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Abstract: This paper describes the successful application of the Transformer model used in the nat-
ural language processing and vision tasks as a means of processing the time series of signals from
gyroscope and accelerometer sensors for the classification of human activities. The Transformer
model is based on deep neural networks with many layers which can generalize well on signals. All
measured signals come from a smartphone placed in a waist bag. Activity prediction is sequence-
to-sequence, each time step of the signal is assigned a designation of the performed activity. Em-
phasis is placed on attention mechanisms, which express individual dependencies between signal
values within a time series. In comparison with another recent result, the recognition precision was
improved from 89.67 percent to 99.2 percent. The transformer model should in the future be in-
cluded among the top options in machine learning methods for human activity recognition.
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1. Introduction

Human activity recognition is a very active field that seeks to identify human activi-
ties based on sensors available in everyday devices such as smartphones, tablets, or smart-
watches. These devices can collect data from a wide sample of users and classify the sig-
nals using machine learning methods. Detection of human activities using mobile devices
has great potential in medicine when it is possible to monitor patients with various diag-
noses and control compliance with treatment procedures or to use it as prevention against
performing prohibited activities. Apart from health monitoring and rehabilitation, it can
be used in gaming, human-robot interaction, robotics, or sports [1].

Recently, a lot of effort was focused on human activity recognition by deep neural
networks. Several types of deep neural networks are typically used for the sensor signals
time series classification. Paper [2] is based on the transformation of the measured signal
time series into a polar coordinate system, forming a pair of Gramian Angular Fields im-
ages. These images are then classified by a ResNet-based convolutional deep neural net-
work. Compared to their approach, this paper focuses on the direct application of meas-
ured signals to the input of a neural network, eliminating the need for any complex pre-
transformation of data. Moreover, the model in this paper is much smaller than ResNet
used in [2]. The overall transformation and subsequent classification are ensured within
the trained model, thanks to which it is possible to achieve higher speeds during predic-
tion and it is not necessary to use demanding calculation models such as ResNet. Normal-
ization is ensured so that the mean is close to 0 and the standard deviation is 1 as opposed
to the min-max method used by Qin et al. [2].
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The paper [3] is primarily focused on the application of 1D CNN and LSTM. This
combination can handle long time series, but it is not as effective as the Transformer model
in massive parallelization of calculations. The transformer itself can process long time se-
ries at high speed without the need to combine multiple neural network approaches. Alt-
hough the dataset used in [3] contained several times more examples than the dataset used
here, it focused only on basic activities and transition activities, not on more complex
movements such as Pick, Jump, Push-up, or Sit-up used in this paper. Moreover, a data
augmentation method is introduced here for extending a dataset by manipulating existing
data, making it possible to produce many new examples to supplement an existing da-
taset.

The paper [4] introduced a new approach - attention for learning multiscale features
among multiple kernels of 1D convolution layers in HAR issues. In a similar way, the
signals were preprocessed to 0 mean and 1 standard deviation, but the focus was on using
special 1D convolution layers for the prediction of one label for the entire time series (win-
dow). 1D convolutional networks and recurrent neural networks, or a combination of both
are among the most used approaches [5]. In this paper, the window size limit is restricted
only by the memory capacity, and labels are assigned to each time step, using the previous
steps in the time series. This paper also offers an alternative in the form of entirely fully
connected layers without using any 1D convolution in signal processing.

The paper [6] focuses on the classification of simple as well as complex activities by
widely used models like InceptionTime or DeepConvLSTM. The activities are captured
using sensors in smartphones like in this paper, and smartwatches. Combined convolu-
tional and recurrent neural networks are used for evaluation. The paper [7] focuses on the
comparison of Feed Forward Neural Networks and Convolutional Neural Networks in
terms of cross-validation on unseen subjects. This paper offers an alternative that directly
focuses on using attention mechanisms to find connections in the time series between fea-
tures.

This paper compares directly with [8], as it is based on their measurements. Each
activity was recorded in a 300 time steps window width with a sampling frequency of
100Hz, which corresponds to 3 seconds of human activity. However, the data in [8] re-
quire complex pre-processing and extraction of significant features, which allow methods
such as Random Forest to classify activities relatively accurately. When pre-processing
signals, it is possible to use Fast Fourier Transformation, which extracts frequency-domain
features from the input signal and at the same time suppresses to some extent the effect
of noise on the classification [8].

This paper deals with the application of deep neural networks directly to the normal-
ized time series of the signal from the sensors. There is an alternative approach to pro-
cessing time series based purely on the attention mechanisms, called Transformer. The
transformer directly focuses on using attention mechanisms to find correlations in the
time series between features and allows massive parallelization of time series calculations,
which is different compared to recurrent neural networks that iterate serially through a
time series. Another advantage of the transformer is the longer path length between fea-
tures in the time series, which allows for more accurate learning of the context in long
time series [9]. Computation speed, as well as prediction accuracy, are key elements in
working with human activities, where prediction can be performed directly on the mobile
device. The sequence-to-sequence method is used in the prediction of activities [10], where
all time steps from the Transformer output are considered and activity designations are
assigned to them. In this way, it is possible to assign activity to each time step that the
user has taken when measuring live values from a mobile device.

The main aim of this work is to show the suitability of the Transformer model for
human activity recognition. The results fully support this objective.
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2. Methods

2.1. Transformer

A transformer is a type of neural network, based purely on attention mechanisms,
which, like recurrent or convolutional networks, typically process time series and look for
correlations between features within time steps. It is frequently used to work with natural
language, where it achieves higher scores than recurrent neural networks. The trans-
former consists of Multi-Head Attention, fully connected, normalization, and dropout lay-
ers. It also contains residual connections that help with the gradient backpropagation in a
deep neural network.

Multi-Head Attention is based on the principle of mapping a query and a set of key-
value pairs to an output. The output of the network is the weighted sum of values, where
the weight is assigned to each value (V) based on the calculation of the compatibility func-
tion from the query (Q) and the corresponding key (K). Dot products of the query and all
keys are calculated and then the softmax function is applied to normalize the obtained
weights, which are multiplied by values, see eq. (1). Multi-Head Attention contains sev-
eral modules called heads that have their own queries and a set of key-value pairs ex-
pressed by fully connected layers from the original queries and a set of key-value pairs
fed to the input layer, see eq. (2). Subsequently, the outputs from each head are combined
into one fully connected output layer, see eq. (3) and Figure 1. The advantage of using
multiple heads lies in the ability to combine the different contexts found from each of the
heads into one complex output.
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Figure 1. Multi-Head attention layer, amended from [9].

The Multi-Head attention layer is followed by the Position-wise Feed-Forward Network
block, which is composed of a pair of fully connected layers linked by the nonlinear acti-
vation function RELU, see eq. (4). Typically, the number of neurons in the first fully con-
nected layer is 4 times higher than in the following layer, where the number of neurons is
equal to the number of features entering this block. The entry determining the position of
the features within the series is also added to the network input, because the Transformer
does not know the order of the features, for example within the processed sentence [9].
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2.2. Vision Transformer

For image classification tasks, Transformer replaces the typically used convolutional
networks with very good results. The image is divided into patches forming a sequence
of features to which attention mechanisms are applied. However, a very large dataset of
images of 14-300 million examples is needed for Transformer to achieve excellent results.
The advantage of using a transformer in image classification tasks is its speed and scala-
bility. In contrast to the original Transformer encoder [9], the normalization layer is ap-
plied before each block and residual connections after each block. The nonlinearity used
in the Position-wise Feed-Forward Network block is GELU. The position of individual
patches within the overall processed image is determined by the parameters that are
adapted in the learning process together with the neural network [11].

2.3. KU-HAR dataset

The KU-HAR dataset used in this paper was published by Sikder and Nahid [8]. It
was chosen here among other data sources, because it contains a lot of examples divided
up into 18 classes (activities). Human Activity Recognition (HAR) data were obtained
from 90 participants aged 18 to 34 years. The ratio of women to men among the partici-
pants was 1: 5. The weight range of the participants was 42.2 to 100.1 kg. The dataset con-
tains 20,750 pre-processed examples, where each example captures 3 seconds of the per-
formed activity, i.e., one whole time series of the signal represents just one performed
activity and has only one label assigned to it. The measurements used sensors in a
smartphone placed in a waist bag on each participant. The smartphone was facing left
side down in the bag and the screen was pointing in the same direction as the participant.
The first 11 activities in Table 1 were recorded indoors because they did not need a large
space to perform. The other 4 activities were recorded outdoors. Stair-up and Stair-down
activities were recorded on the staircase between the ground floor and the third floor,
where there were 3 staircases between each floor. Table tennis was recorded in the com-
mon room located on the ground floor. The preprocessing consisted of deleting the part
of the data recorded before the start of the performed activity because the first seconds of
the recording did not correspond to the actual start of the performed activity. Similarly,
an unrelated part of the records was removed at the end of the activity scan. The next step
of the preprocessing was to unify the sampling frequency from all measurements to
100Hz. Because different smartphones with different computing power were used, not all
measurements were identical concerning sampling frequency, and therefore one-dimen-
sional interpolation of recorded time data was used when a particular measurement was
recorded. The last step was to divide the measured activities into time series with a fixed
length of 3 seconds. Each time series contains a unique portion of the original measure-
ments [8].
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Table 1. Description of the activity classes in the KU-HAR dataset, amended from [8].
Class name | Class | Performed activity Duration or | No. of
ID repetitions extracted
per sample | subsampl
es
Stand 0 Standing still on the floor 1 min 1886
Sit 1 Sitting still on a chair 1 min 1874
Talk-sit 2 Talking with hand movements while | 1 min 1797
sitting on a chair
Talk-stand 3 Talking with hand movements while | 1 min 1866
standing up or sometimes walking around
within a small area
Stand-sit 4 Repeatedly standing up and sitting | 5 times 2178
down (transition activity)
Lay Laying still on a plain surface (a table) 1 min 1813
Lay-stand 6 Repeatedly standing up and laying down | 5 times 1762
(transition activity)
Pick 7 Picking up an object from the floor by | 10 times 1333
bending down
Jump 8 Jumping repeatedly on a spot 10 times 666
Push-up 9 Performing full push-ups with a wide- | 5 times 480
hand position
Sit-up 10 Performing sit-ups with straight legs ona | 5 times 1005
plain surface
Walk 11 Walking 20 meters at a normal pace ~12s 882
Walk- 12 Walking backwards for 20 meters at a | ~20's 317
backward normal pace
Walk-circle | 13 Walking at a normal pace along a circular | ~20 s 259
path
Run 14 Running 20 meters at a high speed ~7s 595
Stair-up 15 Ascending on a set of stairs at a normal | ~ 1 min 798
pace
Stair-down 16 Descending from a set of stairs at a | ~50s 781
normal pace
Table-tennis | 17 Playing table tennis 1 min 458
Total 20 750

2.4. Transformer for Human Activity Recognition

The example of the Vision Transformers has shown how effectively Transformers
can replace existing recurrent and convolutional neural networks. Vision Transformer
works with signals in the form of an image, which supports an assumption that it can also
process 1D time series of signals from sensors such as an accelerometer or gyroscope. The
Transformer for Human Activity Recognition presented further is based directly on the
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Vision Transformer architecture [11], where, however, the signal is fed directly as input
into the Encoder block along with the added information determining the position of the

features within the signal time series.
Stand Sit Lay

Fully Connected
LayerNormalization

i

Figure 2. Transformer for Human Activity Recognition.

The Transformer for Human Activity Recognition operates in sequence-to-sequence
mode and predicts the class for each time series feature, see Figure 2. The advantage is
that if there are several consecutive classes in one time series, these classes can be easily
identified, and the transformer is not limited to the features in the whole time series be-
longing to one class. All fully connected layers are initialized using the Truncated Normal
distribution with a standard deviation of 0.02 as in BEIT [12]. Before the signal is fed as an
input to the neural network, it passes through a normalization layer that stores the mean
and variance obtained from the training data and adjusts the input to the values of 0.0
mean and 1.0 standard deviation. The advantage of this solution is that when the model
is put into practical use, it already contains these calibration values, and it is not necessary
to solve the signal adjustment in an external way. The model is completely ready for im-
plementation in mobile devices, provided that the measured quantities are in the basic
physical units, the accelerometer in m/s2, and the gyroscope in rad/s. The output layer of
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the model is linear, to provide a higher computational speed on less powerful devices
than if the softmax function was used. In principle, the maximum value corresponding to
the predicted activity can be obtained also before the application of softmax, which is only
used during learning in the loss function. This form is used there due to the calculation
with logarithms since it does not have negative numbers at the output, as the linear layer
does.

The principal task in working with the signal time series is to find the correlations in
it that will most positively affect the classification result. From the time series, the features
are mutually matched by attention mechanisms, so that this Transformer ranks among the
self-attention mechanisms, the same signal is applied to the input query, key, and value
[9]. The advantage of using a Transformer in signal processing is again its speed and scala-
bility, which has an impact on the usability of mobile devices and the accuracy of class
predictions. Experiments show that it is a suitable alternative to recurrent and 1D convo-
lutional networks for signal classification tasks. As with Vision Transformers, a huge
number of examples are required, so a special data augmentation method has been de-
vised here for signals expressing various human activities.

The implementation of the Transformer for Human Activity Recognition model was
realized using the open-source library TensorFlow [13], which contains a rich set of tools
for neural network design, their learning, evaluation, and deployment. It contained all the
basic layers for Transformer creation: Normalization layers, Multi-Head Attention layer,
dropout layer, fully connected (Dense) layer, up to the Position embedding layer, which
was created as a custom layer by inheriting from the basic class Layer. The Encoder block
is also created as an advanced custom layer from several simpler layers for easy replica-
tion. TensorFlow has also been used here for its professional deployment in many inter-
national companies and its high performance in mobile and embedded devices in the form
of TensorFlow Lite.

2.5. Data augmentation

To extend the KU-HAR dataset, so that more training examples were available, an
algorithm was chosen to combine pairs of activities that could follow each other in real
life with a high probability. It was necessary to create all combinations of activity pairs
from the original dataset, provided that identical activities were excluded. These resulting
pairs had to be manually checked and their logical sense verified, see Table 2. The next
step was to combine these activities into a double-length window, which needed to be
transformed into a standard number of time steps used for previous training samples. The
downsampling method was chosen, omitting every second step from the time series [14].
Vision Transformers were taught in a similar way, where randomly selected parts of the
image were replaced by noise, and the Transformer aimed to fill these places identically
to the original image [15]. For sensor data here, it is not necessary to replace the omitted
time steps with noise, but the network must also process the signal and correctly identify
the performed activity. As can be seen in Fig. 3, the numbers of examples in the classes
substantially differ and therefore it was necessary to choose the method by which the ex-
amples of activity pairs will be generated. The smaller of the number of examples of both
classes in pairs of activities was used. This avoids duplication of examples of the paired
activity with fewer examples, which could cause overfit [16]. Transformer model also ac-
quires a logical awareness of the connections between possible successive actions, which
would not be possible with the coupling of pure random pairs of activities. 83,129 exam-
ples were obtained from the original 20,750 examples. The dataset was then divided into
training, testing and validation sets in a ratio of 70:15:15 percent. Manipulation with the
dataset was carried out by NumPy libraries [17] for working with matrices, Pandas [18]
for working with CSV files, and Scikit-learn [19] for even distribution of examples accord-
ing to classes per train, test, and validation dataset.
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Table 2. Newly created couples of activities.

Stand + Sit + Talk- Pick + Jump + Walk Walk- Walk- | Run+ | Stair- | Stair- Table-
Talk- Talk- Stand + Stand Stand + backward | circle | Stand up + down tennis +
stand sit Stand Stand + Stand + Stand + Stand

Stand Stand
Stand + | Talk- Talk- Pick + Jump + Walk Walk- Walk- | Run+ | Stair- | Stair- Table-
Pick sit + Stand + Talk- Talk- + backward | circle | Talk- | up+ | down | tennis+
sit Pick Stand Stand Talk- + Talk- +Talk- | Stand | Talk- + Talk-
Stand Stand Stand Stand | Talk- Stand
Stand

Stand + Lay Talk- Pick + Jump + Walk Walk- Walk- | Run+ | Stair- | Stair- Table-
Jump + Sit- Stand + Jump Pick +Pick | backward | circle Pick up + down tennis +

up Jump + Pick + Pick Pick + Pick Pick

Stand + Sit- Talk- Pick + Jump + Walk Walk- Walk- | Run+ | Stair- | Stair- Table-
Walk up + Stand + Walk Walk + backward | circle | Jump | up+ | down | tennis+

Lay Walk Jump +Jump + Jump + Jump
Jump Jump

Stand + Talk- Pick + Jump + Walk Walk- Walk- | Run+ | Stair- | Stair- Table-

Walk- Stand + Walk- Walk- + backward | circle | Walk | up+ | down | tennis+
backward Walk- backward | backward | Walk- | +Table- + Walk + Walk
backward circle tennis Walk Walk

Stand + Talk- Pick + Jump + Walk Walk- | Run+ | Stair- | Stair- Table-
Walk- Stand + Walk- Walk- + Run circle | Walk- | up+ down tennis +
circle Walk- circle circle +Run | circle | Walk- + Walk-

circle circle | Walk- | backward
circle

Stand + Talk- Pick + Jump + Walk Walk- | Run+ | Stair- | Stair- Table-

Run Stand + Run Run + circle | Stair- | up+ | down | tennis+
Run Stair- + up Run | +Run Walk-
up Stair- circle
up

Stand + Talk- Pick + Jump + | Walk Walk- | Run+ | Stair- | Stair- Table-

Stair-up Stand + Stair-up | Stair-up + circle | Stair- | up+ | down | tennis+

Stair-up Stair- + down | Stair- + Run
down Stair- down | Stair-
down up

Stand + Talk- Pick + Jump + Walk Walk- | Run+
Stair- Stand + Stair- Stair- + circle | Table-
down Stair- down down Table- + tennis

down tennis Table-
tennis

Stand + Talk- Pick + Jump +
Table- Stand + Table- Table-
tennis Table- tennis tennis

tennis
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Figure 3. Distribution of examples by classes: (a) Distribution of examples by individual classes
before and after the data augmentation process; (b) Distribution of examples by individual classes
into training, testing validation datasets.

Figure 3 shows the distribution of examples by class. It is apparent, that the used
dataset is slightly unbalanced. The Final represents the distribution of examples after ap-
plying data augmentation. New represents newly created examples from a combination
of original examples and Original is a distribution of examples from the original dataset.

The Lay-stand and Stand-sit classes were omitted from pair combinations, as they
represented a transition activity already composed of a pair of activities. The goal was to
combine just two different activities and their involvement would create windows with
up to three activities. Another completely omitted activity was Push-up, there was no
suitable activity to pair it with, which would occur immediately before or after this activ-
ity. The only logically close activity was Lay, but it was “performed” on the back.

2.6. Finding optimal hyperparameters

Hyperparameters were optimized by the WanDB Sweep tool [20], which not only
provides parallel coordinates chart for visualization of various settings but also offers a
prediction of importance and correlation of hyperparameters against the selected metric.
The used metric was the best validation accuracy obtained from the best prediction over
the validation dataset during the learning process. The search method was random, which
selected settings from predefined ranges of hyperparameters. Progressively, these inter-
vals were manually adjusted to increase the accuracy of the model, and finally the most
suitable combination of them was chosen, see Table 3.

Figure 4 shows how important the individual hyperparameters are for maximizing
the best validation accuracy metric. The way in which they affect this metric is denoted
by color. The red color indicates a negative correlation and the green color a positive
correlation.

From Figure 5, it is possible to determine according to the color scale how the given
value of the hyperparameter influenced the best accuracy in the predictions on the vali-
dation dataset. Yellow expresses the highest accuracy in predictions and blue the lowest.
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Figure 4. Parameter importance chart.

Figure 5. Parallel coordinates chart.

3. Results

In the testing phase, previously unseen examples from test datasets were presented
to the neural network. The task was to predict activities from hitherto unseen signals with
the highest possible accuracy. Fig. 6 shows the individual attention matrices from Head 1
of the Transformer expressing just one activity.

Similarly, Figure 7 shows selected examples of attention matrices from Head 1 of the
Transformer expressing activity pairs. From the attention matrices, you can see the tran-
sition of activities in the exact half of the time series, when the first half belonged to one
activity and the second half to another activity. It is also possible to see pairs of signal
parts that are irrelevant to the correct classification of activity and, conversely, pairs that
are very important. This proves the effectiveness of the Transformer algorithm in match-
ing features from time series that contribute to correct classification.

Figure 8 shows the cosine similarities between the position embedding of the selected
time step from the signal time series and all other time steps, indicating that the positions
in the halves of the time series are the most similar. This phenomenon is caused by the
combination of two different signals in the exact half during the data augmentation pro-
cess. However, when using other ratios, there is a higher probability of losing essential
information from the signal during downsampling; currently, there is a loss of half of the
information from the signal from both parts of the time series.
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Figure 9. (a) Confusion matrix; (b) Class-wise performance of the Transformer for Human Activity
Recognition.

4. Discussion and Conclusions

For human activity recognition, the typically used convolutional neural networks,
alone or combined with LSTM, find here a viable alternative, the Transformer model. The
transformer is an advantageous alternative to recurrent and convolutional networks. It
can scale up the model to more than 1 million parameters and can also be used on mobile
devices. It can push the measured signal time series directly (after a normalization) into
the neural network, without a necessity of a pre-transformation of the data. Moreover, the
transformer is also well parallelized to run on GPU.

HAR achieved 99.2 percent prediction success compared to the original 89.67 percent
of KU-HAR work [8]. It successfully coped with the classification of one activity contained
in the whole time series as well as with the merging of two activities in one time series.
The robustness of the predictions was not even affected by the omission of every second
signal measurement from the time series. A new method of signal data augmentation has
also been devised, focusing on the logical connections between signals and their appro-
priate impact to enhance the accuracy of Transformer predictions. The results of the ex-
periments show how the attention mechanisms found correlations in the long time series
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of the signal and further promoted the most important of them, which positively affected
the classifications of activities.

This paper has successfully demonstrated the benefits and utility of Transformer
neural networks in classifying human activities. In the future, the tests should be enlarged
to use more kinds of sensor data and the results should be usefully applied, at first for
models of robots, which should serve as a springboard for furthermore useful applications
involving direct support for humans.

Supplementary Materials: The HAR-Transformer code and further description can be downloaded
at: https://github.com/markub3327/HAR-Transformer
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