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Abstract: This paper presents an approach to the two-dimensional analysis of elastic isotropic deep beams using the 

finite difference method (FDM). Deep beams are subjected to in-plane loading and present a shear span to height ratio 

of less than 2.50; consequently, EulerBernoulli beam theory and Timoshenko beam theory do not apply. Deep beams 

analysis is generally conducted using numerical methods such as the finite element method and to a lesser extent the 

FDM; the strut-and-tie model and the stress field method are also widely utilized. Analytical approaches usually make 

use of the Airy stress function, where stresses are formulated in terms of the stress function; however, the exact solution 

of this function satisfying all of the boundary conditions can hardly be found, even for simple cases. In this paper, deep 

beams were analyzed using the FDM. The FDM is an approximate method for solving problems described with 

differential equations. The FDM does not involve solving differential equations; equations are formulated with values at 

selected nodes of the structure. Therefore, the deep beam was discretized with a two-dimensional grid, and additional 

nodes were introduced at the boundaries and at positions of discontinuity (openings, brutal change of material 

properties, non-uniform grid spacing), the number of additional nodes corresponding to the number of boundary 

conditions at the node of interest. The introduction of additional nodes allowed us to apply the governing equations at 

boundary nodes and satisfy the boundary and continuity conditions. An Airy stress function approach and a 

displacement potential function approach were considered in this study whereby strong formulations of equations 

(equilibrium, kinematic, and constitutive) were set. Stress and stability analyses were carried out with this model; 

furthermore, deep beams of varying stiffness, layered beams, and beams having openings were analyzed. For slender 

beams, the results obtained with the Airy stress function approach showed good agreement with those of the 

EulerBernoulli beam theory, and for deep beams, the shapes of stress distributions were in good agreement with a 

proper understanding of the behavior of structures. On the other hand, the displacement potential function approach 

delivered unsatisfactory results, probably due to the use of an inefficient equation solver; a more powerful tool will be 

needed in future research for this purpose.  

 
Keywords: Finite difference method; additional nodes; Airy stress function; displacement potential function; deep 
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Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2022                   doi:10.20944/preprints202202.0070.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202202.0070.v1
http://creativecommons.org/licenses/by/4.0/


Stress Analysis of Isotropic Deep Beams Using the Finite Difference Method 

1.           Introduction 

This paper describes the application of Fogang’s model [1] based on the finite difference method (FDM), 

used for the EulerBernoulli beam, to the isotropic deep beam. Deep beams are essentially subjected to in-plane loading 

and present a shear span to height ratio is less than 2.50; consequently, EulerBernoulli beam theory and Timoshenko 

beam theory do not apply. The analytical approach to deep beam analysis is based on the Airy stress function method; 

this method developed in 1862 by G.B. Airy [2] consists of introducing a new function, the Airy stress function. The 

stresses were formulated in terms of this new function and a new differential equation, a biharmonic equation, was 

obtained. The problem of determining the stresses was then reduced to that of finding the stress function solution of the 

biharmonic equation which satisfies the boundary conditions. Neau [3] developed a scheme for applying doubly infinite 

power series to the Airy stress function for isotropic bodies; problems in which boundary stresses can be described by 

means of power series are solvable by this method. Jayne et al. [4] solved the characteristic fourth-order partial 

differential equation for two-dimensional elastic anisotropic and orthotropic materials, using a doubly infinite power 

series. Ahmed et al. [5] used an ideal mathematical model, based on a displacement potential function, to formulate the 

problem; displacements and stresses were formulated in terms of this potential function and a new differential equation, 

a biharmonic equation, was obtained.  

However, the exact solution of the differential equation satisfying the boundary conditions can hardly be found, even for 

simple cases. Numerical methods permit therefore to overcome solving the differential equations. Ismail et al. [6] 

performed a series of nonlinear finite element to evaluate the different design approaches available in the literature for 

design of reinforced concrete deep beam with large opening; three finite element models were developed and analyzed 

using the computer software ATENA.Vilar et al. [7] proposed a numerical solution to deep beams using the layerwise 

displacement theory; a finite element solution for deep beams based on a layerwise displacement field considering the 

full stress/strain tensors was provided. Sri Harsha et al. [8] gave the analytical investigation of reinforced concrete deep 

beams reinforced with horizontal and vertical web reinforcement; a formula using nonlinear finite element method by 

ABAQUS was proposed to define the shear strength of deep beams. 

For the design of structural concrete, Schlaich et al. [9] proposed a generalization of the truss analogy in order to apply 

it in the form of strut-and tie-models to every part of any structure; it was described how strut-and tie-models, which 

condense all stresses in compression and tension members and join them by nodes, can be developed by following the 

path of the forces throughout a structure. Liu et al. [10] proposed a model for deep beams with rectangular openings that 

stems from a two-parameter kinematic theory for solid beams; the model was established based on an analysis of the 

shear behavior and failure modes of test specimens using nonlinear finite element and strut-and-tie models. Silveira et 

al. [11] proposed a solution based on the stress field method for the analysis, design, and detailing of deep beams. The 

stress field method, an alternative method to strut-and tie-method for concrete structures subjected to discontinuities, 

consists of finding the stresses acting in discrete area elements whereby non-linear elastic-plastic stress fields are used. 

De Mello et al. [12] presented the stringer-panel method, an alternative procedure to strut-and-tie method; the structure 

is divided on two distinct elements: stringers, which absorb normal forces, and panels, which absorb shear forces by 

membrane action. Then the overall structure behavior is investigated by means of non-linear analysis.  
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Assuming a plane stress distribution, the relationships between stresses and strains are given by  

 
  (2a, b, c) 

where E is the Young’s modulus and  is the Poisson’s ratio. Combining Equations (1a-c) and (2a-c) yields 

 

 

 

 

 

The equations of static equilibrium on an infinitesimal beam element of dimensions dx, dy, and thickness d are given by 
 

   (4a, b) 

where px and py are body forces [kN/m3]. Substituting Equations (3a-c) into (4a-b) yields 

 

 

 

 

 

 

where D is the axial rigidity of the deep beam. The solutions considered in the present study and presented thereafter 

involve a two displacement function, an Airy stress function, and a displacement potential function.  

 

2.1.2 Two displacement function  

The two displacement function approach is governed by Equations (5a-b) which are applied at any node of the structure 

whereby the displacements are the unknowns. The geometric boundary conditions are directly formulated whereas stress 

related boundary conditions are satisfied using Equations (3a-c).  

 

  
   2.1.3 Airy stress function  

G. B. Airy [2] introduced a function (x,y), defined in terms of stress components, to formulate the analysis. In the 

absence of body forces on the structure, this function was related to the axial/shearing stresses as follows 
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It is noted that Equations (6a-c) satisfy the equilibrium equations (4a-b). Substituting Equations (6a-c) into (2a-c), and 

the result into (1d) yields the following condition to be satisfied by the stress function (x,y) 

 

    (7) 

Combining Equations (1a-b), (2a-b), and (6a-b) yields the following relationship between the Airy stress function (ASF) 

and the rates of change of displacements 

 

 

 

 

 

 
The analysis is then reduced of determining one single function, the ASF. However, satisfying the geometric boundary 

conditions is not easy with this solution since the displacements are not specified in terms of the stress function. If 

constant body forces px and py are applied, Equations (6a-c) can be modified using Säckel [13] as follows 

 

              (8c) 

 

 

2.1.4 Displacement potential function 

In case no body forces were applied on the structure, Ahmed et al. [5] introduced a displacement potential function 

(DPF) (x,y), defined in terms of displacement components. However, the Cartesian coordinates x, y and the 

displacements u(x,y) and v(x,y) of Ahmed et al. [5] have to be inverted in order to be consistent with the axis 

convention of the present study. Therefore, the displacements are related to the potential function are as follows 

 

                    (9a, b) 

 
Equations (9a-b) satisfy automatically the equilibrium equation, Equation (5b). Equation (5a) implies that the following 

condition be satisfied by  (x,y) 

 

        (9c) 

Substituting Equations (9a-b) into (3a-c) yields the axial/shearing stresses as follows  
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Similarly to the solution using the ASF, the analysis is reduced of determining one single function, the DPF; 

interestingly, the satisfaction of boundary conditions is facilitated in this solution, since displacements and stresses are 

specified in terms of the potential function. 

If constant body forces px and py are applied, Equations (9a, b) of Ahmed et al. [5] can be modified as follows 

                 

              (9g) 

 

The expression of the shearing stress is unchanged whereas that of axial stresses becomes 

 

 

 

 

 

 

  

 

2.2 Finite difference approximations for a deep beam 

2.2.1  Fundamentals of finite difference approximations  

The two displacement function approach will not be considered further for the stress analysis since two equations (the 

governing equations (5a-b)) have to be set at any node, whereas only one equation is set at any node for the solutions 

using the Airy stress function (ASF) and the solution using the potential function. First, Equation (7) is the governing 

equation for the ASF approach. This equation has fourth order derivatives; consequently, the stress function (x,y) is 

approximated around the node of interest i as a fourth degree polynomial in each direction. The unknown at any node 

being the value i of the stress function, the corresponding finite difference approximation (FDA) is denoted by 

ASFFDA. Second, Equation (9c) is the governing equation in case the DPF (x,y) is considered. The unknown at any 

node being the value i of the potential function, the corresponding FDA is denoted by DPFFDA    

 

2.2.2  Airy stress function finite difference approximation  

Given the grid spacings x = h and y =h in x- and y-direction, respectively. The stress function (x,y) is 

approximated around the node of interest i as a fourth order polynomial in each direction; however, for simplification 

purpose, the first and second partial derivatives in x-direction and the mixed partial derivative 2/xy are expressed 

using a second order polynomial hypothesis for (x,y). The FDAs are then given by  
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In the stencil notation the factor associated to the node of interest is in brackets. The partial derivatives in y-direction are 

formulated similarly. The FDAs of the fourth order partial derivatives in x-direction are given by  

 

 

 

 

The FDA of the term 4/x2y2 defined using Equation (10a) is expressed by means of the following stencil 

 

 

         (11a) 

 

2.2.3  Displacement potential function finite difference approximation  

The partial derivatives 4/x4, 4/x2y2, 2/x2 and 2/xy are expressed similarly to the ASF approach. 

Using a fourth order polynomial hypothesis for (x,y), the third derivatives 3/x3 at different nodes are expressed in 

terms of values of (x,y) as follows 

 

 

 

 

 

 

 

 

Using Equations (10a, c), the FDAs of the partial derivatives 3/xy2 and 3/x2y are given by 
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The axial/shearing stresses at a given node are expressed using Equations (6a-c) and (10a-b) as follows;  

 

 

 

 

 

Introducing following modified displacements, 

 

 

the displacements are calculated using Equations (8a-b), (10a, c) and (15) as follows 

 

 

 

 

 

 

 

 

 

2.2.4.2  Displacement potential function FDA at an interior node   

The governing equation (Equation (9c)) can be expressed by means of a stencil using Equations (13). At node i the FDA 

of u(x,y) and v(x,y) are formulated using Equations (9a-b) and (10a-b) as follows  

 

 

 

 

 

 

 

 

The FDA of the axial/shearing stresses are formulated using Equations (9d-f) and (12a-b) as follows  
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2.2.5  Finite difference approximation in the vicinity of beam angles 

2.2.5.1  Airy stress function in the vicinity of beam angles 

Figure 3 below represents one angle of the beam; regular nodes (k; e; ee; eee; s; se; ss…) and additional nodes (nw; n; 

ne; w; sw…) are shown. The unknown at each point, regular node or additional node, is the value of the stress function.  

The number of additional nodes associated to an edge node corresponds to the number of boundary conditions at the 

node of interest: therefore, three additional nodes are introduced at the angle node k and two additional nodes at the 

other edge nodes (e; ee; s; ss …).  
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2.2.5.2  Displacement potential function in the vicinity of beam angles 

The node distribution is the same as that of the ASF-FDA, as shown in Figure 3. 

 

DPF Finite difference approximation at node k 

The FDA of the governing equation (Equation (9c)) is expressed with Equation (19), and that of u(x,y) and v(x,y) using 

Equations (17). The FDAs of the axial/shearing stresses are formulated using Equations (9d-f) and (12a-b) as follows  

  

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For other angle nodes of the structure, the governing equations are determined similarly, and are presented in 

Appendix A. The axial/shearing stresses expressed using Equations (12a-b) are displayed in Appendix B.  
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2.2.7   Finite difference approximations of loadings   

Let us determine the FDA of the distributed load in the case of a varying distributed load per unit area q(x). The FDA, 

denoted by qi, can be taken as the average load around the node of interest and is then expressed as follows:  

                                                                                                                                                          

                                                                                                                                                                           (24)       

The load qi is used to satisfy the boundary conditions, namely yy = - qi at the node of interest. 

 

2.3 Analysis at positions of discontinuity  

Positions of discontinuity are positions of application of concentrated forces, supports, openings, and springs.  

 
2.3.1   Concentrated force P at node i 

The concentrated load P acting in y-direction can be converted into a load per unit area qi at the node of interest  
 

(25)                 

d being the thickness of the beam. The boundary condition yyi = - qi  is applied at the node of interest. 

 

2.3.2   Support or spring at node i 

2.3.2.2  Airy stress function FDA  

In case of a support, the boundary conditions (u = 0, v = 0) are satisfied using Equations (20) and (21). In case of a 

concentrated spring of stiffness KW acting in y- direction i.e, the boundary condition is given by 

              (26a)               

and in case of an elastic Winkler foundation of stiffness kW in y- direction i.e, the boundary condition is given by 

(26b)               

The axial stress yyi is calculated using Equation (14b), and the displacement vi using Equations (21a-c).  

 

2.3.2.3  Displacement potential function FDA  

In case of a support, the boundary conditions (u = 0, v = 0) are satisfied using Equations (17). In case of a concentrated 

spring or an elastic Winkler foundation Equations (26a-b) applied further, whereby the axial stress yyi is calculated 

using Equation (18b) and the displacement vi using Equations (17b). 
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The continuity equations express the continuity of the displacements and the equilibrium of the axial/ shearing stresses.  

Nodes i1u, i9u, i1d, and i9d:  The governing equations are formulated with Equation (19) and Appendix A, and (30a). 

The axial/ shearing stresses are expressed using Equation (22) and Appendix B, while the displacements are formulated 

using Equations (17). Alternatively for nodes i1d and i9d the axial stresses can be expressed using Equations (18a-b).  

The continuity equations between nodes i1u and i1d i.e. are as follows 

 

 

 

 

Nodes i2u, i3u, …, i8u, and i2d, i3d, …, and i8d: The governing equations (Equation (13)) are applied. The axial/ 

shearing stresses are expressed using Equation (18), and the displacements using Equations (17). The continuity 

equations are as follows 

 
(30c) 

 

The abrupt change of material properties may occur through a vertical line; in this case a vertical opening is realized and 

additional nodes are introduced, as represented in Figure 10.  
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Stress Analysis of Isotropic Deep Beams Using the Finite Difference Method 

The continuity equations between nodes il and ir i.e. are as follows 

              (31b) 

Seven continuity equations between nodes fl and fr and between ll and lr are applied. No loading is assumed applied at 

node f. The continuity equations between nodes fl and fr i.e. are as follows 

  

 
              (31c) 

 

2.5.3 Airy stress function FDA 

The node distribution is the same as that of the displacement potential function approach, and the governing equations 

are applied similarly. Since the Airy stress function is not directly related to the displacements, the geometric continuity 

conditions are not easily formulated; for a horizontal separation line they are satisfied as follows: 

 u- displacements are introduced at nodes i1u, i2u, …, i9u, and i1d, i2d, …, and i9d. Equations (20a-c) are 

applied at these nodes  

 v- displacements are introduced at nodes in three lines in upper and lower part of the separation line. Equations 

(21a-c) are applied at these nodes 

 Equations (30b-c) are applied 

 

The analysis is conducted in the same manner for a vertical separation line. 

 

2.6 Buckling of deep beams 

Fogang [14] derived equations for the buckling analysis of isotropic plates, one of which was as follows 
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The axial stresses xx at nodes 5, 15…, and 85 and the shear stresses xy at nodes 3, 13…,  and 83 are listed in Table1 

and Table 2, respectively, depending on  = b/a = y/x. The calculations are conducted using the Airy stress function 

(ASF) and the displacement potential function (DPF). Results with ASF are also displayed in graphs. Details of the 

results are presented in the Supplementary file “Two point supported deep beam subjected to a distributed load.”    

Table 1   Axial stresses xx at mid-span of the beam   

   

0,00

0,20

0,40

0,60

0,80

1,00

1,20

‐5,00 0,00 5,00

1

1/1.50

1/2.0

0,00

0,20

0,40

0,60

0,80

1,00

1,20

‐1000 ‐500 0 500 1000

1/10.0

1/15.0

1/25.0

1/35.0

  = 1.0   1/1.50 1/2.0 1/10.0 1/15.0 1/25.0 1/35.0 

 ASF DPF  ASF DPF ASF DPF ASF DPF ASF ASF ASF 

Node 5 1.52 -1.15  -1.63 -0.90 -3.02 3.20 -62.94 -0.59 -120.38 -367.58 -845.11 

Node 15 0.92 -0.64  -0.91 -2.43 -2.36 8.58 -48.09 -20.55 -88.31 -275.39 -634.03 

Node 25 0.12 -0.45  -0.57 -1.66 -1.57 4.35 -32.63 -40.44 -56.81 -182.42 -422.58 

Node 35 -0.72 0.58  -0.42 -2.18 -1.02 7.68 -16.91 -61.00 -23.48 -93.36 -211.07 

Node 45 -1.00 0.83  -0.17 -2.30 -0.40 8.19 -0.81 -82.46 9.42 -1.95 0.86 

Node 55 -1.08 -0.06  0.20 -2.94 0.27 6.02 15.56 -102.65 43.03 90.23 213.23 

Node 65 -0.22 0.96  0.75 -0.77 1.06 5.63 32.39 -123.14 77.55 181.25 425.83 

Node 75 1.08 0.45  1.69 2.82 2.09 3.07 49.48 -141.36 111.41 273.44 639.30 

Node 85 3.39 -0.83  2.90 4.22 3.65 3.07 66.97 -158.70 146.04 365.82 852.62 

EulerBernoulli beam  y = b 75.00 
 

168.75 468.75 918.75 
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Table 2   Shearing stresses xy at position x = a/4 of the beam   

   

 

As Table 1 shows, the results obtained using the ASF are reliable; the stresses change sign and for slender beams ( = 

1/10; 1/15; 1/25; 1/35) the stress distribution across the section is linear, what is in agreement with EulerBernoulli or 

Timoshenko beam theory. At the other hand the DPF delivered unreliable results; the stresses do not change sign across 

the section, therefore xxdA  0 instead of zero as it should be. In Table 2 the shear stresses for slender beams present 

a parabolic distribution across the section, what is in agreement with EulerBernoulli beam theory; however, the top and 
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  = 1.0    1/1.50 1/2.0 1/5.0 1/10.0 1/15.0 1/25.0 1/35.0 

 ASF DPF   ASF ASF ASF ASF ASF ASF ASF 

Node 3 -0.05    0.01 -0.24 1.23 -0.14 -0.59 2.21 -0.13 

Node 13 -0.36    0.26 0.44 2.20 1.40 2.18 3.55 5.22 

Node 23 -0.55    0.43 0.74 2.85 2.51 4.15 4.45 9.04 

Node 33 -0.23    0.53 0.87 3.14 3.18 5.37 4.94 11.34 

Node 43 0.31    0.51 0.87 3.08 3.41 5.82 4.98 12.11 

Node 53 0.67    0.41 0.73 2.71 3.21 5.51 4.50 11.36 

Node 63 0.76    0.28 0.51 2.07 2.58 4.42 3.51 9.10 

Node 73 0.45    0.07 0.20 1.16 1.50 2.59 2.00 5.31 

Node 83 0.03    0.04 0.01 0.00 -0.01 0.00 -0.04 0.01 
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The results are in agreement with the structural behavior of the deep beam. The slender beam ( = 1/10; 1/15; 1/25; 

1/35) can be regarded as a portal frame with supports connected with a tie. Therefore, the upper part (nodes 5, 15, 25, 

and 35) performs like a beam with compressive and tensile zone, while the lower part (nodes 75 and 85) acts like a tie.  

 

3 Conclusion 
The finite difference method based model developed in this paper provided a solution to the stress and stability analyses 

of deep beams. This model consisted of formulating the differential equations with finite differences and introducing 

additional nodes outside the beam and at positions of discontinuity (openings, brutal change of stiffness’s, non-uniform 

grid spacing). The introduction of additional nodes permitted to apply the governing equations at the boundaries and to 

satisfy all of the boundary and continuity conditions. An Airy stress function approach and a displacement potential 

function approach were considered together with strong formulations of equations (equilibrium, kinematic, and 

constitutive). By the Airy stress function approach, stresses were formulated in terms of the stress function but 

geometric boundary conditions were not directly formulated; as result, stresses throughout the structure and 

displacements in the vicinity of supports were delivered. In the displacement potential function approach, displacements 

and stresses were formulated in terms of the potential function; so all of the boundary conditions, stress related and 

geometric, were conveniently expressed. Deep beams of varying stiffness, layered beams, and beams having openings 

were analyzed with the model. The results obtained using the Airy stress function approach were in agreement with a 

proper understanding of structural behavior; unfortunately, the displacement potential function approach delivered 

unsatisfactory results, probably due to the use of an inefficient equation solver. 

The following aspects were not addressed in this study but could be analyzed with the model in future research: 

 Vibration analysis of deep beams using the two displacement function approach  

 Beams with anisotropic material behavior such as reinforced concrete beams in high reinforced regions 

 Comparison of the results with those of various beam theories namely EulerBernoulli, Timoshenko, and other 

high-order shear deformation theories 

 Calculation of the shear correction factor for beams with rectangular cross-section 

 Kirchhoff plates with openings 

However, some study limitations should be acknowledged 

 Large deformation theory 

 

Supplementary Materials: The following files were uploaded during submission:  

 “Two point supported deep beam subjected to a distributed load,”  

 “Two point supported deep beam with opening subjected to a distributed load.” 
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Node S  
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Appendix B Displacement potential function FDA at nodes e, s, and se at angles    

The axial/shearing stresses of the beam at angle nodes E, S, and SE, as shown in Figure 13, are formulated with the 

following 13-point stencils  
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(B2) 

            

 

The shearing stress is formulated using Equation (22c). 

Node S  

The FDAs of the axial stresses are formulated using Equations (22a-b). The shearing stress is as follows 

 

 

 

 

                (B3) 

 

 

 

 

Node SE  

The FDAs of the axial stresses are formulated using Equations (B1) and (B2), and that of the shearing stress using (B3). 
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