up 
to 18.70 ∙ 1010 cm-2 is obtained for 2.3 ≤ r ≤ 5.1 nm, which can only be attributed to the pres-
ence of PW. 

We conclude by combining SAXS and SANS results that the (i) addition of HPW to 
P84 micelles leads to a size decrease of P84 micelles and (ii) HPW mostly adsorbs on the 
PEO micelle corona, see sketch in Fig. 5c.  

4. Conclusions 
In the first part, we investigated the different aggregation states of the polymeric P84 

(ABA block copolymer) surfactant in aqueous solution. At 2.5 wt%, unimers of P84 are 
present at 20 °C. By increasing temperature above the CMT (28°C) spherical micelles are 
observed at 50 °C. The micelles undergo a sphere-to-rod transition at >55 °C. The 
tremendous CP increase of 2.5 wt% P84 in presence of micromolar concentrations of HPW 
confirmed strong association between HPW and P84 with an adsorption constant of KA ~ 
20.0 mM-1. Interestingly, such a high KA was never observed for the binding of HPW with 
other polymers (PNiPAM) or micelles (C8E4). 

It was shown by 1H-NMR experiments, that HPW selectively binds to the PPO 
moiety of P84 unimers (below the CMT at 20 °C). This effect was attributed to a 
combination of the chaotropic and hydrophobic efffects due to the higher hydrophobicity 
of PPO over PEO.   

Via the combination of SANS/SAXS and modelisation spherical micelles of P84 with 
a radius of 6.5 nm (4.1 nm PPO core and 2.4 nm PEO corona) were observed in absence of 
HPW above the CMT at 50 °C. Upon the addition of HPW the micelle shrinks in size down 
to a radius of 5.5 nm. HPW were found to be mostly located in the micellar PEO corona 
and only partially located in the PPO micellar core (close the PEO-PPO region). Therefore, 
upon heating above the CMT, the micellization of P84 - driven by the hydrophobic effect 
– leads to a displacement of HPW from PPO to PEO. 

This study shines light on the subtle balance of two effects: the chaotropic effect 
(binding of HPW to P84) and the hydrophobic effect (micellization of P84 and binding of 
HPW to P84). The chaotropic effect and the hydrophobic effects act here as two 
interplaying driving forces. We propose, that the balance of the chaotropic effect and the 
hydrophobic effect plays a decisive role in assembly of hierarchical systems and requires 
high attention for future rational bottom-up syntheses based on self-assembly. 
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