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Abstract:  

Ribonucleoproteins (RNP) condensates often contain intrinsically disordered proteins (IDPs) able to 

confer an exceptional multifunctionality necessary for gene expression, a process that defines cell 

types and enables cellular adaptation in metazoans. Centrosomes, the microtubule-organizing centers 

of animal cells, are particularly enriched in disordered proteins but the role of RNPs surrounding the 

centrosome and the ciliary basal body remains largely unknown. By refining and integrating the 

existing protein-protein interaction network, spatial proteomics and transcriptomic data, we here 

report the subcellular and genomic proximity between the spliceosome, a huge nuclear RNP complex 

that removes introns from a transcribed pre-mRNA, and centrosome/cilia components. We present a 

comprehensive map of pre-RNA processing factors and other RNA-binding proteins playing a role 

in the regulation of splicing  but localized to the centrosome and cilia. Protein-protein interactions 

studies reveal that a large number of spliceosome components interact with both centrosome linker 

and centriolar satellites elements, necessary for cellular division and ciliogenesis. RNAseq data from 

mouse Embryonic Stem Cells (mESC) and human tissues revealed a co-transcriptional coordination 

program of splicing and centrosome-related genes with relevance to tissue-specific neurosensory 

disorders and cancer types. Additionally, we found that centrosome and spliceosome genes form 

linearly and spatially colocalized genomic loci (CEP250, RBBM39, DHX35, and CTNNBL1) 

conserved  in human and mouse genome, then explaining similarities in co-modification and 

subcellular distribution. Our results suggest that centrosome and cilia constitute cytoplasmic sites for 

the exchange of molecular machinery with nucleus, storage of RNA splicing and spliceosome 

condensates previously unrecognized.  These complexes in response to external signals, could play 

an integral part in ciliogenesis and nuclear division to establish and maintain cellular identity in 

metazoans. 
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1. Introduction  

Ribonucleoprotein (RNP) particles or condensates are RNA-protein assemblies that lack surrounding 

membranes [1]. Eukaryotic cells contain a variety of RNP granules localized in the nucleus, in the 

cytoplasm and on membranes. These aggregates function to spatiotemporally organize various 

biomolecular processes ranging from RNA metabolism and gene regulation linked to memory, 

development and diseases [1,2]. Phase ransitions or liquid–liquid phase separation of bimolecular 

condensates in living cells can give rise to a restricted set of distinct intracellular compartments, in 

which evolutionary processes such as the selection and replication of biomolecules can take place [3-

5]. Centrosomes are typical biomolecular condensates mainly composed of two microtubule-based 

barrel-shaped centrioles and a surrounding amorphous network of proteins or pericentriolar material 

(PCM) able to build and position the mitotic spindle and cilia in metazoans [6,7]. Centriolar satellites 

are membraneless granules that localize and move around centrosomes and cilia determining a 

dynamic centrosome- and satellite-associated pools more complex than once thought. Over the past 

few years, the function of the centrosome as microtubule organizing center and coordinator of the 

mitotic spindle has been questioned because centrioles are absent in up to half of all known eukaryotic 

species, and various mechanisms for acentrosomal microtubule nucleation have been described (e.g., 

plants cells and vertebrate oocytes) [7]. Interestingly, centrosomal proteins are significantly enriched 

in disordered and coiled-coil regions, more phosphorylated and longer than control proteins of the 

same organism [8]. The gain of disordered regions in centrosomal proteins is correlated with the 

increase in cell-types number (phenotypic complexity) raising the intriguing question that the resident 

proteins my function outside centrosomes and cilia [9]. In animal cells, the two centrioles are kept in 

close proximity by a machinery of cohesion named “centrosome linker” that persists from G1 until 

mitotic entry when duplicated centrosomes are disjoined and separated to form the spindle poles [10]. 

In early mitosis exit, the binding of C-NAP1 (CEP250) to CEP135 at the proximal end of the two 

centrioles is recognized as one of the first steps of centrosome cohesion assembly [10]. Surprisingly 

little or nothing is known on the functional importance of such subcellular structure typical of higher 

eukaryotes [11-13]. Additionally, recent observations have shown that the centrosome and RNP 

particles including ribosome and Eukaryotic initiation factors (eIFs) necessary for protein 

biosynthesis are functionally interconnected [13-15]. For example, the centrosomal protein OFD1, 
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interacts with components of the Preinitiation complex of translation and modulates the translation 

of specific mRNA targets in the kidney [14]. The large PCM protein pericentrin (PCNT) is also 

delivered co-translationally to centrosomes during early mitosis [15]. In addition, mutations in RNP 

components cause pathological phenotypes such as Retinitis pigmentosa or Microcephaly linked to 

centriole defects [16,17]. Historically it is well-known that RNase treatment impairs the nucleation 

activity of centrosomes but the underlying molecular mechanisms remain still unknown [18,19]. 

Consistently, two studies identified a series of RNAs in the centrosome of surf clam (Spisula) oocytes, 

“centrosomal RNA” which were functionally correlated with nucleolinus, a RNA-rich compartment 

in the nucleolus [18,19]. However, over the past years, the role of RNP at centrosomes has remained 

enigmatic and often matter of debate and controversial. Pre-mRNA splicing is catalyzed by the 

spliceosome, a ribonucleoprotein complex comprised of five small nuclear (snRNPs) and numerous 

proteins [13,16]. Recent studies suggest that many of the metazoan-specific spliceosomal proteins, 

absent in yeast, might have roles in other molecular machines/biochemical pathways. We here show 

that spliceosome components constitute a structural and functionally relevant repertoire of 

centrosome-related molecular networks which defects can collectively explain the pathophysiology 

of apparently unrelated genetic disorders. 

Methods 

Datasets 

We extracted the existing Protein-Protein interaction network, Proteomic, transcriptomic and genetic 

data from multiple bioinformatics tools comprising (N=21) databases. The detailed features of which 

are reported in (Table S1) [20-40].  

Reconstruction of protein-protein interactome and spatial proteomics 

Protein-Protein interaction data of experimentally verified centrosome linker proteins were first 

analyzed by downloading raw data from The BioGRID database [20]. The potential interacting 

proteins were mined comparing the proteomic data from isolated centrosomes and integrating the 

effective relevance of Protein-Protein physical interactions with proteomic data to establish the 

relationships between key interacting proteins [21-27]. To mitigate the intrinsic inaccuracy and 

technical variability of protein interactions, the data were verified comparing independent datasets 

considering as significant interactions having a high Mascot Score >95% or Confidence Score > 0.9.  

In isolated centrosomes, we also evaluated the temporal change of ribonucleic proteins through the 

cell cycle progression [23]. In addition, potential interactors were correlated to their spatial 

subcellular localization using the map of the human proteome. In the light of potential physical 
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interactions, candidate proteins were re-examined in the human proteome atlas to verify or not their 

presence at centrosome/cilia/centriolar satellites complex [21]. Proteins not clearly localized to the 

centrosome were not considered. The subcellular distributions of proteins encoded by genes of 

interest was visualized by immunofluorescence and immunohistochemical labelling by downloading 

high resolution images from stained cell lines and tissues. The Protein score and peptide matrix were 

hierarchically clustered by Spearman rank correlation (both baits and interactors) [22]. The Dot Plot, 

Heatmap and network graphical representation of interacting partners were generated through two 

open source bioinformatics software platform SAINT (significance analysis of interactome) for 

visualizing the strength of molecular interaction (http://prohitstools.mshri.on.ca/) and 

http://www.webgestalt.org/ [22,41]. Venn diagram was used to visually define the similarities and 

differences between datasets and overlapping traits were further analyzed. The functional profiling 

of potential interactors was explored by DAVID (the Database for Annotation, Visualization and 

Integrated Discovery) and g:Profiler [42]. Significant GO-Terms (Benjamini-Hochberg adjusted P-

value< 0.05 for DAVID; g:SCS threshold< 0.05 for g:Profiler) were isolated. Only GO-Terms that 

were significant according to both functional annotation tools are reported.   

Disorder and Secondary Protein Structure Predictions  

Disorder predictions in centrosome proteins were obtained with the DISOPRED2 and FoldIndex 

programs as previously reported [8]. We tested that the two algorithms have a large overlap with each 

other and produce qualitatively equivalent results. We considered the longest isoform of each gene 

and their sequences were extracted from the Ensembl database. Phylogenetic distribution of 

centrosome genes in animals and fungi was performed by using reciprocal pairwise sequence-based 

(BLASTP and phmmer) and domain-based (hmmsearch) methods [43] 

Cellular Fitness  

Fitness scores for gene targets were collected from the Cancer Dependency Map dataset. (Table S1). 

The dataset consists of CRISPR-Cas9 whole-genome screens to identify dependencies in cancer cells 

or immortalized cell lines from different human tissues. The results are depicted as a negative fitness 

effect (the loss of cell viability in the absence of a test gene) or positive fitness effect (no loss of cell 

viability in the absence of a test gene), with the outcome presented as ‘fitness score’ for each gene in 

an indicated cell line. Score <0 is considered a statistically significant effect; values are scaled Bayes 

factors calculated using BAGEL [35] 

Gene expression analysis from Human tissues and cell lines 
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The Genotype-Tissue Expression (GTEx) biobank and its associated bioinformatics portal 

https://www.gtexportal.org/home/ was used to analyze gene expression data from human tissue 

samples [29]. Gene expression data were collected from 54 non-diseased tissue sites and normalized 

RNA-seq data are shown as Transcripts Per Million (TPM). Deep RNA-sequencing data were 

extracted from the Cell Atlas in which the results are reported as normalized NX values. A NX value 

of 1.0 is defined as a threshold for expression of the corresponding protein.  [29] We analyzed 

separately each gene-category (i.e. Ribosome, Splicing and centrosome) in a representative panel of 

immortalized and transformed cell lines. To determine the dynamic regulation of gene-category, we 

analyze the transcriptome data derived from MCF10A cells, an immortalized non-transformed human 

epithelial cell line, underlying the slow-cycling state [28]. The Relative expression of genes was 

expressed as log2FoldChange related to control across two different conditions, i.e., spontaneous 

quiescence vs quiescence induced with CDK4/6 inhibitor. The CDK4/6 are key cyclin-dependent 

kinases that promote G1 to S phase cell cycle progression and cap-dependent translation during 

mitosis–G1 (ref).  

Single cell transcriptomic data analysis from mouse Embryonic Stem Cells (mESC) 

To investigate the relationship between centrosomes and ribonucleic encoding genes during 

development, we applied the reconstruction of gene regulatory networks (GRNs) analysis using the 

single cell transcriptional profiles from mouse Embryonic Stem Cells (mESC) [40]. The dataset is 

made up of three expression matrices, each of which represents a phase cell cycle (G1 S G2-M), 

whose columns represent the single cell (96) while lines represent the relative expression levels of 

the genes (38390). We included into the analysis a list of genes sourced from the National Center for 

Biotechnology Information (NCBI) involved in the formation/regulation of the centrosome (659), 

transcription factors (2761), ribosomal (159), splicing (1305) and translation initiation (663) genes. 

The gene categories were extrapolated from the RPG (Ribosomal Protein Gene) database 

(http://ribosome.med.miyazaki-u.ac.jp) and National Center for Biotechnology Information (NCBI) 

(www.ncbi.nlm.nih.gov). For the GRNs analysis, we used the inference algorithm SINCERITIES 

(SINgle CEll Regularized Inference using TIme-stamped Expression profileS) which allows to 

reconstruct genetic interactions from single cell transcriptional profiles and infers directed gene-gene 

relationships [45]. GNR inference is formulated taking into account the linear regressions and 

temporal changes of gene expression distributions. We used the Kolmogorov–Smirnov distance to 

quantify the distance between two cumulative distribution functions of gene expressions from 

subsequent time points. The Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test 

of the equality of continuous, one-dimensional probability distributions that can be used to compare 
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a sample with a reference probability distribution (one-sample K–S test), or to compare two samples 

(two-sample K–S test). In this case we used the Kolmogorov-Smirnov test to verify the distributive 

distance of gene expression in successive time points. Sincerities uses Spearman's rank partial 

correlation analysis. In our study we set the parameter SIGN 0: this parameter does not select if the 

sign / mode of the gene regulation is inferred. 

Ridge Regression, also called Tikhonov regularization, is a regularized version of Linear Regression: 

by adding a regularization term, commonly referred to as alpha, to the cost function, the learning 

algorithm is forced to keep the weight as low as possible. Ridge Regression adds a penalty factor to 

the cost function. This determines the loss of importance of the value of a feature, which, depending 

on the penalty, can be more or less accentuated. The strength of the penalty is tunable controlled, that 

is, by a hyperparameter that must be set. Speaking of regularization in general, there are two types of 

penalties: 

L1 (absolute size) penalizes the absolute value of the model coefficients 

L2 (squared size) penalizes the square of the value of the model coefficients. 

Ridge Regression uses the L2 penalty. 

The algorithm input is a list containing the following information:  

 A list of matrices of length (n), where n is the number of capture time points. Each dataframe 

containing the observed expression levels of the m genes in single s_k cells. 

 S by m matrix, where S is the total number of single cells (i.e., S=s_1+s_2+...+s_n) and m  

the number of genes. 

 Vector of length n containing the cell capture time points or (time-stamps) 

The algorithm is based on the premise that changes in the expression of a gene at one time point 

allows us to predict changes in the gene expression distributions of the corresponding target genes at 

the next time point. Sincerities returns the matrix of adjacencies, that is m by m matrix containing the 

weights of regulatory edges and DISTANCE_matrix, that is n-1 by m matrix containing the 

(normalized) distribution distance (DD) computed during the network inference, using linear 

regression: 

 

𝐷𝐷𝑗,𝑙+1 = 𝛼1,𝑗𝐷𝐷1,𝑙̂ + 𝛼2,𝑙𝐷𝐷̂2,𝑙+. . . +𝛼𝑚,𝑗𝐷𝐷̂𝑚,𝑙 

 

From the adjacency matrix generated by the Sincerities algorithm, a list was created using the 

functions of the “Igraph” package. The list of adjacencies, in descending order based on "weight" of 

the border, is made up of three columns: the first indicates the regulatory genes, the second the target 

genes and the third indicates the "weight" of the border connecting the two genes. The list generated 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2022                   doi:10.20944/preprints202202.0084.v1

https://doi.org/10.20944/preprints202202.0084.v1


8 

 

from the Sincerities tool contained 3903843 gene interactions. The graphic representation of the 

regulatory activity of genes was performed with Cytoscape or SAINT (significance analysis of 

interactome) [22,41,46]  

 

 

Disease modeling and mini intron containing genes analysis 

The involvement of interacting genes in common disease phenotypes was investigated with 

WebGestalt [41] using as discriminant factor the enrichment ratio of cluster gene with a False 

Discovery Rate (FDR) adjusted p-value of 0.05. Transcriptome profiles from patient-derived 

(PRPF31-mutated) retinal organoids and Fibroblasts were used to investigate the impact of Mis-

splicing of genes implicated in centrosome function and ciliogenesis [41]. To further understand the 

effect of splicing inhibition on centrosome genes expression, multiple whole transcriptome 

sequencing datasets obtained from cells treated with different splicing inhibitors (sudemycin, 

spliceostatin A targeting SF3B1) or (indisulam targeting RBM39) were reexamined [37-39]. The 

therapeutics response portal (https://portals.broadinstitute.org/ctrp/) which links genetic, lineage, and 

cellular features of cancer cell lines to small-molecule sensitivity was used to find molecules that 

target the gene clusters of interest. The platform allows to correlate the drug sensitivity to both gene 

expression levels and copy number variation [36]. The Cancer Genome Atlas (TCGA) database (https 

://cance rgeno me.nih.gov/), which integrates gene expression data and clinical data (survival 

analysis), was used to analyze gene expression profiles of functionally distinct gene categories. 

TCGA is a landmark cancer genomics program that has molecularly characterized more than 20,000 

primary cancers and matched normal samples spanning 33 cancer types. Tumor/normal differential 

expression analysis were explored using the analysis of variance (ANOVA). The graphical 

representation of gene expression data and the derived survival curves were imported from GEPIA, 

a bioinformatics web server for analyzing RNA sequencing expression data across the TCGA. The 

significance of genes in determining the overall survival was analyzed using the Kaplan–Meier curve. 

We considered as statistically relevant a P value less than 0.05. UALCAN, an interactive web 

resource for analyzing cancer OMICS and Proteomic data was used to validate the correlation 

between gene expression data and pathological parameters [31-33]. The cBioPortal database (https 

://www.cbiop ortal .org/) which integrates cancer mRNA expression, genomic data, somatic cell 

mutation and DNA copy number changes allows us to confirm and verify differences in gene 

expression profiles and changes at genome level. To visualize Stoichiometric relationships of 

interacting proteins at mRNA and protein level, we used the DIA-expert software for the NCI-60 cell 

lines available in CellMiner (discover.nci.nih.gov/cellminercdb) [24]. Most eukaryotes contain two 
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types of spliceosomes; a) the canonical spliceosome, also called the major spliceosome which splices 

major introns, b) the minor spliceosome destined to the splicing of a small subset of introns called 

minor introns, that have divergent consensus sequences. These minor introns are found in genes that 

are predominately made up of major introns, and thus the expression of these minor intron-containing 

genes (MIGs) requires the coordinated action of both the major and the minor spliceosome [24]. To 

verify if critical interacting centrosome proteins identified in our study can be classified as MIGs and 

thus subjected to the action of minor spliceosome, we used the database https://midb.pnb.uconn.edu 

which allows to define the role of minor spliceosome  in the regulation of MIG expression [34]. 

Statistical analysis  

The statistical analyses were carried out using Prism version 4.02 (GraphPad Software, Inc), 

GeneSpring R/Bioconductor v.12.5 and R based package. 

2. Results 

2.1 Ribonucleoproteins interact with C-NAP1 (CEP250) and centrosome linker proteins 

While investigating the protein-protein interaction (PPi) network of experimentally validated 

centrosome linker proteins (CLPs), we observed that C-NAP1 (CEP250) showed a significantly 

higher number of interactors compared to other CLPs (Figure 1A,B). The majority of C-NAP1 

interactors included RNA-binding proteins, constituents of Ribosome, Heterogeneous nuclear 

ribonucleoproteins (HNRNPs) and RNA helicases (Figure 1C).  Gene ontology (GO) analysis of the 

C-NAP1-interactome confirmed that top enriched terms were structural constituents of 

ribosome/translational initiation (27%) followed by cell-cell adherents junction (11%) and “mRNA 

splicing” components (9%) (Figure 1D, Table S2). Notably, a close connection with splicing 

components was also identified for other CLPs (Figure S1A). Focusing our attention on the 

interaction between Rootletin (CROCC) and pre-mRNA splicing component MAGOH revealed that 

the top ranking neighbors of the network were posttranscriptional regulation of gene expression, 

mRNA 3'-end processing and mRNA transport from the nucleus (Adjusted P-value < 0.001) (Figure 

S1B, C). Additionally, we also found that a series of RNU genes (RNA, U1 Small Nuclear 2-4) 

classes and a poorly defined Rootletin interactor (CROCCP2) colocalized on chromosome band 

1p36.13. Notably, CROCCP2 and CROCC showed a consistent co-expression and co-regulation in a 

variety of human cell lines (Figure S1C,D). Thus, we asked whether the fraction of predicted 

disordered proteins across the known CLPs correlated with their ability to interact with a variety of 

proteins. First, we found that C-NAP1 displayed the largest fraction of predicted disordered residues 

(Figure 1E). In addition, investigation of a larger subset of centrosomal proteins localized at the 
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pericentrosomal region, distal appendages and centrioles, showed that the increase in intrinsically 

disorder domains correlated with a larger interactome (Figure 1E,F). Intrinsically disordered proteins 

are also characterized by high evolvability and it is well-known that Archaea and Bacteria have, on 

average, lower disorder content than Eukaryota [9]. We thus analyzed the gain and loss of centrosome 

linker genes across unicellular and multicellular eukaryotic organisms using PCM markers 

(pericentrin and y-tubulin) for comparison. In contrast to PCM components that were extremely 

conserved across species, centrosome linker genes were limited to higher eukaryotes supporting 

previous reports [9] (Figure 1G). Therefore, the increase of disordered regions in centrosome linker 

proteins during the evolution is connected to abundance and variety of protein-protein interactions 

functionally unrelated to centrosome.  

3. mRNA splicing components selectively interact with centrosomes and satellites  

To further characterize the effective interactions occurring between centrosome and 

ribonucleoproteins, we integrated the data from Human proteomic and Interactome databases (Human 

Protein Atlas collection). We first included into PPi analysis, 548 proteins localizing to centrosome, 

100 Ribosome/Eukaryotic initiation factors (eIFs) and 79 known splicing factors. We build a global 

map which confirmed a close proximity between the centrosome and ribonucleic proteome (Figure 

2A). In order to define specific interactions, we included in the analysis a relevant subset of 

centrosomal partners (comprising centrioles, pericentriolar material, satellites, spindle and cilia) 

(Figure 2B). Reflecting the connections between centrosomes function and translational assembly, 

proteins known to work in centrosome maturation and nucleation (TUBG1) or centriole biogenesis 

(CEP57 and CEP76) or 3M complex factors (CUL7) also interacted with 60S and 40S core ribosome 

proteins indicating an extensive interaction landscape (Figure 2C). Consistently with literature, the 

centriolar satellite (OFD1) and the distal appendages (NINL) markers enriched an mRNA translation 

subnetwork with participation of eIFs (i.e., EIF4ENIF1 and EIF6) and Cyclin-dependent kinase 2 

(CDK2) (Figure 2C). Indeed, GO analysis of the EIF4ENIF1 interactome revealed an enrichment of 

centrosome-related pathways and microtubule organization activity 16% and 18%, respectively 

(Figure S2A). Additional analysis in form of interacting network confirmed that ciliogenic factors 

(e.g., OFD1 and FBF1), particularly mapped in closer association to cytosolic eIFs compared to 

Ribosome constituents (Figure 3A). To establish the strength of the observed interactions, we 

investigated the relative abundances of eIFs and core Ribosome interacting proteins using as reference 

9 centrosomal proteins including C-NAP1 [27] (Table S1). Our analysis showed that several eIFs and 

core Ribosome proteins interacted with a restrict subset of centrosome components (Figure 2C and 

Figure S2C). For example, while RPL23, a component of the 60S subunit was broadly distributed 

across different centrosome proteins, others such as RPL19 or RPL26L1 were more selective for C-
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NAP1 and TUBG1, respectively (Figure 2C). By extending the analysis to mRNA splicing factors 

we found a consistent number of potential interactions mostly with pre-RNA processing factors 

(PRPFs), RNA helicases, Small Nuclear Ribonucleoproteins and components of exon junction 

complex (EJC) (MAGOH). Mutations in several of these PRPFs (PRPF4 and PRPF31) and other 

components, for which cilia/centrosome association is less clear (MAGOH, SNRPD3), cause 

autosomal dominant forms of Microcephaly and retinitis pigmentosa (RP), a comparatively common 

inherited retinal blindness often associated with ciliary defects (Figure 2D) [10,16,30,47]. 

Unexpectedly, quantifying the effective abundance of interacting proteins involved in splicing, we 

found that C-NAP1 (CEP-250) exhibited intense and selective interactions with a large variety of 

proteins including pre-mRNA-processing factor (i.e. PRPF4); Serine And Arginine Rich Splicing 

Factors (i.e SFRS3, SFRS7), Spliceosome assembly RNA helicases (i.e. DDX24) and ubiquitously 

expressed HNRNPs (i.e. HNRNPM) (Figure 2D and Figure S2D). Overall, the data indicated that 

C-NAP1 could selectively interact with splicing components. To further determine that our approach 

was reliable, we collected the interactome data derived from the centrosome/cilia complex (Gupta 

GD et al. 2015, Table S1). GO analysis involving the globality of  interactions (6000) showed that 

RNA binding and regulation of mRNA export from the nucleus were among the top 10 Enriched 

categories (Figure S3A). We next analyzed 10 centrosomal proteins reasoning that High-confidence 

interactors (n=418, FDR ~1%) validated by co-immunoprecipitation (coIP)/MS would provide more 

accurate results on the effective binding partners (Figure 3A). Notably, we found absence of 

Ribosome proteins and a predominant enrichment for mRNA splicing via spliceosome distributed 

broadly in ciliated and non-ciliated conditions (Figure S3B). Measuring the abundance of interacting 

partners, we found that CEP135, a well-established C-NAP1 interactor and SSX2IP, a crucial 

ciliogenic and mitotic spindle factor, were part of an extensive interaction landscape with 26 splicing 

factors (Figure 3A). Based on their distribution, centrosome-interactors enriched sub-compartment 

and functions involved in inter-centriole cohesion and centriolar satellites (Figure 3A). The data thus 

indicate that splicing components may indeed represent bona fide centrosome interactors.  

4. Subcellular and spatial localization od splicing factors to the centrosome and cilia 

components 

In order to better define the subcellular localization and the intimal relation of these 

Ribonucleoproteins with centrosome, we analyzed proteomic data generated from isolated 

centrosomes coupled to intracellular localization labeling data deriving from the Human proteome 

Atlas. We first identified a subset of highly significant proteins (735 out of 1452) expressed in the 

isolated centrosomes from lamb thymocytes [26].  GO analysis revealed that the top highest 
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enrichment term was represented by ribonucleoproteins (Figure S3C). Focusing on the distribution 

and type of identified ribonucleoproteins, we found that a subset of core Ribosome proteins and 

mRNA splicing components were highly represented (Figure S3D). Notably some components 

including RPS11, SRSF7 and PRP19 corresponded to high-confident centrosome interactors showing 

thus a good concordance with quantitative PPi data (Figure 2D,E and Figure S3D). The centrosome 

structure and composition vary considerably during the cell cycle; For example, quiescent cells could 

differ considerably from the proliferating ones. To explore this question, we examined the abundance 

and distribution of ribonucleoproteins during S and M phases from isolated centrosomes in HeLa S3 

cells (Kimura, 2012, Table S1). Despite the similar amounts of EIFs and 40S/60S Ribosome proteins 

at M and S phases, mRNA splicing proteins remarkably increased 5-fold in centrosomes during M 

phase compared to the S phase (Figure 3B). These results suggested that splicing factors could 

participate in both centrosome division at spindle pole and ciliogenesis possibly playing a key a role 

in centriole-based function and centriolar satellites [48]. To further refine the identified protein-

protein spatial interactions, we explored the comprehensive set of proteins distributed to centrosome 

(n=548) integrating image-based map from the Human proteome Atlas and interaction network. First, 

we noted that similarly to other subcellular structures, centrosomes share a strikingly high number of 

multilocalizing proteins with the nucleus (Figure S4A,B). Next, we asked if the effective subcellular 

distribution of different ribonucleoproteins spatially correlated with image-based centrosomes 

staining. While EIFs and core Ribosome proteins represented less than 1% of the total centrosomal 

proteome, notably 13 proteins potentially involved in mRNA splicing functions were identified 

(Figure 3C, Figure S4C,D and Figure S5A). One of these factors, WDR83 exhibited an intense 

centrosome labelling strengthening its interaction network with multiple centrosome proteins (Figure 

3A, 3D). In addition, we found that a number of splicing proteins localized at interphase centrosomes 

including UPF1, DHX35, RBM39 or others, such as DDX53, marked centrosomes at each spindle 

pole but not in interphase (Figure S5A-C). To understand the functional significance of our 

observations, we examined the cell viability or cellular fitness upon genetic perturbation or loss 

(Achilles project) of each gene of the interacting network (n=53) using as model the telomerase-

immortalized RPE1 cell line hTERT-RPE1, a popular cellular model to study primary cilia. Core 

Ribosome and EIFs encoding genes were used for comparison. Almost all centrosomal genes 

screened did not result in loss of cell fitness. As expected, and strong dependency upon deletion of 

genes encoding for Ribosome, EIFs and splicing components was observed. Notably, with the 

exception of EIF4ENIF1, DDX11 and DHX35 the majority of splicing components interacting with 

or localizing at centrosome resulted in loss of cellular viability (Figure S5C). Therefore, the 

identified splicing factors could be critical executors of centrosome-related functions.   
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5. Genes encoding for splicing and centrosome constituents are co-regulated in a tissue-

specific manner. 

Next, we asked if the detected spatial and physical interplay between splicing and centrosomes could 

also have relevance at mRNA expression level. We use a Genotype-Tissue Expression (GTEx) 

platform to survey their differential expression across 54 non-diseased Human tissues (Table S1). 

While genes encoding for ribosome proteins were highly expressed and slightly varied among 

different tissues, splicing, EIFs and centrosomal genes were coordinately down-regulated in a tissue-

specific manner in Heart, Pancreas, Brain and especially in Liver (Figure S6A). For some markers, 

we also found a good concordance between gene and protein expression comparing Liver vs Testis 

by immunohistochemistry (IHC) data derived from the Human proteome atlas (Figure S6B). Liver 

and heart have recently been proposed to work without a functioning minor spliceosome which likely 

operate on the so-called mini-intron containing genes (MIGs) promoting tissue-dependent retention 

and alternative splicing of minor introns [34]. Indeed, we found that ciliogenic factors belonging to 

MIGs (i.e. OFD1, TCTN3, CEP170) formed a protein-protein network with mRNA splicing 

regulators and mRNA transport from the nucleus indicative of a possible co-regulation trough 

cotranslational assembly and alternative splicing (Figure S6C). To ensure our observations are not 

simply explained by a species-specific effect, we collected single cell (scRNA-seq) data from mouse 

embryonic stem cells (mESCs) and analyzed them using the Sincerities algorithm [34,45]. We 

clustered 2786 genes into functional categories including centrosome, ribosomal, EIFs and splicing. 

By this approach, we identified a consistent number of annotated transcripts corresponding to 

2420653 regulatory interactions. We focused on the top-ranked 2000 with greater bow weight. The 

analysis revealed that several centrosomal/cilia genes were highly interconnected with splicing genes 

supporting the existence of a robust and co-regulated transcriptional network also in murine 

embryonal cells. Globally, FBF1 and ODF1 were the most prominent regulatory genes. In fact, ~50% 

of interactors was constituted by genes encoding for splicing components (Figure 4A). Notably, Ofd1 

was highly and selectively interconnected with a variety of splicing genes some of which found to be 

localized in human centrosomes (Figure 4B). These results are in line with recent studies showing 

that FBF1 and OFD1 could have a key role in modulating the translation of specific transcripts nearby 

centrosomes or integrating different centrosomal functions such as ciliogenesis and cell-cycle 

progression [14, 49]. To further clarify the possible genetic co-regulation, we used a public RNAseq 

dataset from human immortalized cells induced in spontaneous or CDK4/6 inhibitor-induced 

quiescence [28]. Also in this experimental setting, splicing and EIFs components show a comparable 
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and coordinated low gene expression profile in response to spontaneous or forced quiescence with 

the CDK inhibitor (Figure 4C). Altogether, these data suggest a close regulatory interdependence 

between centrosome and splicing encoding at transcriptional level.   

6. Centrosome and splicing loci tend to be co-altered in non random fashion in human 

diseases 

Alterations in spliceosome components cause often phenotypic abnormalities associated with 

centriole defects [28]. Our network of genes encoding for centrosome/cilia and ribonucleoprotein  

indeed indicated a number of overlapping diseases mostly related to neurodevelopment and 

neurosensory disorders (Figure 4D). For example, about 15% of the genetic causes of Retinitis 

Pigmentosa (RP) involves PRPFs encoding genes and recently also alterations in CEP250 have been 

shown to result in RP in humans and in mouse models [16,47].  We therefore analyzed if aberrant 

splicing derived from mutations in PRPF31 affected centrosomal genes [30]. Notably, we found that 

CEP250 along with a subset of 17 centrosomal genes represents a subnetwork subjected to mis-

splicing regardless of the cell type (Figure 4E). Next, we interrogated mRNA expression profiles 

across TCGA data using as reference non-neoplastic tissues. Some diseases, such as low-grade glioma 

(LGG) Glioblastoma multiforme (GBM), thymoma (THYM) exhibit concordant and high expression 

levels of 60S and 40S ribosomal proteins expressing genes. In contrast, we observed an elevated 

degree of variability for splicing and centrosome/cilia genes (Figure 5A). In contrast, liver 

hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL) exhibited a coordinated over-

expression of these gene clusters then correlating with a shorter overall survival (Figure 5B and 

Figure S7A,B). We also found a high degree of concordance with independent IHC data. Compared 

to a variety of different cancers, LIHCs exhibited an intense staining for PRPF3 and OFD1 (Figure 

5B). Notably, CEP250 was the only linker gene to be commonly overexpressed in a variety of cancers 

and correlated with high CA20 value, a score used to measure the degree of 20 centrosome 

amplification-associated genes (Figure 5A) [50]. Moreover, we also found that the top-neighbor 

interactors “XPO1 and SSX2IP” of the network were highly overexpressed mirroring the behavior of 

gene signature [22] (Figure S7C). Interestingly, the IHC data revealed that XPO1 was delocalized in 

the cytoplasm of cancer cells related to non-neoplastic hepatocytes indicating also defects in nucleo-

cytoplasmic transport (Figure 5C). In order to better understand the origin of these relationships, we 

investigated the global set of genes co-expressed with CEP250 using the RNA-seq data from the 

cancer cell line encyclopedia (CCLE) and NCI60 (Table S1). Focusing the attention on the Top 50 

co-expressed genes, we found that a subset of mRNA splicing genes (CTNNBL1, RBM39, DHX35, 

RALY) and EIFs, in particular EIF6, were highly correlated (Figure 5D). Notably, the identified 

cluster represent a genetic module localized on human chromosome 20 and mouse Chromosome 2 
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indicative of evolutionary proximity (Figure 6A). Consistently, whole chromosomal duplication 

events in Breast Ductal carcinoma and a subset of metastatic prostate cancers were strongly correlated 

with overexpression of this module (Figure S8A,B). These combinations could thus explain the 

strong co-modification observed across independent biological samples. These results reveal thus that 

apparently unrelated genes can form linearly colocalized and spatially colocalized loci which tend to 

have similarities in terms of co-expression, co-modification, and subcellular distribution in specific 

tissues.  

7. Splicing inhibitors elicit a selective repression of splicing and centrosome genes 

Having observed a nonrandom gene coregulation, we screened 

(https://portals.broadinstitute.org/ctrp/), a publicly available online tool that allows the extensive 

genetic characterizations of cancer dependencies with small molecules. Unexpectedly, we found that 

the molecule referred to as Indisulam, a splicing modulator that induces the proteasomal degradation 

of RBM39 [37] targeted similarly the gene module (CTNNBL1, RBM39, DHX35 and CEP250) 

strengthen the hypothesis that these genes interact with each other in a network module (Figure 6B). 

To further analyze the effect of splicing inhibition, we took advantage from recent RNA-seq data 

obtained from selective RBM39 inhibition and identification of RBM39 interacting RNAs in acute 

myeloid leukemia (AML) [37]. In RBM39-depleted cells, we found that about 2% of centrosome 

genes undergo aberrant splicing with a prevalence of exon skipping affecting 53 centrosome encoding 

genes including CEP250 and DHX35 (Figure 6C). Among the direct RBM39 mRNA-binding targets 

(Top 500 of 9560; score >4.5), we observed a relevant number of mRNAs encoding for centrosome-

related genes (17/548) and notably GO analysis revealed that the Cytoskeleton and Microtubule 

binding was one of the most enriched terms (Figure S8C). To further examine the effects of splicing 

inhibition on centrosome-related genes, we analyzed transcriptomic data from Rh18 and HeLa cells 

following exposure to sudemycin D1 and spliceostatin A, respectively [38,39]. These compounds 

selectively bind to the essential spliceosome component SF3b, a subcomplex of the U2 snRNP, to 

inhibit pre-mRNA splicing. Overall, both the inhibitors displayed a concordant profile resulting in 

up-regulation of protein translation (encoding mostly for ribosome proteins) and splicing genes. 

Interestingly, DHX35, or different HNRNPs encoding genes such as HNRNPU and HNRNPM were 

commonly downregulated and underwent alternative splicing events following treatment with both 

drugs (Figure 6C, D). These changes were accompanied by a significant downregulation of 

centrosomal/ciliogenic genes as compared to those undergoing up-regulation (70-80% versus 30%-

20%). However, a remarkable fraction of centrosomal genes decreased in the cytoplasm (54) and 

nucleus (74) following spliceostatin A treatment and only 7 genes were downregulated in both 

fractions (Figure 6C). For example, PCNT was downregulated in both cytoplasm and nucleus 
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following treatment with spliceostatin A in keeping with the evidence that PCNT mRNA is enriched 

and translated near centrosomes in the cytoplasm. Mis-splicing and in particular exon skipping was 

identified in many centrosomal genes following treatment with sudemycin D1 consistent with the 

literature [38,39] (Figure S8D). Focusing the attention on the genes undergoing differentially spliced 

exon junctions that potentially led out-of-frame transcripts upon sudemycin D1 treatment, we 

identified 58 centrosomal genes (3%) of 1739 total. Notably, the cluster undergoing aberrant splicing 

events included the colocalized gene pairs CEP250, RBM39 and CTNNBL1 involved in splicing and 

centrosome functions (Figure 6D). Overall, these results suggest that inhibition of splicing can indeed 

modulate the expression profiles of centrosome and cilia encoding genes. 

8. Discussion 

           In the present article, we study the existing protein-protein interaction networks, spatial 

proteomics and trascriptomic data and present for the first time a comprehensive map of 

proteogenomic interactions between the spliceosomal and centrosomal components. Pre-mRNA 

splicing is carried out by a complex machinery called spliceosome composed by more than 200 

proteins comprising core and regulatory elements. The spliceosome assembles on a pre-mRNA and 

undergoes numerous structural and compositional rearrangements during its assembly, activation, 

and catalytic activity. Globally the process of splicing in eukaryotic cells is tightly coupled to the 

transcription machinery, and ultimately leads to the packaging of mature mRNAs into large 

ribonucleoparticles composed of numerous RNA-binding proteins [38,39]. Human spliceosomes 

contain numerous proteins absent in yeast, whose functions remain largely unknown [34, 38,39,51]. 

In line with this, many centrosome constituents tend to increase with the number of cell-types during 

evolution and the numerous disorder regions make them extremely flexible and able to interact with 

many partners. Consistently, our protein-protein interaction network study identified Ribosome and 

spliceosome components as the most abundant interactors of C-NAP1 (CEP250). The prominent high 

disorder of C-NAP1 may additionally provide a higher degree of plasticity and metazoan-specific 

protein-protein interactions to the machinery of cohesion, typical of centrosomes. Exploring high 

confident and stoichiometrically abundant interactions, allowed us to establish constant and selective 

associations between splicing factors and centrosome markers in which emerged centrosome 

cohesion components such as CEP135, C-NAP1, FBF1 and other crucial regulators involved in 

centriolar satellites (OFD1) function and ciliogenesis (SSX2IP). Image-based map of sub-cellular 

protein distribution and proteomes from isolated centrosomes revealed that a series of proteins 

involved in splicing were distributed to centrosomes and some of them refined the protein-protein 

interaction networks identified by restricting protein localization and interaction to the same 

organelle. The identified proteins belonged to distinct spliceosomal subcomplexes, including 
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components of early assembly complexes (SR proteins and mRNP) A and B including components 

of U1, U2, U4/U6 snRNP and Prp19 complex, and also potential components of catalytic C 

complexes. The presence of multiple subunits of the same intermediate complexes reinforced the idea 

of the spatial and functional interaction between these components (Figure 7). Notably, we found 

that the cellular spliceosome components were remarkably enhanced during M phase compared to S 

phase in isolated centrosomes indicating a high degree of spatiotemporally regulated functions related 

to this cellular compartment. Proteins involved in splicing and centrosomal functions are apparently 

unrelated. However, recent observations suggest that spliceosomal proteins, specifically a group 

of pre-RNA processing factors (PRPFs) that are expected to localize to nuclei, also localize to 

the ciliary basal body or the centrosome and promote ciliogenesis. However, whether 

localization of these ribonucleoproteins has any direct relevance for centrosome biology still 

needs to be determined. The analysis of transcriptomic data in mouse Embryonic Stem Cells 

(mESC), and across human tissues revealed a tissue-specific co-transcriptional coordination, a 

phenomenon observed also when perturbing cell-cycle transition in cultured human cells. 

Consistently, a recent study showed that Exon Junction Complexes (EJCs)-dependent mRNA 

trafficking towards centrosomes and basal bodies might contribute to proper mouse neural stem cell 

(mNSC) division and brain development [34, 38,39,51]. Transcriptomic profiles from PRPF31-

mutated Retinitis Pigmentosa cells revealed that alteration in mRNA splicing programs heavily 

affected the genes implicated in ciliogenesis including CEP250 [10,16,30, 47]. Similarly, the study 

across cancer samples showed a coordinated tissue-specific alteration of splicing and ciliogenic 

transcription program in selective tissues particularly in cancers originating in liver [34]. Although 

the disease mechanisms related to splicing and centrosome factors remain unclear, some tissues 

(particularly brain and liver) in which mRNA processing (PRPF3, PRPF4) and centrosome/ciliogenic 

genes (CROCC, CEP250) poorly expressed could be more susceptible to their deficiencies or 

overexpression. Interestingly, the fact that a subset of genes displaying a role in splicing and 

centrosomal function (CEP250, DHX35, CTNNBL1, RBM39 and RALY) are linearly and spatially 

colocalized on human chromosome 20 and mouse Chromosome 2 might explain, at least in part, why 

these different genes tend to have a similar co-expression, co-modification, and subcellular 

distribution pattern [53]. The strong co-modification of the gene cluster was also seen analyzing 

transcriptomic data derived from selective inhibition of splicing components. Today, the importance 

of the centrosome as microtubule organizing center and coordinator of the mitotic spindle is 

questioned and our knowledge of how centrosomes integrate spatial and temporal cues during 

interphase is limited. Therefore, why do spliceosome and centrosome proteins interact selectively and 

what is the purpose of those physical and spatial interactions? At present, we do not have a definitive 
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answer but several lines of evidence argue for a variety of functions centrosomal proteins may have 

outside centrioles and cilia. First, these spatial and physical relationships could arise from large and 

single condensates of ribonucleoparticles containing RNA–proteins and subsequently transported 

outside nucleus towards centrosomes. Consistent with a role of splicing complexes in the earliest 

steps in ciliogenesis, the  EJC complex which forms at the junction of two exons is deposited by the 

nuclear-splicing machinery and accumulate around and at the base of cilia [34, 55-57]. These EJC 

proteins revealed an enrichment of untranslated or partially translated EJC-bound specific transcripts 

(e.g. NIN) necessary for ciliogenesis at centrosomes. A variety of kinases including NEK2 which 

disassembles C-NAP1 at the onset of mitosis have been reported to influence splicing [54]. We here 

propose that higher eukaryotes might require the proximity and co-regulation of splicing factors to 

regulate the expression of key centrosome transcripts to arrange specific condensates necessary for 

packaging and transport of RNA–protein complexes out of the nucleus. However, the precise role 

and mechanistic detail of how the spliceosome and EJC complex operate to the centrosome and cilia 

remains largely unknown. Thus, our study open an exciting area of future research on the 

dynamic compartmentalization of the RNP condensates in the cytosol in relation to the cell 

cycle and cilia-mediated signal transduction [55]. Many challenges remain in studying the native 

spliceosome and centrosome targets in a cell-free context at the level of chemical complexity (protein 

composition, variability and cellular modifications) and structural-dependent properties (i.e., RNA–

protein interactions). In summary, we provide evidence that selective spliceosome components may 

be relevant executors of centrosome-related functions and that in collaboration with proteins that 

contain intrinsically disordered regions contribute to gene expression for cellular differentiation and 

development trajectories in metazoans.  
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Fig.1 Protein-protein interaction network and centrosome cohesion proteins.  A) Scheme of experimentally validated 

proteins involved in centrosome cohesion. B) Size of human interactome for the indicated centrosome-linker proteins 

derived from BioGRID database. C)  Distribution of interacting ribonucleoproteic factors among centrosome linker 

proteins. D) Up, the graph shows the major pathways derived from C-NAP1 interactome (see Table S2); Down, Protein-

Protein interaction network for C-NAP1 (BioGRID database). E) The degree of protein disorder in centrosome linker 

correlates with protein size and interactome profile; Down, correlation between protein disorder and the size of 

interactome for a larger subset of centrosome proteins. G) The genes encoding for centrosome linker proteins tend to be 

absent  in lower Eukaryotes and non-mammalian systems. PCM markers are shown for comparison. Abbreviations:  SDA, 

subdistal appendages. 
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Fig.2 Splicing proteins interact selectively with centrosome components  A) Spatial proximity between centrosome, 

translation and splicing components using protein-protein interaction network. B) Schematic representation of the 

mammalian centrosome and distribution of centrosome-related proteins. C) Up, Protein-Protein interaction network and 

distribution of Ribosome and EIFs at centrosome. Down, Dot Plot view of protein-protein interactions. D) Protein-Protein 

interaction network of splicing and centrosome proteins. Dot Plot view of protein-protein interactions between 

centrosome markers and different splicing proteins. Dot shading (blue-black gradient) indicates total number of spectral 

counts detected for each prey protein. Dot size indicates relative abundance of prey protein in each analysis. Confidence 

levels for each interaction according to SAINT (significance analysis of interactome). False discovery rate (FDR) are 

indicated by dot border. 
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Fig.3 Protein-protein interaction network refines subcellular distribution of splicing indicating a role in 

ciliogenesis and centriole-based function A)  Left, Dot Plot view of High-confident Protein-Protein interactions derived 

from FLAG-IP Mass spectrometry data  (Ref). SAINT (significance analysis of interactome) was used to analyze the 

relative abundance/presence of interactors. False discovery rate (FDR) are indicated by dot border. Right, the graphs 

indicate the distribution of interactors relative to centrosome markers represented in the scheme. B) Quantification of 

different types of Ribonucleoproteins during S and M phases derived  from isolated centrosomes in HeLa S3 cells. Up, 

the pie chart indicates the abundance of proteins detected in each condition (Ref). C) Left, number of different 

Ribonucleoproteins that have been experimentally detected in the centrosome by the Human Protein Atlas (Ref). Right, 

The splicing factors that localize to the centrosome are also localized “frequently” in the nucleoplasm as expected.  D) 

Centrosomes from U251-MG cells are intensely stained for WDR83, immunofluorescence images extracted by “Human 

proteome atlas”.  
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Fig.4 A gene regulatory network characterizes splicing and centrosome encoding genes A) Gene network analysis  

of Fbf1 and Odf1 in relation to the indicated categories  derived from mouse embryonic stem cells (Ref). B) Up, the Venn  

diagram shows the shared interactions of splicing encoding genes between  Fbf1 and Ofb1; Down, The Dot plot shows 

the pattern of gene regulatory network for a subset of splicing genes comparing Fbf1 vs Odf1 profile. SAINT (significance 

analysis of interactome) was used to analyze the “weight” of interactors according to SINCERITIES algorithm (Ref). 

False discovery rate (FDR) are indicated by dot border. C) Gene expression variation in spontaneous versus CDK 

inhibitor-induced slow-cycling cells (quiescence) for the indicated categories (ref) . For each category more than twenty 

genes were included. *P ≤ 0.05; **P ≤ 0.01; Student's t-test. D) The indicated enrichment categories were obtained using 

the phenotype-Human-Phenotype Ontology analysis integrating a list of 66 highly interconnected splicing and centrosome 

genes. E)  PRPF31  mutation causes aberrant splicing and retinitis pigmentosa (ref). The Venn diagram shows the shared 

centrosome encoding genes undergoing aberrant splicing in human fibroblasts and retinal organoids. Protein-Protein 

interaction network of centrosome genes targeted by PRPF31.  
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Fig.5. The centrosome and splicing transcriptional program are co-altered in cancers originating in Liver. A) Gene 

expression profile for the indicated categories across n=20 different cancer types; High expression in tumour versus 

normal is in “red” (p<0,05); low  expression in tumour vs normal is in “green”  (p<0,05); no changes between tumour vs 

normal are in grey (p>0,05). Right, The graph shows that CEP250 and its binding partner NEK2 are commonly over-

expressed in cancer and correlate with centrosome amplification calculated by (CA 20 score). N=8 different cancers types 

for which tumour and matched-normal samples were available (Ref). B) Left, Immunohistochemistry images for PRPF3 

and ODF1 in the indicated cancer tissues extracted by human proteome atlas. Right, PRPF3 and ODF1 immunostaining 

profile in Liver (LIHC) compared to any other cancer type.  Low, High mRNA expression of the indicated genes correlates 

with shorter overall survival by Kaplan Meier analysis. C) Left, Protein-Protein interaction network reveals the mRNA 

transporter XPO1 as the top ranking neighbours gene between CEP250 and its partner splicing regulators. Right, IHC 

data extracted from human proteome atlas  to indicate the subcellular distribution of XPO1 in normal hepatocytes versus 

LIHC. C, Cytoplasm; M; Membrane; N; Nucleus. D) Left, Shared co-expressed genes between PRPF6 and CEP250 taking 

into account the top 50. Abbreviations: CHOL: cholangiocarcinoma; COREAD: colon and rectum adenocarcinoma; 

DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: oesophageal carcinoma; GBM: glioblastoma 

multiforme; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell 

carcinoma; LAML: acute myeloid leukemia; LGG: low-grade glioma; LIHC: liver hepatocellular carcinoma; LUSC: lung 

squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic 

adenocarcinoma; SARC: sarcoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumours; UCS: uterine 

carcinosarcoma; 
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Fig.6. Intrachromosomal colocalization strengthens co-expression and co-modification of splicing and centrosome 

genes clusters A) Up, Linear and spatial co-localization of the indicated gene cluster on human chromosome 20 and 

mouse Chromosome 2;  Down left, CTNNBL1 and CEP250 mRNA expression levels are highly correlated across CCLE 

database. Down right, Heatmap show a co-expression of the gene module  across NCI60 database used as alternative 

sources. B) Indisulam a protein degrader drugs against RBM39 similarly co-modificates  the gene cluster in relation to 

copy number variation across cancer cell lines; data extracted from the cancer therapeutics response portal. C) Left, Loss 

of RBM39 from (ref..) determines skipping exon dysfunction in 53 centrosome genes including CEP250, DHX35 and 

RBM39 itself. Right, The graphs show the changes in gene expression profiles for the indicated categories upon 

Spliceostatin treatment (Ref). D) Left, gene expression profiles for the indicated categories upon Sudemycin D1 treatment. 

Right, Aberrant spliced exon junctions in involve about more than 10% of centrosome encoding genes. The genes 

CEP250, CTNNBL1 RBM39 belonging to the colocalized cluster are indicated in red.  
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Fig.7. Distribution and functional features of Spliceosome components to the centrosome Schematic drawing 

showing the splicing proteins with subcellular localization to the centrosome and interacting splicing partners with 

centrosome proteins. They are  categorized according to core and non-core component of the spliceosome. The 

spliceosomal sub-complexes are shown in the order of their recruitment and activity to the spliceosome. 
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