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Abstract: This paper describes the successful application of the Transformer model used in the nat-
ural language processing and vision tasks as a means of processing the time series of signals from 
gyroscope and accelerometer sensors for the classification of human activities. The Transformer 
model is based on deep neural networks with many layers which can generalize well on signals. All 
measured signals come from a smartphone placed in a waist bag. Activity prediction is sequence-
to-sequence, each time step of the signal is assigned a designation of the performed activity. Em-
phasis is placed on attention mechanisms, which express individual dependencies between signal 
values within a time series. In comparison with another recent result, the recognition precision was 
improved from 89.67 percent to 99.2 percent. The transformer model should in the future be in-
cluded among the top options in machine learning methods for human activity recognition. 
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1. Introduction 
Human activity recognition is a very active field that seeks to identify human activi-

ties based on sensors available in everyday devices such as smartphones, tablets, or smart-
watches. These devices can collect data from a wide sample of users and classify the sig-
nals using machine learning methods. Detection of human activities using mobile devices 
has great potential in medicine when it is possible to monitor patients with various diag-
noses and control compliance with treatment procedures or to use it as prevention against 
performing prohibited activities. Apart from health monitoring and rehabilitation, it can 
be used in gaming, human-robot interaction, robotics, or sports [1]. 

 Recently, a lot of effort was focused on human activity recognition by deep neural 
networks. Several types of deep neural networks are typically used for the sensor signals 
time series classification. Paper [2] is based on the transformation of the measured signal 
time series into a polar coordinate system, forming a pair of Gramian Angular Fields im-
ages. These images are then classified by a ResNet-based convolutional deep neural net-
work. Compared to their approach, this paper focuses on the direct application of meas-
ured signals to the input of a neural network, eliminating the need for any complex pre-
transformation of data. Moreover, the model in this paper is much smaller than ResNet 
used in [2]. The overall transformation and subsequent classification are ensured within 
the trained model, thanks to which it is possible to achieve higher speeds during predic-
tion and it is not necessary to use demanding calculation models such as ResNet. Normal-
ization is ensured so that the mean is close to 0 and the standard deviation is 1 as opposed 
to the min-max method used by Qin et al. [2]. 
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 The paper [3] is primarily focused on the application of 1D CNN and LSTM. This 
combination can handle long time series, but it is not as effective as the Transformer model 
in massive parallelization of calculations. The transformer itself can process long time se-
ries at high speed without the need to combine multiple neural network approaches. Alt-
hough the dataset used in [3] contained several times more examples than the dataset used 
here, it focused only on basic activities and transition activities, not on more complex 
movements such as Pick, Jump, Push-up, or Sit-up used in this paper. Moreover, a data 
augmentation method is introduced here for extending a dataset by manipulating existing 
data, making it possible to produce many new examples to supplement an existing da-
taset. 

The paper [4] introduced a new approach - attention for learning multiscale features 
among multiple kernels of 1D convolution layers in HAR issues. In a similar way, the 
signals were preprocessed to 0 mean and 1 standard deviation, but the focus was on using 
special 1D convolution layers for the prediction of one label for the entire time series (win-
dow). 1D convolutional networks and recurrent neural networks, or a combination of both 
are among the most used approaches [5]. In this paper, the window size limit is restricted 
only by the memory capacity, and labels are assigned to each time step, using the previous 
steps in the time series. This paper also offers an alternative in the form of entirely fully 
connected layers without using any 1D convolution in signal processing. 

The paper [6] focuses on the classification of simple as well as complex activities by 
widely used models like InceptionTime or DeepConvLSTM. The activities are captured 
using sensors in smartphones like in this paper, and smartwatches. Combined convolu-
tional and recurrent neural networks are used for evaluation. The paper [7] focuses on the 
comparison of Feed Forward Neural Networks and Convolutional Neural Networks in 
terms of cross-validation on unseen subjects. This paper offers an alternative that directly 
focuses on using attention mechanisms to find connections in the time series between fea-
tures.  

This paper compares directly with [8], as it is based on their measurements. Each 
activity was recorded in a 300 time steps window width with a sampling frequency of 
100Hz, which corresponds to 3 seconds of human activity. However, the data in [8] re-
quire complex pre-processing and extraction of significant features, which allow methods 
such as Random Forest to classify activities relatively accurately. When pre-processing 
signals, it is possible to use Fast Fourier Transformation, which extracts frequency-domain 
features from the input signal and at the same time suppresses to some extent the effect 
of noise on the classification [8].  

This paper deals with the application of deep neural networks directly to the normal-
ized time series of the signal from the sensors. There is an alternative approach to pro-
cessing time series based purely on the attention mechanisms, called Transformer. The 
transformer directly focuses on using attention mechanisms to find correlations in the 
time series between features and allows massive parallelization of time series calculations, 
which is different compared to recurrent neural networks that iterate serially through a 
time series. Another advantage of the transformer is the longer path length between fea-
tures in the time series, which allows for more accurate learning of the context in long 
time series [9]. Computation speed, as well as prediction accuracy, are key elements in 
working with human activities, where prediction can be performed directly on the mobile 
device. The sequence-to-sequence method is used in the prediction of activities [10], where 
all time steps from the Transformer output are considered and activity designations are 
assigned to them. In this way, it is possible to assign activity to each time step that the 
user has taken when measuring live values from a mobile device. 

The main aim of this work is to show the suitability of the Transformer model for 
human activity recognition. The results fully support this objective. 
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2. Methods 

2.1. Transformer 
A transformer is a type of neural network, based purely on attention mechanisms, 

which, like recurrent or convolutional networks, typically process time series and look for 
correlations between features within time steps. It is frequently used to work with natural 
language, where it achieves higher scores than recurrent neural networks. The trans-
former consists of Multi-Head Attention, fully connected, normalization, and dropout lay-
ers. It also contains residual connections that help with the gradient backpropagation in a 
deep neural network.  

Multi-Head Attention is based on the principle of mapping a query and a set of key-
value pairs to an output. The output of the network is the weighted sum of values, where 
the weight is assigned to each value (V) based on the calculation of the compatibility func-
tion from the query (Q) and the corresponding key (K). Dot products of the query and all 
keys are calculated and then the softmax function is applied to normalize the obtained 
weights, which are multiplied by values, see eq. (1). Multi-Head Attention contains sev-
eral modules called heads that have their own queries and a set of key-value pairs ex-
pressed by fully connected layers from the original queries and a set of key-value pairs 
fed to the input layer, see eq. (2). Subsequently, the outputs from each head are combined 
into one fully connected output layer, see eq. (3) and Figure 1. The advantage of using 
multiple heads lies in the ability to combine the different contexts found from each of the 
heads into one complex output. 

 
Figure 1. Multi-Head attention layer, amended from [9]. 

The Multi-Head attention layer is followed by the Position-wise Feed-Forward Network 
block, which is composed of a pair of fully connected layers linked by the nonlinear acti-
vation function RELU, see eq. (4). Typically, the number of neurons in the first fully con-
nected layer is 4 times higher than in the following layer, where the number of neurons is 
equal to the number of features entering this block. The entry determining the position of 
the features within the series is also added to the network input, because the Transformer 
does not know the order of the features, for example within the processed sentence [9]. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾்

ඥ𝑑௞

)𝑉 (1)
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ℎ𝑒𝑎𝑑௜ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊௜
ொ , 𝐾𝑊௜

௄ , 𝑉𝑊௜
௏) (2)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑ଵ , … , ℎ𝑒𝑎𝑑௛)𝑊ை (3)

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊ଵ + 𝑏ଵ) 𝑊ଶ + 𝑏ଶ (4)

2.2. Vision Transformer 
For image classification tasks, Transformer replaces the typically used convolutional 

networks with very good results. The image is divided into patches forming a sequence 
of features to which attention mechanisms are applied. However, a very large dataset of 
images of 14-300 million examples is needed for Transformer to achieve excellent results. 
The advantage of using a transformer in image classification tasks is its speed and scala-
bility. In contrast to the original Transformer encoder [9], the normalization layer is ap-
plied before each block and residual connections after each block. The nonlinearity used 
in the Position-wise Feed-Forward Network block is GELU. The position of individual 
patches within the overall processed image is determined by the parameters that are 
adapted in the learning process together with the neural network [11]. 

2.3. KU-HAR dataset 
The KU-HAR dataset used in this paper was published by Sikder and Nahid [8]. It 

was chosen here among other data sources, because it contains a lot of examples divided 
up into 18 classes (activities). Human Activity Recognition (HAR) data were obtained 
from 90 participants aged 18 to 34 years. The ratio of women to men among the partici-
pants was 1: 5. The weight range of the participants was 42.2 to 100.1 kg. The dataset con-
tains 20,750 pre-processed examples, where each example captures 3 seconds of the per-
formed activity, i.e., one whole time series of the signal represents just one performed 
activity and has only one label assigned to it. The measurements used sensors in a 
smartphone placed in a waist bag on each participant. The smartphone was facing left 
side down in the bag and the screen was pointing in the same direction as the participant. 
The first 11 activities in Table 1 were recorded indoors because they did not need a large 
space to perform. The other 4 activities were recorded outdoors. Stair-up and Stair-down 
activities were recorded on the staircase between the ground floor and the third floor, 
where there were 3 staircases between each floor. Table tennis was recorded in the com-
mon room located on the ground floor. The preprocessing consisted of deleting the part 
of the data recorded before the start of the performed activity because the first seconds of 
the recording did not correspond to the actual start of the performed activity. Similarly, 
an unrelated part of the records was removed at the end of the activity scan. The next step 
of the preprocessing was to unify the sampling frequency from all measurements to 
100Hz. Because different smartphones with different computing power were used, not all 
measurements were identical concerning sampling frequency, and therefore one-dimen-
sional interpolation of recorded time data was used when a particular measurement was 
recorded. The last step was to divide the measured activities into time series with a fixed 
length of 3 seconds. Each time series contains a unique portion of the original measure-
ments [8]. 
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Table 1. Description of the activity classes in the KU-HAR dataset, amended from [8]. 

Class name Class 

ID 

Performed activity Duration or 

repetitions 

per sample 

No. of 

extracted 

subsampl

es 

Stand 0 Standing still on the floor 1 min 1886 

Sit 1 Sitting still on a chair 1 min 1874 

Talk-sit 2 Talking with hand movements while 

sitting on a chair 

1 min 1797 

Talk-stand 3 Talking with hand movements while 

standing up or sometimes walking around 

within a small area 

1 min 1866 

Stand-sit 4 Repeatedly standing up and sitting 
down (transition activity) 

5 times 2178 

Lay 5 Laying still on a plain surface (a table) 1 min 1813 

Lay-stand 6 Repeatedly standing up and laying down 

(transition activity) 

5 times 1762 

Pick 7 Picking up an object from the floor by 

bending down 

10 times 1333 

Jump 8 Jumping repeatedly on a spot 10 times 666 

Push-up 9 Performing full push-ups with a wide-

hand position 

5 times 480 

Sit-up 10 Performing sit-ups with straight legs on a 

plain surface 

5 times 1005 

Walk 11 Walking 20 meters at a normal pace ~ 12 s 882 

Walk-

backward 

12 Walking backwards for 20 meters at a 

normal pace 

~ 20 s 317 

Walk-circle 13 Walking at a normal pace along a circular 

path 

~ 20 s 259 

Run 14 Running 20 meters at a high speed ~ 7 s 595 

Stair-up 15 Ascending on a set of stairs at a normal 

pace 

~ 1 min 798 

Stair-down 16 Descending from a set of stairs at a 

normal pace 

~ 50 s 781 

Table-tennis 17 Playing table tennis 1 min 458 

 Total 20 750 

2.4. Transformer for Human Activity Recognition 
The example of the Vision Transformers has shown how effectively Transformers 

can replace existing recurrent and convolutional neural networks. Vision Transformer 
works with signals in the form of an image, which supports an assumption that it can also 
process 1D time series of signals from sensors such as an accelerometer or gyroscope. The 
Transformer for Human Activity Recognition presented further is based directly on the 
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Vision Transformer architecture [11], where, however, the signal is fed directly as input 
into the Encoder block along with the added information determining the position of the 
features within the signal time series.  

 
Figure 2. Transformer for Human Activity Recognition. 

The Transformer for Human Activity Recognition operates in sequence-to-sequence 
mode and predicts the class for each time series feature, see Figure 2. The advantage is 
that if there are several consecutive classes in one time series, these classes can be easily 
identified, and the transformer is not limited to the features in the whole time series be-
longing to one class. All fully connected layers are initialized using the Truncated Normal 
distribution with a standard deviation of 0.02 as in BEIT [12]. Before the signal is fed as an 
input to the neural network, it passes through a normalization layer that stores the mean 
and variance obtained from the training data and adjusts the input to the values of 0.0 
mean and 1.0 standard deviation. The advantage of this solution is that when the model 
is put into practical use, it already contains these calibration values, and it is not necessary 
to solve the signal adjustment in an external way. The model is completely ready for im-
plementation in mobile devices, provided that the measured quantities are in the basic 
physical units, the accelerometer in m/s2, and the gyroscope in rad/s. The output layer of 
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the model is linear, to provide a higher computational speed on less powerful devices 
than if the softmax function was used. In principle, the maximum value corresponding to 
the predicted activity can be obtained also before the application of softmax, which is only 
used during learning in the loss function. This form is used there due to the calculation 
with logarithms since it does not have negative numbers at the output, as the linear layer 
does.  

The principal task in working with the signal time series is to find the correlations in 
it that will most positively affect the classification result. From the time series, the features 
are mutually matched by attention mechanisms, so that this Transformer ranks among the 
self-attention mechanisms, the same signal is applied to the input query, key, and value 
[9]. The advantage of using a Transformer in signal processing is again its speed and scala-
bility, which has an impact on the usability of mobile devices and the accuracy of class 
predictions. Experiments show that it is a suitable alternative to recurrent and 1D convo-
lutional networks for signal classification tasks. As with Vision Transformers, a huge 
number of examples are required, so a special data augmentation method has been de-
vised here for signals expressing various human activities. 

The implementation of the Transformer for Human Activity Recognition model was 
realized using the open-source library TensorFlow [13], which contains a rich set of tools 
for neural network design, their learning, evaluation, and deployment. It contained all the 
basic layers for Transformer creation: Normalization layers, Multi-Head Attention layer, 
dropout layer, fully connected (Dense) layer, up to the Position embedding layer, which 
was created as a custom layer by inheriting from the basic class Layer. The Encoder block 
is also created as an advanced custom layer from several simpler layers for easy replica-
tion. TensorFlow has also been used here for its professional deployment in many inter-
national companies and its high performance in mobile and embedded devices in the form 
of TensorFlow Lite. 

2.5. Data augmentation 
To extend the KU-HAR dataset, so that more training examples were available, an 

algorithm was chosen to combine pairs of activities that could follow each other in real 
life with a high probability. It was necessary to create all combinations of activity pairs 
from the original dataset, provided that identical activities were excluded. These resulting 
pairs had to be manually checked and their logical sense verified, see Table 2. The next 
step was to combine these activities into a double-length window, which needed to be 
transformed into a standard number of time steps used for previous training samples. The 
downsampling method was chosen, omitting every second step from the time series [14]. 
Vision Transformers were taught in a similar way, where randomly selected parts of the 
image were replaced by noise, and the Transformer aimed to fill these places identically 
to the original image [15]. For sensor data here, it is not necessary to replace the omitted 
time steps with noise, but the network must also process the signal and correctly identify 
the performed activity. As can be seen in Fig. 3, the numbers of examples in the classes 
substantially differ and therefore it was necessary to choose the method by which the ex-
amples of activity pairs will be generated. The smaller of the number of examples of both 
classes in pairs of activities was used. This avoids duplication of examples of the paired 
activity with fewer examples, which could cause overfit [16]. Transformer model also ac-
quires a logical awareness of the connections between possible successive actions, which 
would not be possible with the coupling of pure random pairs of activities. 83,129 exam-
ples were obtained from the original 20,750 examples. The dataset was then divided into 
training, testing and validation sets in a ratio of 70:15:15 percent. Manipulation with the 
dataset was carried out by NumPy libraries [17] for working with matrices, Pandas [18] 
for working with CSV files, and Scikit-learn [19] for even distribution of examples accord-
ing to classes per train, test, and validation dataset. 
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Table 2. Newly created couples of activities. 

Stand + 
Talk-
stand 

Sit + 
Talk-

sit 

Talk-
Stand + 
Stand 

Pick + 
Stand 

Jump + 
Stand 

Walk 
+ 

Stand 

Walk-
backward 

+ Stand 

Walk-
circle 

+ 
Stand 

Run + 
Stand 

Stair-
up + 

Stand 

Stair-
down 

+ 
Stand 

Table-
tennis + 
Stand 

Stand + 
Pick 

Talk-
sit + 
sit 

Talk-
Stand + 

Pick 

Pick + 
Talk-
Stand 

Jump + 
Talk-
Stand 

Walk 
+ 

Talk-
Stand 

Walk-
backward 

+ Talk-
Stand 

Walk-
circle 

+ Talk-
Stand 

Run + 
Talk-
Stand 

Stair-
up + 
Talk-
Stand 

Stair-
down 

+ 
Talk-
Stand 

Table-
tennis + 

Talk-
Stand 

Stand + 
Jump 

Lay 
+ Sit-

up 

Talk-
Stand + 
Jump 

Pick + 
Jump 

Jump + 
Pick 

Walk 
+ Pick 

Walk-
backward 

+ Pick 

Walk-
circle 
+ Pick 

Run + 
Pick 

Stair-
up + 
Pick 

Stair-
down 
+ Pick 

Table-
tennis + 

Pick 
Stand + 
Walk 

Sit-
up + 
Lay 

Talk-
Stand + 
Walk 

Pick + 
Walk 

Jump + 
Walk 

Walk 
+ 

Jump 

Walk-
backward 

+ Jump 

Walk-
circle 

+ 
Jump 

Run + 
Jump 

Stair-
up + 
Jump 

Stair-
down 

+ 
Jump 

Table-
tennis + 

Jump 

Stand + 
Walk-

backward 

 Talk-
Stand + 
Walk-

backward 

Pick + 
Walk-

backward 

Jump + 
Walk-

backward 

Walk 
+ 

Walk-
circle 

Walk-
backward 
+ Table-
tennis 

Walk-
circle 

+ 
Walk 

Run + 
Walk 

Stair-
up + 
Walk 

Stair-
down 

+ 
Walk 

Table-
tennis + 

Walk 

Stand + 
Walk-
circle 

 Talk-
Stand + 
Walk-
circle 

Pick + 
Walk-
circle 

Jump + 
Walk-
circle 

Walk 
+ Run 

 Walk-
circle 
+ Run 

Run + 
Walk-
circle 

Stair-
up + 

Walk-
circle 

Stair-
down 

+ 
Walk-
circle 

Table-
tennis + 
Walk-

backward 

Stand + 
Run 

 Talk-
Stand + 

Run 

Pick + 
Run 

Jump + 
Run 

Walk 
+ 

Stair-
up 

 Walk-
circle 

+ 
Stair-

up 

Run + 
Stair-

up 

Stair-
up + 
Run 

Stair-
down 
+ Run 

Table-
tennis + 
Walk-
circle 

Stand + 
Stair-up 

 Talk-
Stand + 
Stair-up 

Pick + 
Stair-up 

Jump + 
Stair-up 

Walk 
+ 

Stair-
down 

 Walk-
circle 

+ 
Stair-
down 

Run + 
Stair-
down 

Stair-
up + 
Stair-
down 

Stair-
down 

+ 
Stair-

up 

Table-
tennis + 

Run 

Stand + 
Stair-
down 

 Talk-
Stand + 
Stair-
down 

Pick + 
Stair-
down 

Jump + 
Stair-
down 

Walk 
+ 

Table-
tennis 

 Walk-
circle 

+ 
Table-
tennis 

Run + 
Table-
tennis 

   

Stand + 
Table-
tennis 

 Talk-
Stand + 
Table-
tennis 

Pick + 
Table-
tennis 

Jump + 
Table-
tennis 
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Figure 3. Distribution of examples by classes: (a) Distribution of examples by individual classes 
before and after the data augmentation process; (b) Distribution of examples by individual classes 
into training, testing validation datasets. 

Figure 3 shows the distribution of examples by class. It is apparent, that the used 
dataset is slightly unbalanced. The Final represents the distribution of examples after ap-
plying data augmentation. New represents newly created examples from a combination 
of original examples and Original is a distribution of examples from the original dataset. 

The Lay-stand and Stand-sit classes were omitted from pair combinations, as they 
represented a transition activity already composed of a pair of activities. The goal was to 
combine just two different activities and their involvement would create windows with 
up to three activities. Another completely omitted activity was Push-up, there was no 
suitable activity to pair it with, which would occur immediately before or after this activ-
ity. The only logically close activity was Lay, but it was “performed” on the back. 

2.6. Finding optimal hyperparameters 
Hyperparameters were optimized by the WanDB Sweep tool [20], which not only 

provides parallel coordinates chart for visualization of various settings but also offers a 
prediction of importance and correlation of hyperparameters against the selected metric. 
The used metric was the best validation accuracy obtained from the best prediction over 
the validation dataset during the learning process. The search method was random, which 
selected settings from predefined ranges of hyperparameters. Progressively, these inter-
vals were manually adjusted to increase the accuracy of the model, and finally the most 
suitable combination of them was chosen, see Table 3. 

Figure 4 shows how important the individual hyperparameters are for maximizing 
the best validation accuracy metric. The way in which they affect this metric is denoted 
by color. The red color indicates a negative correlation and the green color a positive 
correlation. 

From Figure 5, it is possible to determine according to the color scale how the given 
value of the hyperparameter influenced the best accuracy in the predictions on the vali-
dation dataset. Yellow expresses the highest accuracy in predictions and blue the lowest. 
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Figure 4. Parameter importance chart. 

Figure 5. Parallel coordinates chart. 

3. Results 
In the testing phase, previously unseen examples from test datasets were presented 

to the neural network. The task was to predict activities from hitherto unseen signals with 
the highest possible accuracy. Fig. 6 shows the individual attention matrices from Head 1 
of the Transformer expressing just one activity. 

Similarly, Figure 7 shows selected examples of attention matrices from Head 1 of the 
Transformer expressing activity pairs. From the attention matrices, you can see the tran-
sition of activities in the exact half of the time series, when the first half belonged to one 
activity and the second half to another activity. It is also possible to see pairs of signal 
parts that are irrelevant to the correct classification of activity and, conversely, pairs that 
are very important. This proves the effectiveness of the Transformer algorithm in match-
ing features from time series that contribute to correct classification. 

Figure 8 shows the cosine similarities between the position embedding of the selected 
time step from the signal time series and all other time steps, indicating that the positions 
in the halves of the time series are the most similar. This phenomenon is caused by the 
combination of two different signals in the exact half during the data augmentation pro-
cess. However, when using other ratios, there is a higher probability of losing essential 
information from the signal during downsampling; currently, there is a loss of half of the 
information from the signal from both parts of the time series. 
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Figure 6. Attention heatmaps of different single activities. 

   

  

 

   

Figure 7. Attention heatmaps of different pairs of activities. 
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Figure 8. The cosine similarity between the position embedding of the timestep. 

 

 

  

 

Figure 9. (a) Confusion matrix; (b) Class-wise performance of the Transformer for Human Activity 
Recognition. 

4. Discussion and Conclusions 
For human activity recognition, the typically used convolutional neural networks, 

alone or combined with LSTM, find here a viable alternative, the Transformer model. The 
transformer is an advantageous alternative to recurrent and convolutional networks. It 
can scale up the model to more than 1 million parameters and can also be used on mobile 
devices. It can push the measured signal time series directly (after a normalization) into 
the neural network, without a necessity of a pre-transformation of the data. Moreover, the 
transformer is also well parallelized to run on GPU.  

HAR achieved 99.2 percent prediction success compared to the original 89.67 percent 
of KU-HAR work [8]. It successfully coped with the classification of one activity contained 
in the whole time series as well as with the merging of two activities in one time series. 
The robustness of the predictions was not even affected by the omission of every second 
signal measurement from the time series. A new method of signal data augmentation has 
also been devised, focusing on the logical connections between signals and their appro-
priate impact to enhance the accuracy of Transformer predictions. The results of the ex-
periments show how the attention mechanisms found correlations in the long time series 
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of the signal and further promoted the most important of them, which positively affected 
the classifications of activities.  

This paper has successfully demonstrated the benefits and utility of Transformer 
neural networks in classifying human activities. In the future, the tests should be enlarged 
to use more kinds of sensor data and the results should be usefully applied, at first for 
models of robots, which should serve as a springboard for furthermore useful applications 
involving direct support for humans. 

Supplementary Materials: The HAR-Transformer code and further description can be downloaded 
at: https://github.com/markub3327/HAR-Transformer 
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