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Abstract: Controllable, quantum-strong correlations of polarization states can be implemented with 
multi-photon independent states. Polarization-based photonic quantum correlations can be traced 
back to the overlap of the polarization Stokes vectors on the Poincaré sphere between two polariza-
tion filters. The quantum Rayleigh scattering prevents a single photon from propagating in a 
straight line inside a dielectric medium, and it also provides a mechanism for the projective meas-
urement of polarization. Complexities associated with single-photon sources and detectors can be 
eliminated because the quantum Rayleigh scattering in a dielectric medium destroys entangled pho-
tons. Entanglement-free, identical sources and processing devices give rise to correlations rather 
than these being caused by “quantum nonlocality”. These analytic developments were prompted 
by the vanishing expectation values of the Pauli spin vector for a single photon of maximally entan-
gled photonic Bell states. 
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1. INTRODUCTION 
Single photons and entangled states of single photons underpin the concepts of opti-

cal processing of quantum information [1-2]. Integrated photonic platforms and circuits 
incorporating a large number of sources, devices, processing units, and photodetectors 
constitute the objective of large-scale research into and implementation of functionalities 
for a broad range of applications in quantum computing, quantum communication and 
quantum metrology [1]. “To a large extent, the second quantum revolution we are wit-
nessing these days strongly relies on generation and manipulation of entangled quantum 
states.” [3] 

Polarization-entangled photon pairs [1-2] are of particular interest because of the pos-
sible manipulation with Pauli spin operators. A particular feature of these polarization-
based photonic systems appears to be their high level of correlations between two sepa-
rately measured sets of one-photon polarizations, which are detected separately and are 
commonly associated with quantum nonlocality. The design, fabrication, and operation 
of quantum photonic integrated circuits will substantially benefit from functionalities of 
“entangled photons” that can be performed with simplified layouts and reduced costs, by 
using independent, pure states of photons. 

It was realized, more than a decade ago, that polarization measurements in the quan-
tum regime “have not been done with single-photon sources.” “Some of the experiments 
have been performed at light levels in the quantum regime, however, and this suggests 
strongly that the devices will work in the same way given single-photon sources and de-
tectors” [4, p. 264].  

Additionally, recent experimental results open up the way for polarization correla-
tions between photons from “two independent sources of polarized optical photons, and 
detecting the temporal coincidence of pairs of uncorrelated photons which have never 
been entangled in the apparatus. …. The measurement procedure adopted in the Bell-type 
experiments yields the polarization relation between the two members of a pair, either 
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entangled or not entangled, in their final preparation state” [5]. Indeed, it is straightfor-
ward to show - see below - that independent photons from identical sources reproduce or 
generate the same correlation function on the Poincaré sphere as the “entangled photons”, 
but with the added benefit of externally controlling the correlation, which can signifi-
cantly improve the performance of data processing devices.  

One photon per radiation mode underpins the concept of entangled photons [3] 
which, apparently, are needed to create a statistical correlation between separately meas-
ured quantum events. Yet, the quantum Rayleigh scattering prevents a single photon from 
propagating in a straight line inside a dielectric medium [6-9]; equally, inside a dielectric 
medium, the quantum Rayleigh stimulated emission can recapture an absorbed photon 
as well as coupling photons between two radiation modes, thereby creating groups of 
photons from individual ones [10-12]. A summary of Rayleigh scattering can be found in 
Appendix A below. 

The quantum Rayleigh spontaneous and stimulated emissions were well docu-
mented four decades ago [6-7] when the first experimental results of apparently single 
photon propagation were incorporated in the theory of quantum optics. Even though the 
subject was revisited [8] to clearly find that the probability of spontaneous emission in-
creases with the refractive index of the medium, the question of one single photon being 
scattered by photon-dipole interactions has been completely ignored in the professional 
literature of quantum optics [13].  

The assumption that spontaneously emitted, parametrically down-converted indi-
vidual photons cannot be amplified because of a low level of pump power would, in fact, 
prevent any sustained emission in the direction of phase-matching condition because of 
the Rayleigh spontaneous scattering. In a nonlinear crystal pumped, e.g., with a pump 
wave (p) and for frequency down-converted photons of frequencies ωs + ωi = ωp, the gain- 
providing medium which generates the spontaneous emission, will also amplify the ini-
tially single photons, particularly so in the direction of wavevector matching conditions, 
even for limited space-time overlap. A phase-pulling effect leading to the phase relation 
𝜑𝜑𝑠𝑠 + 𝜑𝜑𝑖𝑖 = 𝜑𝜑𝑝𝑝 + 𝜋𝜋/2  also occurs, [12] which is capable of countering phase-mismatch. 
Thus, the commonly assumed one single photon output does not physically happen. At 
least several photons may be associated with each individual and discrete electronic 
“click”. A group of photons of the same frequency propagating inside a dielectric medium 
will follow a straight-line because a photon locally absorbed by a dipole, will be recap-
tured by the other photons in the group through stimulated emission. Nevertheless, some-
times, only one photon may survive the propagation to reach the photodetector. 

A common interpretation maintains that: “There is another fundamental issue of 
nonlocality pertaining to entangled states: the idea that measurements performed in spa-
tially separated locations can affect each other” [3]. However, this interpretation of exper-
imental results as proof of quantum nonlocality does not stand up to physical scrutiny 
and has been disproved and rebutted from various perspectives [9], [14-19]. The correla-
tion function of “entangled photons” is predicated on a mixed quantum state, or a global 
wavefunction, which is time- and space- independent. However, an ensemble distribution 
is built up from instantaneous, single event measurements of photonic beam fronts. The 
distinction between pure quantum states and mixed quantum states is presented in Sec-
tion 2 below, in line with long-standing definitions [20]. 

This article traces the origin of the polarization-based quantum correlation function 
back to the overlap between the polarization Stokes vectors of the detecting filters, on the 
measurement Poincaré sphere. After reviewing the shortcomings of entangled states of 
photons in Section 2, the local measurements leading to statistical distributions of quan-
tum correlations are specified in Section 3 by using polarization states of independent 
photons. By generating the polarization Stokes vectors through measurements based on 
Pauli spin operators, the correlation function is obtained in Section 4, with independent 
photons, in a manner that will reduce the complexities of operational quantum photonic 
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systems. Physical aspects that facilitate the design, fabrication, and operations of quantum 
functionalities are presented in Section 5. 

2. THE SHORTCOMINGS OF THE ENTANGLED STATES OF PHOTONS 
A particular feature of “entangled photons” is described as follows: “A single particle 

state vector is not an accurate description of the single particle when it is in an entangled 
state” [3]. If so, simultaneous measurements of the two polarization-entangled photons 
are needed in order to determine the correlation function. But a wavefunction collapse is 
required for the remote influence to take place, namely, one measurement should precede 
the other. However, in this case one easily finds, as shown in this Section, that the expec-
tation value of the Pauli spin operators – probing the state of polarization of one photon 
– vanishes, and no polarization can be specified for the correlation or comparison of the 
distributions of values.  

A polarization-entangled photonic state is given in terms of horizontal |H⟩ and ver-
tical |V⟩ polarizations by the expression  

|ψ𝐴𝐴𝐴𝐴⟩ = 𝛼𝛼 |H⟩𝐴𝐴 |H⟩𝐴𝐴 + 𝛽𝛽 |V⟩𝐴𝐴 |V⟩𝐴𝐴 (1) 

where the indexes A and B refer to the two entangled photons that propagate in opposite 
directions, and to be detected by spatially separated photodetectors A and B. The normal-
ization condition is |𝛼𝛼|2 + |𝛽𝛽|2= 1. The coefficients 𝛼𝛼 and 𝛽𝛽 specify the properties of the 
source outputs. If only a pair of photons is emitted at any given point in time, then at the 
level of each individual event and its measurement, the coefficients can only be either 
𝛼𝛼(𝑡𝑡) = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽(𝑡𝑡) = 0 or 𝛼𝛼(𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽(𝑡𝑡) = 1. By contrast, the statistical average of the 
ensemble of measurements would lead to an average of 𝛼𝛼 = 𝛽𝛽 = √0.5 resulting in a Bell 
state |ψ𝐴𝐴𝐴𝐴⟩ = ( |H⟩𝐴𝐴 |H⟩𝐴𝐴 +  |V⟩𝐴𝐴 |V⟩𝐴𝐴)/√2. Thus, the Bell state does not reflect the physical 
reality of each single, individual event, and the interpretation becomes counter-intuitive 
[3]. As a time-independent state describing a statistical ensemble, the Bell state is mathe-
matically equivalent to having all four polarization modes populated simultaneously. It 
should be noted that the state |ψ𝐴𝐴𝐴𝐴⟩ does not specify the number of photons it carries, 
and any manipulation of it involves only its state of polarization. 

This state |ψ𝐴𝐴𝐴𝐴⟩  somehow remains unchanged despite the photons propagating 
through dielectric media of beam splitters, optical fibers, crystal polarizers, etc., and is 
used to calculate an ensemble correlation function between the polarization states ob-
tained by setting the linear polarization filters to various angles 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐴𝐴 with respect 
to a common frame of reference, i. e, |H⟩ and |V⟩ at a third location. The quantum evalu-
ation of the correlation function is carried out with two polarization filter operators 
𝜎𝜎�𝐴𝐴 and 𝜎𝜎�𝐴𝐴  and given by 

𝐸𝐸𝑐𝑐(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) = ⟨ψ𝐴𝐴𝐴𝐴  | 𝜎𝜎�𝐴𝐴 ⨂ 𝜎𝜎�𝐴𝐴 |ψ𝐴𝐴𝐴𝐴⟩ = 

     = 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃𝐴𝐴 + + 2 𝛼𝛼 𝛽𝛽 𝑐𝑐𝑠𝑠𝑎𝑎 2𝜃𝜃𝐴𝐴  𝑐𝑐𝑠𝑠𝑎𝑎 2 𝜃𝜃𝐴𝐴 
(2) 

where the Pauli spin operators for the linear polarizations are denoted 𝜎𝜎�𝑘𝑘 =
𝑐𝑐𝑠𝑠𝑎𝑎 ( 2𝜃𝜃𝑘𝑘) 𝜎𝜎�1 + 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃𝑘𝑘)𝜎𝜎�3  with  k = A or B, the angle 𝜃𝜃𝑘𝑘 specifies the rotation of a linear 
polarization filter and the projecting Pauli operators are in this case 

𝜎𝜎�1  =  | H 〉〈 V | + | V 〉〈 H |  and 𝜎𝜎�3  =  |H 〉〈H |−|V 〉〈V | .   

The first operator 𝜎𝜎�1 leads to the second term of Eq. (2) and corresponds to an inter-
ference effect of the two projected input eigenstates onto the measuring eigenmodes, and 
requires for a non-zero value that the two eigenstates be simultaneously populated, that 
is, each detecting basis mode of the same polarization analyzer should receive more than 
one photon. For each single event or measurement of the statistical ensemble ei-
ther |H⟩𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 |H⟩𝐴𝐴, or |V⟩𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 |V⟩𝐴𝐴 are present simultaneously, but Eq. (2) requires, for 
maximum correlation, the simultaneous presence of both possible outputs, that is 𝛼𝛼 ≠ 0 
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and 𝛽𝛽 ≠ 0. This can only happen if all four radiation modes are populated simultane-
ously, e.g. 𝛼𝛼 = 𝛽𝛽 = √0.5. The Pauli operators act on the state of polarization, regardless 
of the number of photons. In other words, the mixed state of “entangled photons” emu-
lates a source of multiple photons per radiation mode, i.e.|ψ𝐴𝐴𝐴𝐴⟩ = (|H⟩𝐴𝐴 |H⟩𝐴𝐴 + |V⟩𝐴𝐴 |V⟩𝐴𝐴)/√2 
where the indexes A and B refer to the two groups of photons that propagate in different 
directions, and to be detected by spatially separated photodetectors A and B. 

If a collapse of the wave function is to take place for entangled photons upon detec-
tion of a photon at either location, then the two separate measurements do not coincide as 
required by Eq. (2). In this case, a local measurement vanishes for the maximally entangled 
Bell states, e. g. |ψ𝐴𝐴𝐴𝐴⟩ = (|H⟩𝐴𝐴 |H⟩𝐴𝐴 + |V⟩𝐴𝐴 |V⟩𝐴𝐴)/ √2 , that is, ⟨ψ𝐴𝐴𝐴𝐴  | 𝜎𝜎� 𝐴𝐴 ⨂ 𝐼𝐼 𝐴𝐴  |ψ𝐴𝐴𝐴𝐴⟩ = 0, 
with 𝐼𝐼 𝐴𝐴 = | H 〉〈 H | + | V 〉〈 V | being the identity operator. This leads to a physical contra-
diction as local experimental outcomes determine the state of polarization to be compared 
with its pair quantum state. This overlooked feature of maximally entangled Bell states 
renders them incompatible with the polarimetric measurements carried out to determine 
the state of polarization of photons, thereby explaining the experimental results of refe- 
rence [5] which were obtained with independent photons. 

The mixed quantum state |ψ𝐴𝐴𝐴𝐴⟩ of Eq. (1) is space- and time-independent and con-
sidered to be a global state which can be used in any context, anywhere, and at any time. 
Nevertheless, the Hilbert spaces of the two photons move away from each other and do 
not spatially overlap, so that any composite Hilbert space is mathematically generated by 
means of a tensor product. Even so, the absence of a Hamiltonian of interaction renders 
any suggestion of a mutual influence rather questionable [14]. 

A physical analysis should involve polarimetric Stokes vectors generated at the two 
separate measuring locations. Photons polarized parallel to the common reference coor-
dinates will pass randomly through polarization filters or analyzers as a result of quantum 
Rayleigh scatterings of photons [6-9]. These photons will emerge with the same state of 
polarization as that of the filters, and the corresponding Stokes parameters of the polari-
zation state vector 𝑐𝑐 on the Poincaré sphere are calculated as the expectation values of 
the Pauli spin vector operator 𝜎𝜎� = ( 𝜎𝜎�1,𝜎𝜎�2,𝜎𝜎�3 ) for the Jones vectors [21] of the filters k = 
A, B , i. e. |𝑢𝑢 (𝜃𝜃𝑘𝑘)⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐  𝜃𝜃𝑘𝑘 | H 〉  + 𝑐𝑐𝑠𝑠𝑎𝑎  𝜃𝜃𝑘𝑘 | V 〉 , resulting in [21]: 

𝑐𝑐𝑘𝑘 = ⟨𝑢𝑢 (𝜃𝜃𝑘𝑘)| 𝜎𝜎� |𝑢𝑢 (𝜃𝜃𝑘𝑘)⟩ (3) 

The relation connecting the correlation overlap between two polarization state vec-
tors |𝑢𝑢𝑘𝑘⟩ = |𝑢𝑢 (𝜃𝜃𝑘𝑘)⟩ in the Jones representation and the overlap or correlation of their cor-
responding Stokes vectors 𝑐𝑐𝑘𝑘 on the Poincaré sphere is given [21] by: 

|⟨𝑢𝑢𝐴𝐴|𝑢𝑢𝐴𝐴⟩|2 =  
1
2

 ( 1 +  𝑐𝑐𝐴𝐴 ∙ 𝑐𝑐𝐴𝐴) (4a) 

𝐸𝐸𝑐𝑐(𝜃𝜃𝐴𝐴;𝜃𝜃𝐴𝐴) =  𝑐𝑐𝐴𝐴 ∙ 𝑐𝑐𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐 2(𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐴𝐴) (4b) 

to obtain in Eq. (4b) the same correlation function as in Eq. (2) for the corresponding coef-
ficients of “maximally entangled” photons. 

In the next Section, independent states of photons will be identified in the Jones rep-
resentation of polarization states and the overlap of the corresponding Stokes vectors on 
the Poincaré sphere will explain the quantum correlation as the mathematical overlap of 
the two polarization filter states in the joint Hilbert space of the measurements. 

It is claimed that the presence of two operators in the correlation tensor product re-
sults in stronger correlation values for entangled states. Yet, the spatially separate meas-
urements of one photon reaching each polarization filter can be identified specifically by 
using the identity operators 𝐼𝐼𝑘𝑘 for each polarization filter, that is: 

𝐸𝐸𝑐𝑐(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) =  (⟨ψ𝐴𝐴𝐴𝐴  | 𝜎𝜎�𝐴𝐴 ⨂ 𝐼𝐼𝐴𝐴) (𝐼𝐼𝐴𝐴 ⊗  𝜎𝜎�𝐴𝐴 |ψ𝐴𝐴𝐴𝐴⟩ ) 
= ⟨𝛷𝛷𝐴𝐴 | 𝛷𝛷𝐴𝐴⟩ = 

(5) 
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where the state |𝛷𝛷𝑘𝑘⟩ is generated by the operator 𝜎𝜎�𝑘𝑘. In this way, the correlation function 
is associated with the overlap, or fidelity, of two state vectors |Φ𝑘𝑘⟩ displayed on the Poin-
caré sphere as an inner product. As a consequence, the same correlation function between 
the polarization filters of the detectors can be generated with independent states of pho-
tons as presented in the next Section. 

3. QUANTUM CORELATIONS OF INDEPENDENT PHOTONS 
The correlation function 𝐸𝐸𝑐𝑐 for the detection of two photons A and B of the state 

|ψ𝐴𝐴𝐴𝐴⟩ of Eq. (1) is defined as the sum of averaged products of any two eigenvalues +1 or 
−1 assigned to eigenstates |𝑥𝑥(𝜃𝜃)⟩ and | 𝑦𝑦 (𝜃𝜃)⟩, respectively, involving the probabilities of 
their coincident detections, i.e. 𝑃𝑃++;  𝑃𝑃−−;  𝑃𝑃−+;  𝑃𝑃+−  for various settings 𝜃𝜃𝐴𝐴 and 𝜃𝜃𝐴𝐴  of the 
polarization filters: 

𝐸𝐸𝑐𝑐(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) ≡  𝑃𝑃++(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) + 𝑃𝑃− −(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) −  𝑃𝑃+−(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴)− 𝑃𝑃−+(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) (6) 

The probabilities are linked experimentally to the counts 𝑁𝑁𝑖𝑖,𝑗𝑗 of coincident photons 
through the equality 𝑁𝑁𝑖𝑖𝑗𝑗(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) =  𝑃𝑃𝑖𝑖𝑗𝑗(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡, where i , j  =  + ; − and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 is the total 
number of coincident photons. In the case of independent statistical events at the two spa-
tially separated detectors, the joint probability becomes the product of the independent 
probabilities, that is 𝑃𝑃𝑖𝑖𝑗𝑗(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) = 𝑃𝑃𝑖𝑖(𝜃𝜃𝐴𝐴) 𝑃𝑃𝑗𝑗(𝜃𝜃𝐴𝐴). As a simple example, let us consider the 
detecting filter’s polarization eigenstates, for k = A; B, in the reference frame of coordinates 
which lies in the measurement Hilbert space, common to the two locations, that is: 

|𝑥𝑥(𝜃𝜃𝑘𝑘)⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘|𝑥𝑥⟩ + 𝑐𝑐𝑠𝑠𝑎𝑎𝜃𝜃𝑘𝑘|𝑦𝑦⟩ (7a) 

|𝑦𝑦(𝜃𝜃𝑘𝑘)⟩ = −𝑐𝑐𝑠𝑠𝑎𝑎𝜃𝜃𝑘𝑘|𝑥𝑥⟩ + 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑘𝑘|𝑦𝑦⟩ (7b) 

rotated from the reference states |𝑥𝑥⟩ and |𝑦𝑦⟩ by an angle 𝜃𝜃𝑘𝑘. 
For the same photon state of linear polarization rotated by an angle 𝜑𝜑 from the ref-

erence coordinates, that is: 

| Ψ (𝜑𝜑)⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑  |𝑥𝑥⟩ + sin𝜑𝜑 |𝑦𝑦⟩ (8) 

reaching both detectors, the correlation function is derived in the remainder of this Sec-
tion. The case of different input rotation angles will be derived in Section 4.  

The equality of Eq. (6) can be rewritten, for independent statistics, as: 
𝐸𝐸𝑐𝑐(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) = [𝑃𝑃+ (𝜃𝜃𝐴𝐴) − 𝑃𝑃− (𝜃𝜃𝐴𝐴)][𝑃𝑃+ (𝜃𝜃𝐴𝐴) − 𝑃𝑃− (𝜃𝜃𝐴𝐴)] = 

= 𝑃𝑃 (𝜃𝜃𝐴𝐴)⨂ 𝑃𝑃 (𝜃𝜃𝐴𝐴) 
(9) 

with the vectorial structure of 𝑃𝑃 (𝜃𝜃𝑘𝑘) = (𝑃𝑃+ (𝜃𝜃𝑘𝑘) ;−𝑃𝑃− (𝜃𝜃𝑘𝑘) ), the dyadic or tensor product 
is a shorthand notation for the direct product of the two 𝑃𝑃 (𝜃𝜃𝑘𝑘) vectors. The tensor prod-
uct is commonly used in quantum mechanics to point out that two different Hilbert spaces 
may have different systems of coordinates. Otherwise, the direct product is more practi-
cal. 

From Eqs. (7) the projection operators for the two measuring eigenstates are 

𝑃𝑃�+(𝜃𝜃) = |𝑥𝑥(𝜃𝜃)⟩⟨𝑥𝑥(𝜃𝜃)| (10a) 

𝑃𝑃�−(𝜃𝜃) = |𝑦𝑦(𝜃𝜃)⟩⟨𝑦𝑦(𝜃𝜃)| (10b) 

The polarization observable 𝜎𝜎�(𝜃𝜃𝑘𝑘) in Eq. (9) has the form: 

𝜎𝜎�(𝜃𝜃𝑘𝑘) = 𝑃𝑃�+(𝜃𝜃𝑘𝑘) − 𝑃𝑃�−(𝜃𝜃𝑘𝑘) = sin ( 2𝜃𝜃𝑘𝑘) 𝜎𝜎�1 + 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃𝑘𝑘)𝜎𝜎�3  (11) 

the projecting Pauli operators being 𝜎𝜎�1 = |𝑥𝑥⟩⟨𝑦𝑦| + |𝑦𝑦⟩⟨𝑥𝑥| and 𝜎𝜎�3 = |𝑥𝑥⟩⟨𝑥𝑥| − |𝑦𝑦⟩⟨𝑦𝑦|. The 
angle 𝜃𝜃𝑘𝑘 of a rotated polarization filter is set in the Jones representation relative to a 
measurement basis of reference or generic eigenstates in the measurement Hilbert space 
of ℋ= ℋA ⨂ℋB . 
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By combining Eqs. (8), (9) and (11), the correlation function is evaluated for 𝑃𝑃+ (𝜃𝜃𝑘𝑘) −
𝑃𝑃− (𝜃𝜃𝑘𝑘) =  〈𝜎𝜎�(𝜃𝜃𝑘𝑘)〉 to be: 

𝐸𝐸𝑐𝑐(𝜃𝜃𝐴𝐴; 𝜃𝜃𝐴𝐴) =  ⟨Ψ | 𝜎𝜎�(𝜃𝜃𝐴𝐴)| Ψ ⟩ ⟨Ψ | 𝜎𝜎�(𝜃𝜃𝐴𝐴)| Ψ ⟩ = 

= 𝑐𝑐𝑐𝑐𝑐𝑐 2(𝜃𝜃𝐴𝐴 − 𝜑𝜑)  𝑐𝑐𝑐𝑐𝑐𝑐 2 (𝜃𝜃𝐴𝐴 − 𝜑𝜑) 
(12) 

The correlation function for 𝜃𝜃𝐴𝐴 = 0, 𝜃𝜃𝐴𝐴 = 𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑 = 0 𝑐𝑐𝑜𝑜 𝜋𝜋/2  in Eq. (12) becomes 
𝐸𝐸𝑐𝑐(0; 𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑐𝑐 2 𝜃𝜃, which is the result for entangled states of photons [9], [14-15]. With only 
one state of polarization being populated in Eq. (8), this example points to the correlation 
between the polarization analyzers as the source of experimentally detected correlations, 
as opposed to an assumed quantum nonlocality. The corresponding classical derivation 
is presented in Appendix B below, in terms of Stokes vectors overlapping on the same 
Poincaré sphere, suggesting the possibility of implementing quantum-strong correlation 
functions with reduced complexities of multi-photon systems. 

The correlation function is a numerical calculation as opposed to a physical interac-
tion. Thus, the numerical comparison of the data sets is carried out at a third location C 
where the reference system of coordinates is located for comparison or correlation calcu-
lations of the two sets of measured data, and does not require physical overlap of the 
observables whose operators are aligned with the system of coordinates of the measure-
ment Hilbert space onto which the detected state vectors are mapped. In this case, the 
correlation operator �̂�𝐶 = 𝜎𝜎� 𝐴𝐴 ⨂ 𝜎𝜎� 𝐴𝐴 of Eq. (2) can be reduced to [21; Eq. (A6)]: 

�̂�𝐶 = (𝒂𝒂 ∙ 𝜎𝜎�)(𝒃𝒃 ∙ 𝜎𝜎�) = 𝒂𝒂 ∙ 𝒃𝒃𝐼𝐼 + 𝑠𝑠(𝒂𝒂 × 𝒃𝒃) ∙ 𝜎𝜎� (13) 

where the polarization vectors 𝒂𝒂 and 𝒃𝒃 identify the orientation of the detecting polari-
zation filters in the Stokes representation, and 𝜎𝜎� = ( 𝜎𝜎�1,𝜎𝜎�2 ,𝜎𝜎�3 ) is the Pauli spin vector 
(with 𝜎𝜎�2 = 𝑠𝑠 𝜎𝜎�1 𝜎𝜎�3). The presence of the identity operator in Eq. (13) implies that, when the 
last term vanishes for a linear polarization state, the correlation function is determined by 
the orientations of the polarization filters. This can be easily done with independent and 
linearly polarized states of Eq. (8), because of a zero-expectation value for 𝜎𝜎�2, namely 
⟨Ψ | 𝜎𝜎�2 | Ψ ⟩ = 0, which implies that the commutator relation ⟨Ψ | [𝜎𝜎�3,𝜎𝜎�1] | Ψ ⟩ = 0 also 
vanishes for the state of Eq. (8). 

It is often said that “In quantum mechanics, two physical quantities represented by 
non-commuting observables cannot be measured simultaneously with arbitrary preci-
sion. Whenever we measure one observable, we influence the state in such a way that the 
measurement outcomes for the other observable is disturbed “ [3]. “…Entanglement-as-
sisted nonlocal correlations and uncertainty are two aspects of the same phenomenon, 
imprinted in the algebra of quantum mechanics…” [3]. However, it is often ignored that 
the Heisenberg uncertainty relation involves a set of quantum wave functions. If the pro- 
duct of the two operators results in anther operator for which the expectation value      
vanishes, regardless of the order of the operators, then the lower limit of the uncertainty 
is zero. This is compatible with the fact that the alleged “entanglement-assisted nonlocal 
correlations” are not supported by a Hamiltonian of interactions, nor do the Hilbert spaces 
of the two photons overlap, as they propagate away from each other [14]. 

4. QUANTUM CORRELATIONS WITH ARBITRARY INDEPENDENT PHOTONS 
ON THE POINCARÉ SHPERE 

In order to emphasize the role played by independent states of photons, these states 
| 𝜓𝜓⟩𝑘𝑘 will be expanded in terms of the polarization eigenstates of the reference system of 
coordinates that will also define the joint Poincaré sphere. The states are, with k = A or B: 

| 𝜓𝜓𝑘𝑘  ⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑘𝑘 |𝑥𝑥⟩  + 𝑐𝑐𝑠𝑠𝑎𝑎 𝜑𝜑𝑘𝑘 |𝑦𝑦⟩ (14) 

for two different angles 𝜑𝜑𝐴𝐴 and 𝜑𝜑𝐴𝐴 , relative to the x – axis of reference in the measure-
ment-related Hilbert space onto which the detected states are projected by the measuring 
detectors A and B, respectively. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2022                   doi:10.20944/preprints202202.0073.v4

https://doi.org/10.20944/preprints202202.0073.v4


 7 of 12 
 

 

The polarization operator 𝜎𝜎� projects the incoming states onto the measurement Hil-
bert space for comparison of the two separate data sets. The polarization measurement 
operators of Eq. (11) produce the output states 

|𝛷𝛷𝑘𝑘⟩ = sin ( 2𝜃𝜃𝑘𝑘) 𝜎𝜎�1 | 𝜓𝜓𝑘𝑘  ⟩ + 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃𝑘𝑘)𝜎𝜎�3 | 𝜓𝜓𝑘𝑘  ⟩ (15) 

which analogously to the overlapping inner product of the last line of Eq. (5), lead to the 
correlation function of 

𝐸𝐸𝑐𝑐 =  ⟨𝛷𝛷𝐴𝐴 | 𝛷𝛷𝐴𝐴⟩ =  𝑐𝑐𝑐𝑐𝑐𝑐[2 (𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐴𝐴) −  (𝜑𝜑𝐴𝐴 − 𝜑𝜑𝐴𝐴)] (16) 

Recalling that the phases 𝜑𝜑𝑘𝑘 are set in the Jones representation, this result is consistent 
with Eq. (4) linking the overlap of the Jones vectors to the correlation of the corresponding 
Stokes vectors on the Poincaré sphere where the angle 2𝜑𝜑𝑘𝑘 applies, that is: 

𝐸𝐸𝑐𝑐 = 𝑐𝑐1 ∙ 𝑐𝑐2 = 2 𝑐𝑐𝑐𝑐𝑐𝑐2(△𝜙𝜙) − 1 = cos 2 (△𝜙𝜙) 

△𝜙𝜙 = 𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐴𝐴 −  (𝜑𝜑𝐴𝐴 − 𝜑𝜑𝐴𝐴) 
(17) 

The quantum correlation function of Eq. (17) between two independent states of polarized 
photons is equivalent to the overlap of their Stokes vectors on the joint Poincaré sphere of 
the measurement Hilbert space. Quantum-strong correlation are possible with indepen-          
dent states of photons because the source of the correlation is the polarization states of the 
detecting filters or analyzers, making any claim of quantum nonlocality unnecessary. 

As the same correlation functions are derived for independent and single qubits gen-
erated through quantum Rayleigh conversion of photons as for entangled photons, it fol-
lows that the violations of any type of relevant Bell inequalities will also take place in the 
same way. It is the similarity between two systems operating under similar conditions, 
which gives rise to correlations of output polarization states as opposed to a hypothetical 
collapse of an entangled wave-function. The correlations result from similar, if not identi-
cal, distributions of polarization states between experimental setups as opposed to what 
is conceptually believed to be a non-local quantum effect which has an unspecified nature 
but is being pursued because of historical reasons. 

Once the same correlation functions are derived using only states of polarizations 
emitted spontaneously by the quantum Rayleigh conversion of photons, no other physical 
processes are required to explain the experimental results. 

Let us now consider a few characteristics associated with local realism [22] of quan-
tum measurements in the context of quantum Rayleigh conversion of photons: 

1. Locality of measurements is supported by the use of single and independent photonic 
qubits to explain the experimental results of apparently enhanced correlations of out-
comes; 
2. Randomness of experimental parameters stems from the quantum Rayleigh spontaneous 
emission that generates the projection from the polarization state |𝑥𝑥⟩ of the input photons 
to the rotated polarization state | 𝜓𝜓𝑘𝑘  ⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑘𝑘 |𝑥𝑥⟩  + 𝑐𝑐𝑠𝑠𝑎𝑎 𝜑𝜑𝑘𝑘 |𝑦𝑦⟩ of Eq. (14); and, 
3. Realism of values carried by the detected photons is indicated by the physical effect of 
the measuring operators on the detected photons in quantum states of Eq. (14). As the 
expectation values of the product operator 〈𝜎𝜎�1𝜎𝜎�3〉 are found to vanish for the pure states 
of Eq. (14) projected onto the measurement Hilbert space, i.e. ⟨𝜓𝜓(𝜑𝜑)|𝜎𝜎�3𝜎𝜎�1|𝜓𝜓(𝜑𝜑)⟩ =
⟨𝜓𝜓(𝜑𝜑)|𝜎𝜎�1𝜎𝜎�3|𝜓𝜓(𝜑𝜑)⟩ = 0 as 𝜎𝜎�1𝜎𝜎�3| 𝜓𝜓𝑘𝑘  ⟩ = |𝜓𝜓𝑘𝑘(𝜑𝜑 + 𝜋𝜋/2)⟩, each term of the resulting commu-
tative relation vanishes and we obtain 

⟨𝜓𝜓𝑘𝑘| [𝜎𝜎�1 ,𝜎𝜎�3] |𝜓𝜓𝑘𝑘⟩ = 0 (18) 

for the lower limit of the Heisenberg uncertainty relation which needs to be evaluated in 
the context of a set of wave functions. Thus, the output value is indicative of the input 
one, and each term of the commutator vanishes for the wave functions | 𝜓𝜓𝑘𝑘(𝜑𝜑)⟩ of Eq. 
(14). Consequently, the simultaneous measurement of these two operators in the context 
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of the single and independent qubit wave functions is capable of identifying the incoming 
state as well as the measured one. Thus, a physically meaningful identification of wave-
functions will enable simultaneous measurements of well-defined values. 

This analysis supports reference [15] in its statement that “There is no mystery. There 
is no quantum nonlocality”. It is the physical process that gives rise to a wave function. 
The opposite approach of relying on mathematical complexities to conjure up physical 
processes is bound to generate “quantum mysteries”. 

5. PHYSICAL ASPECTS OF MEASUREMENTS OF INDEPENDENT PHOTONS FOR 
INTEGRATED QUANTUM PHOTONICS 

The possibility of implementing quantum-strong correlations between polarization 
states with independent photons opens up new options for replacing complicated single-
photon sources with one common multi-photon source for the operation of photonic inte-
grated circuits for quantum data processing. 

Polarization states of independent photons can be easily manipulated, controlled, 
and processed by means of Pauli spin operators that rely on optically integrated phase-
controlling devices. A suitable choice of linearly polarized states will enable simultaneous 
measurements of two Pauli spin operators. 

An operational resource has been sought with the ability to predict or determine, 
remotely, the output state of a physical system of photons by measuring the state of a 
related pair system. Correlations arise from similarity between the two separate pro-
cessing circuits, and do not require single-photon sources. This is also consistent with the 
concept of simultaneous operations on all of the possible quantum states because all of 
these states are present at the same time, being represented by a time-independent mixed 
state density matrix. The equivalence between the polarization Stokes vectors in the clas-
sical and quantum regimes is presented in Appendix B below. 

By using a large number of photons per beam front, the correlation function of Eq. 
(17) can be controlled with adjustable input polarization angles 𝜑𝜑𝐴𝐴 𝑡𝑡𝑜𝑜 𝐴𝐴. 

As a matter of fact, the parametric amplification of spontaneously emitted photons is 
unavoidable, otherwise, the stream of photons in the directions of phase-matching condi-
tion will not be able to overcome the quantum Rayleigh scattering. The cases of intensity 
correlation and quantum dot sources is discussed in reference [23]. 

It may be instructive to dispel a few misinterpretations about “entangled photons”: 
1) “While analogies might be seen in the mathematical formulation, the possibility of spa-
tial separation, which is the key aspect of entanglement, does not hold for the classical 
counterpart “[3]. It is the quantum Rayleigh scatterings that break up any alleged entan-
glement of two photons; and 2) “The two photons are clearly entangled with each other 
after passing through the beam splitter. … One crucial point to be made here is that the 
entangled state is created by the physical action of the beam splitter on both of these pho-
tons “[3]. As no physical interaction has ever been identified for the beam splitter entan-
gling two photons, this speculation can be ruled out by quantum Rayleigh scattering tak-
ing place in a dielectric medium. 

It is claimed in reference [3] that “All contradictions to classical concepts and mind-
boggling questions arose upon considering the particle nature of light, i.e. when using 
single photons. Hence, it is misleading to challenge fundamental concepts using states of 
light that are fully described by the electromagnetic wave picture and Maxwell’s equa-
tions” [3]. The challenge to entangled photons comes from the existence in a dielectric 
medium of the quantum Rayleigh scattering and coupling of photons associated with the 
photon-dipole interactions. These physically meaningful mechanisms are missing from 
the conventional interpretations in quantum optics [13]. Furthermore, the Pauli spin op-
erators act on the state of polarization of the beam front, regardless of the number of pho-
tons that are carried, instantaneously, by the mode [21]. 
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This article, by taking into consideration the physically meaningful processes of 
quantum Rayleigh spontaneous and stimulated emissions, opens up new ways of deliv-
ering quantum-strong correlations between the output polarization states of separate 
measurement setups. Equally, correlations of detected intensity-interference patterns with 
unity visibility can be designed as explained in reference [23] which will facilitate the de-
sign, fabrication, and operation of quantum data processing circuits. 

6. CONCLUSIONS 
Following the experimental results of quantum-strong correlations obtained with in-

dependent photons [5], the analysis presented in this article was motivated by two ele-
ments: 1) the vanishing of local expectation values of the Pauli spin operators for maxi-
mally entangled single photons, which contradicts the physically measured state of polar-
ization; and 2) the quantum Rayleigh conversion of photons which scatters entangled pho-
tons. Quantum-strong correlations of polarized photons can be obtained with independ-
ent inputs to identical measuring devices and configurations. The correlation function is 
reminiscent of the overlap between two polarization Stokes vectors on the Poincaré sphere 
which can be derived from the Jones vectors. Correlation functions derived from inde-
pendent mixed quantum states are equivalent to correlations of Stokes vectors on the 
Poincaré sphere. The correlation function can be controlled through the input angles of 
polarization, and a large number of photons carried simultaneously by a beam front will 
deliver a faster result than a sequential counting of single photons. 

As the parametric amplification of spontaneously emitted is unavoidable, functional 
operations commonly attributed to single-photon, entangled states are, in reality, imple-
mented practically with independent, multiple photons per radiation modes that are ca-
pable of overcoming the quantum Rayleigh spontaneous emission through stimulated 
emission. Additionally, the Pauli spin operators act on the state of polarization regardless 
of the number of photons carried by the mode. 

The parallel operations on multiple quantum states, described by a mixed density 
matrix, correspond to the simultaneous presence of all the modes involved in the opera-
tion. One optical multi-photon source will replace multiple one-photon sources, thereby 
streamlining the design, fabrication, and operations of quantum photonic integrated cir-
cuits. 

APPENDIX A—A SUMMARY OF QUANTUM RAYLEIGH SCATERRING 
The quantum Rayleigh photon conversion (QRPC) involves spontaneous and stimu-

lated emissions of photons associated with absorption and emission of one photon per 
interaction and corresponds to the optically linear parametric conversion [9-11]. This pro-
cess underpins the propagation of photons in a dielectric medium by coupling photons 
from one quadrature of the optical wave into the next quadrature [10]. Equally, the QRPC 
would bring about various time-delays causing a photon to change direction, back and 
forth, inside an optical fiber or change its polarization state in any dielectric device such 
as beam splitters, crystal polarizers, optical fibers, etc., The quantum Rayleigh conversion 
of photons has been identified as a practical way of implementing phase-sensitive ampli-
fication in the linear regime [11-12].  

The Hamiltonian of interaction 𝐻𝐻� between the electric dipoles and the optical field 
corresponding to the quantum Rayleigh absorption and emission of one photon has the 
following form [8]: 

𝐻𝐻� = 𝜅𝜅 � �̂�𝑎† ∙ 𝑎𝑎� + �̂�𝑎 ∙ 𝑎𝑎�†� (A1) 

where �̂�𝑎 is the electric dipole operator raising the atomic electron from one level to an-
other, and 𝑎𝑎� is the photon annihilation operator, with 𝑎𝑎�† its conjugate operator, the pho-
ton creation operator. The optically linear susceptibility 𝜒𝜒(1) is included in the coupling 
coefficient κ. 
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An entangled polarization state of a pair of signal (s) and idler (i) photons polarized 
in the x or y directions is described by 

| Ψ ⟩ = |1𝑥𝑥⟩𝑠𝑠 |1𝑥𝑥⟩𝑖𝑖 + |1𝑦𝑦�𝑠𝑠 |1𝑦𝑦�𝑖𝑖  

When acted upon with the absorption operator of the quantum Rayleigh Hamiltonian of 
Eq. (A1), the state ∣ Ψ 〉 becomes a product state because the empty, zero-photon state does 
not possess any property, i.e., 𝑎𝑎�𝑠𝑠 | Ψ⟩ = | 0⟩𝑠𝑠 |1𝑥𝑥⟩𝑖𝑖 + |0⟩𝑠𝑠 |1𝑦𝑦�𝑖𝑖 = |0⟩ (|1𝑥𝑥⟩𝑖𝑖 + |1𝑦𝑦�𝑖𝑖) . The 
spontaneously emitted photon [10], [12] will have an arbitrary state of polarization  
| Ψ ⟩𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑠𝑠𝑝𝑝 |1𝑥𝑥⟩𝑠𝑠  + 𝑐𝑐𝑠𝑠𝑎𝑎 𝜃𝜃𝑠𝑠𝑝𝑝 |1𝑦𝑦�𝑠𝑠 where 𝜃𝜃𝑠𝑠𝑝𝑝  indicates the angle of polarization in the 

plane perpendicular to the direction of propagation, and which is unrelated to the other 
photon of the initially entangled state. 

In a nonlinear crystal pumped, e.g., with a pump wave (p) and for frequency down-
converted photons of ω s + ω i = ω p , the gain-providing medium which generates the 
spontaneous emission, will also amplify the initially single photons, particularly so in the 
direction of wavevector matching conditions, even for a limited space-time overlap. A 
phase-pulling effect leading to 𝜑𝜑𝑠𝑠 + 𝜑𝜑𝑖𝑖 = 𝜑𝜑𝑝𝑝 + 𝜋𝜋/2 also occurs [12] which facilitates the 
parametric amplification. Thus, the commonly assumed one single photon output does 
not physically happen. At least several photons may be associated with each individual 
and discrete electronic “click”. A group of photons of the same frequency propagating 
inside a dielectric medium will follow a straight-line because a photon locally absorbed 
by a dipole, will be recaptured by the other photons in the group through stimulated 
emission. Nevertheless, only one photon may survive the propagation to reach the pho-
todetector. 

The probability of emitting a photon with momentum k and polarization µ is related 
to the decay rate 𝛾𝛾𝑠𝑠 [1/s] of the excited dipole and evaluated as [8]: 

𝛾𝛾𝑠𝑠� 𝒌𝒌,  𝜇𝜇,  𝜔𝜔 � =  
9 𝜖𝜖 

5/2

� 2 𝜖𝜖 + 1�
2

 

𝜔𝜔3

ℏ 𝑐𝑐 
 �
𝒅𝒅 ∙ 𝒆𝒆 𝒌𝒌 𝝁𝝁

4 𝜋𝜋
�

2

 (A2) 

with d denoting the electric dipole moment which is excited by an optical field of the same 
polarization, and ekµ is the polarization unit vector of the emitted photon, and which is 
perpendicular to the direction of propagation k. The dielectric constant is 𝜖𝜖. 

A series of sequential events of absorption and spontaneous emissions by electric 
dipoles will generate a fairly symmetric distribution of polarization states on the x y plane 
perpendicular to the propagation direction. 

The generic eigenstates of polarization associated with spontaneous emission 
through quantum Rayleigh conversion of photons on the two-dimensional Hilbert space 
ℋ will take the form of single and independent qubits Ψ (𝜑𝜑𝑒𝑒𝑒𝑒) identified as: 

|Ψ (𝜑𝜑𝑒𝑒𝑒𝑒) = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑒𝑒𝑒𝑒 |𝑥𝑥⟩ +  𝑐𝑐𝑠𝑠𝑎𝑎 𝜑𝜑𝑒𝑒𝑒𝑒  |𝑦𝑦⟩ (A3) 

These state vectors with polarization angles 𝜑𝜑𝑒𝑒𝑒𝑒  in the range −𝜋𝜋 ≤ 𝜑𝜑𝑒𝑒𝑒𝑒 ≤ 𝜋𝜋 will 
describe any possible polarization perpendicular to the direction of propagation of the 
spontaneous emission. Incoming photons initially polarized in the x –direction will reap-
pear with an angle 𝜑𝜑𝑒𝑒𝑒𝑒 -rotated polarization, thereby enabling them to pass through a 
𝜑𝜑𝑒𝑒𝑒𝑒-rotated polarization analyzer. This is the physical process of the polarization Malus 
law. 

APPENDIX B—EQUAL QUANTUM AND CLASSICAL CORRELATIONS OF          
POLARIZED PHOTONS 

The correlation function between two remote sets of polarization Stokes vectors is 
found, classically, as follows. 

For two experimentally identical configurations with identical devices, Stokes pa-
rameters for Stokes vectors on the Poincaré sphere are obtained from the Jones vector by 
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applying the Pauli spin operators, with classical Pauli unit vectors 𝜎𝜎1,3 on the Poincaré 
sphere [21]. The input polarized beam vector is denoted by 

�⃗�𝑣 = (�⃗�𝑥 + �⃗�𝑦)/√2 (B1) 

and the detection polarization filter 𝑐𝑐 ��⃗ (𝜃𝜃) rotated by an angle θ from the x -axis is 

𝑐𝑐(𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃�⃗�𝑥 + 𝑐𝑐𝑠𝑠𝑎𝑎𝜃𝜃�⃗�𝑦 (B2) 

By means of dyadic operators and products, the polarization Stokes vectors have the 
projection operation �̿�𝑝 (𝜃𝜃) with polarization eigenstates 𝑐𝑐 ��⃗ (𝜃𝜃) and 𝑐𝑐 ��⃗ (𝜃𝜃 + 𝜋𝜋/2), taking 
the form: 

�̿�𝑝 (𝜃𝜃) = ∙ 𝑐𝑐 ��⃗ (𝜃𝜃) 𝑐𝑐 ��⃗ (𝜃𝜃) ∙  − ∙ 𝑐𝑐 ��⃗ �𝜃𝜃 +
𝜋𝜋
2
�  𝑐𝑐 ��⃗ �𝜃𝜃 +

𝜋𝜋
2
� ∙ = 

= ∙ [𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 �⃗�𝑥�⃗�𝑥 + 𝑐𝑐𝑠𝑠𝑎𝑎2 𝜃𝜃  �⃗�𝑦 �⃗�𝑦 + 𝑐𝑐𝑠𝑠𝑎𝑎 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃  (�⃗�𝑥 �⃗�𝑦 +  �⃗�𝑦 �⃗�𝑥) −   𝑐𝑐𝑠𝑠𝑎𝑎2 𝜃𝜃 �⃗�𝑥�⃗�𝑥 −

 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃  �⃗�𝑦 �⃗�𝑦 + 𝑐𝑐𝑠𝑠𝑎𝑎 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃  (�⃗�𝑥 �⃗�𝑦 +  �⃗�𝑦 �⃗�𝑥)] ∙ = 

=∙ [(𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃 − 𝑐𝑐𝑠𝑠𝑎𝑎2𝜃𝜃)( �⃗�𝑥�⃗�𝑥 − �⃗�𝑦 �⃗�𝑦) + 

                + 2 𝑐𝑐𝑠𝑠𝑎𝑎 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 (�⃗�𝑥 �⃗�𝑦 + �⃗�𝑦 �⃗�𝑥)] ∙ = 

= 𝑐𝑐𝑠𝑠𝑎𝑎 2𝜃𝜃  (∙ 𝜎𝜎1 ∙) + 𝑐𝑐𝑐𝑐𝑐𝑐 2𝜃𝜃 (∙ 𝜎𝜎3 ∙) 

(B3) 

This is a Stokes vector on the Poincaré sphere. The correlation function 𝐸𝐸𝑐𝑐 between 
two data sets of measured Stokes vectors, apart from each other, and with reference to the 
same frame of coordinates, becomes by means of an overlapping operation: 

𝐸𝐸𝑐𝑐 =  𝑣𝑣 ���⃗ ∙ �̿�𝑝(𝜃𝜃1) ∙ �̿�𝑝(𝜃𝜃2) ∙ 𝑣𝑣 ���⃗ = 𝑐𝑐𝑐𝑐𝑐𝑐 2 ( 𝜃𝜃1− 𝜃𝜃2) (B4) 

where the dot products of the dyadic operations have been pointed out. 
This correlation function is as strong as any quantum correlation, and has been de-

rived classically. It will facilitate the implementation of coordinated outputs between var-
ious subsections of an integrated photonic system. 
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