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Abstract: By combining stochastic variational inference with message passing algorithms we show
how to solve the highly complex problem of navigation and avoidance in distributed multi-robot
systems in a computationally tractable manner, allowing online implementation. Subsequently,
the proposed variational method lends itself to more flexible solutions than prior methodologies.
Furthermore, the derived method is verified both through simulations with multiple mobile robots
and a real world experiment with two mobile robots. In both cases the robots shares the operating
space and needs to cross each other’s paths multiple times without colliding.

Keywords: Distributed Robotics; Probabilistic Robotics; Variational Inference; Message-Passing
Algorithm; Stochastic Variational Inference

1. Introduction

Uncertainty is an inherent part of robotics that has to be dealt with explicitly through
the robust design of sensors, mechanics, and algorithms. Unlike many other engineering
research areas that also have to deal with uncertainties, robotics problems usually also
consist of a heterogeneous set of interconnected sub-problems and have strict real-time
requirements making it even harder to deal with uncertainty in an appropriate manner [1].

A common approach to model uncertainties in robotics is to employ probability
mass functions and/or probability density functions, hereinafter jointly referred to as
probability distributions, over model variables. One can then represent many classical
robotics problems as a joint distribution, p(x, z), over observable variables, x, and latent
variables, z. Given the knowledge that the observable variables, x, can be assigned specific
values x, solving the problem then boils down to solving the posterior inference problem
given by the conditional distribution

p(z|x = x) =
p(x = x, z)
p(x = x)

(1)

=
p(x = x, z)∫
p(x = x, z)dz

. (2)

Unfortunately, the marginalization by the integral in the denominator of Equation (2) is in
general intractable to compute in most realistic problems and thereby the reason why one
often has to resort to approximate inference [2].

The classical solution to this problem has been to simplify the model of a problem, p,
sufficiently to obtain an approximate problem definition, q ≈ p, for which one can derive
or use analytical solutions like the Kalman filter. Hereinafter referred to as the “model
simplification method”. Typically it is only possible to derive analytical solutions for a
very limited set of probability distributions. Thereby, it may be necessary to apply crude
approximations to obtain a solution, making it a rather inflexible method. However, such
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Figure 1. We propose to solve complicated robotics problems explicitly taking uncertainty into
account by utilizing variational inference as seen in the single blue box. To distribute the necessary
computations we propose to utilize the concept of message-passing algorithms to divide the overall
problem into a set of sub-problems that potentially can be sparsely connected, as illustrated in
the green box with blue boxes inside. To make these sub-problems computational tractable we
furthermore propose to solve them utilizing stochastic variational inference as seen in the green box
with yellow boxes inside.

solutions tend to be computationally efficient, which is why they were commonly used
in the early days of probabilistic robotics where computational resources were limited.
One good example of this is Kalman filter-based simultaneous localization and mapping
(SLAM). It is well known that in many cases the true posterior, p, is multi-modal e.g. due
to ambiguities and changes in the environment [3]. However, Kalman filter-based SLAM
implicitly assumes a uni-modal Gaussian posterior, q, which in some cases can lead to poor
solutions.

Another possibility is to use Monte Carlo methods such as particle filters. These
methods have the benefit that they usually do not enforce any restrictions on the model,
p, making these methods highly flexible. Furthermore, with these methods, it is often
possible to obtain any degree of accuracy, at the cost of losing computational efficiency. The
computational complexity usually makes these methods unsuitable for solving complex
robotics problems in real-time. An example of the use of Monte Carlo methods in robotics is
the particle filter-based SLAM algorithm called FastSLAM [4] which only utilizes a particle
filter to estimate the posterior of the robots pose and settles for Kalman filters for estimating
the pose of landmarks.

The third set of methods, that have gained increasing interest in the last decade due
to the advancement in stochastic optimization and increase in computational resources,
is the optimization-based methods called variational inference. In variational inference
optimization is used to approximate the distribution, p(z), that we are interested in finding,
by another simpler distribution q(z), called the variational distribution. Like analytical
solutions, variational inference assumes an approximation model, q, and thereby introduces
a bias into the solution. The set of possible models that can be employed in modern
variational inference is wide, making the method very flexible for modelling robotics
problems. This optimization-based approach also makes the distinction between the model
of the real problem, p, and the model used to find an approximate solution, q, very explicit
and gives a measure of the applicability of the approximate model, q. Furthermore, the use
of an approximate model, q, usually allows this set of methods to be more computationally
efficient than Monte Carlo methods. As such, variational inference can be viewed as a
compromise between the computational efficiency of the model simplification method
and the flexibility of Monte Carlo methods. This makes variational inference especially
interesting for robotics applications.

Initial efforts on applying variational inference for robot applications have shown
promising results in a variety of problems. In [5] variational inference is used to solve
several tasks related to navigation in spatial environments for a single robot. In [6] varia-
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tional inference is used to learn low-level dynamics as well as meta-dynamics of a system,
that is subsequently used to plan actions at multiple temporal resolutions. In a similar
fashion it is also demonstrated in [7] how variational inference can be used to learn both
low-level and high-level action policies from demonstrations. In [8] variational inference
with a mixture model as the variational distribution is used to find approximate solutions
to robot configurations satisfying multiple objectives. Variational inference have also been
used in some distributed settings. In [9] they do centralised training with decentralised
execution for cooperative deep multi-agent reinforcement learning, where a variational
distribution is used in the approximation of a shared global mutual information objective
common for all the agents. In [10] variational inference is used to learn a latent variable
model that infers the role and index assignments for a set of demonstration trajectories,
before these demonstrations are passed to another algorithm that than learns the optimal
policy for each agent in a coordinated multi-Agent problem. Common for [9] and [10] is
that variational inference is used to learn global parameters in a centralized fashion. In [11]
a more decentralized approach is taken. Here variational inference is used locally on each
robot in a swarm to estimates a Bayesian Hilbert Map. These locally estimated maps are
subsequently merged through a method called Conflation. An method applicable due to
an assumption about normal distributed random variables. While others have successfully
used variational inference for robotics applications even in distributed settings, the use of
a combination of stochastic variational inference and message-passing for decentralized
distributed robotic problems has so far been an untouched topic.

In the present effort, we unite these two major solution approaches in variational
inference to outline a flexible framework for solving probabilistic robotics problems in a
distributed way. The main contribution in this paper is:

• An demonstration of the feasibility of combining stochastic variational inference with
message-passing for distributed robotic applications by deriving an algorithm for
multi-robot point-to-point navigation with co-operative avoidance under uncertainty.
An approach which we validate through simulations and a real-world experiment
with two robots.

In Section 2 we formally present the basics of variational inference, message-passing
and stochastic variational inference. In Section 3 we introduce the problem of and derive
the algorithm for multi-robot point-to-point navigation with co-operative avoidance under
uncertainty. In Section 4 we present the results of simulations and a real-world experiment.
Finally, in Section 5 and Section 6 we conclude upon the obtained results and discuss the
potential use cases of the proposed approach.

2. Variational inference

Variational inference uses optimization to approximate one distribution, p(z) by
another simpler distribution q(z) called the variational distribution. Notice that, in general,
p(z) does not need to be a conditional distribution, p(z|x = x), as in Equation (2). However,
for the sake of the topic in this paper we will focus on the conditional distribution case.
Thus, we will concentrate on solving a variational inference problem on the form

q∗(z) = arg min
q(z)∈Q

D(p(z|x = x)||q(z)), (3)

where D is a so-called divergence measure, measuring the similarity between p and
q, and Q is the family of variational distributions that we want to find our approximation
from. The notation D(x||y) denotes that we are dealing with a divergence measure and
that the order of arguments, x and y, matters. The family of variational distributions, Q,
is usually selected as a compromise between how good an approximation one wants and
computational efficiency. The divergence measure, D, can have a rather large impact on the
approximation. However, experiments have shown that for the family of α-divergences,
subsuming the commonly used Kullback–Leibler divergence, all choices will give similar
results as long as the approximating family, Q, is a good fit to the true distribution [12].
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Section 2.1 and 2.2 present two solution approaches commonly used in variational in-
ference, namely Message-passing algorithms and stochastic variational inference. Message-
passing algorithms exploit the dependency structure of a given variational inference prob-
lem to decompose the overall problem into a series of simpler variational inference sub-
problems, that can be solved in a distributed fashion [12]. Message-passing algorithms
do not give specific directions on how to solve these sub-problems, and thus classically
required tedious analytical derivations, that effectively limited the usability of the method.
On the other hand, modern stochastic variational inference methods directly solve such
variational inference problems utilizing stochastic optimization that inherently permits
the incorporation of modern machine learning models, like artificial neural networks into
the problem definition [13,14]. As such the fusion of these two approaches can potentially
result in a transparent and flexible framework in which complex problems can be solved
distributively, making it a perfect fit for a broad interdisciplinary research area such as
robotics, inherently accommodating recent trends in research fields such as deep learning,
cloud robotics and multi-robot systems.

2.1. Message-Passing

The overall idea behind message-passing algorithms is to take a possible complicated
problem as defined by Equation (3) and brake it down into a series of more tractable
problems that depend on the solution of the other problems [12,15]. This way of solving a
variational inference problem is known as message-passing because the solution of each
sub-problem can be interpreted as a message sent to the other sub-problems. This is done
by assuming that the model of our problem, p(z|x), naturally factorizes into a product of
probability distributions

p(z|x) = ∏
a∈A

p(a)(z|x), (4)

where superscript (a) is used to denote the index of the a’th factor. Notice that the
factorization need not be unique and that each probability distribution, p(a)(z|x), can
depend on any number of the variables of p(z|x). The choice is up to us. Similarly, we can
choose a variational distribution, q(z), that factorizes into a similar form

q(z) = ∏
a∈A

q(a)(z). (5)

Now by defining the product of all other than the a’th factor of q(z) and p(z|x),
respectively as

q\a(z) = ∏
b∈A\a

q(b)(z), (6)

p\a(z|x) = ∏
b∈A\a

p(b)(z|x), (7)

and by further assuming that q\a∗(z) ≈ p\a(z|x) is in fact a good approximation,
it is possible to rewrite our full problem in Equation (3) into a series of approximate
sub-problems on the form

q(a)∗(z) ≈ arg min
q(a)∈Q(a)

D
[

p(a)(z|x)q\a(z)||q(a)(z)q\a(z)
]
. (8)
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1: Initialize q(a)∗(z) for all a ∈ A
2: repeat
3: Pick a factor a ∈ A
4: Solve Equation (8) to find q(a)∗(z)
5: until q(a)∗(z) converges for all a ∈ A

Figure 2. The generic message-passing algorithm

Assuming a sensible choice of factor families, Q(a), from which q(a) can be chosen, the
problem in Equation (8) can be more tractable than the original problem, and by iterating
over these coupled sub-problems as shown in Figure 2, we can obtain an approximate
solution to our original problem.

The approach is not guaranteed to converge for general problems. Furthermore,
Equation (8) might still be a hard problem to solve, thus previously in practice, the approach
has been limited to problems for which Equation (8) can be solved analytically such as fully
discrete or Gaussian problems [12]. However, besides breaking the original problem into a
series of more tractable sub-problems, this solution approach also gives a principle way
of solving the original problem in a distributed fashion, which can be a huge benefit in
robotics applications. Furthermore, depending on the dependency structure of the problem,
a sub-problem might only depend on the solution of some of the other sub-problems, which
can significantly reduce the amount of communication needed due to sparsely connected
networks.

2.2. Stochastic Variational inference

Stochastic Variational inference (SVI) reformulates the minimization problem of a
variational inference problem, e.g. Equation (3) or Equation (8), into a dual maximization
problem with an objective, L, that is suited for stochastic optimization. To use stochastic
optimization we need to assume that the variational distribution, q, is parameterized by
some parameters, φ. We will denote the parameterized variational distribution by, qφ. The
steps and assumptions taken to obtain this dual problem and the objective function, L, of
the resulting maximization problem of course depends on whether we have chosen the
Kullback–Leibler divergence [16–18], α-divergences [19] or another divergence measure
[20]. However, the resulting maximization problem ends up being on the form

φ∗ = arg max
φ

L
(

p(z, x = x), qφ(z)
)︸ ︷︷ ︸

Ez∼qφ(z)
[l(z,φ)]

. (9)

This dual objective function, L, does not depend on the posterior, p(z|x = x), but only
the variational distribution, qφ(z) and the unconditional distribution p(z, x = x) making the
problem much easier to work with. Furthermore, by e.g. utilizing the reparameterization
trick or the REINFORCE-gradient it is possible to obtain an unbiased estimate of the
gradient, ∇φL, of the dual objective L. Stochastic gradient ascent can then be used to
iteratively optimizes the objective through the update equation

φl = φl−1 + ρl−1∇φLl
(

φl−1
)

, (10)

where superscript l is used to denote the l’th iteration. If the sequence of learning
rates, ρl−1, follows the Robbins-Monro conditions,

∞

∑
l=1

ρ(l) = ∞,
∞

∑
l=1

(
ρ(l)
)2

< ∞, (11)
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then stochastic gradient ascent converges to a maximum of the objective function
L, and since Equation (9) is dual to the original minimization problem, thus providing a
solution to the original problem.

An unbiased gradient estimator with low variance is pivotal for this method and often
variance reduction methods are necessary. However, a discussion of this subject is outside
the scope of this paper and can often be done automatically by probabilistic programming
libraries/languages such as Pyro [13]. Besides providing the basic algorithms for stochastic
variational inference, such modern probabilistic programming languages also provide
ways of defining a wide variety of probability distributions and extensions to stochastic
variational inference that permits incorporating and learning of parameterized functions,
such as neural networks, into the unconditional distribution p(z, x = x). Thereby, making
the approach very versatile. The benefit of solving variational inference problems with
stochastic optimization is that noisy estimates of the gradient are often relatively cheap to
compute due to e.g. subsampling of data. Furthermore, the use of noisy gradient estimates
can cause algorithms to escape shallow local optima of complex objective functions [18].

To summerize, if we want to distribute a complex inference problem, one potential
solutions is to first find variational inference sub-problems via the message-passing method,
and than use stochastic variational inference to solve these sub-problems. This procedure
is illustrated in Figure 1 and the next section illustrates one usage of our method for a
distributed multi-robot systems.

3. Navigation with Co-operative Avoidance under Uncertainty

This section illustrates how the two methods can be combined to derive an algorithm
for solving a practical problem in robotics. Section 3.1 introduces the problem dealt with in
this paper, in Section 3.2 the algorithm is derived and explained, and finally, in Section 4
the result of simulations and a real-world experiment is presented.

arg max
φt

1

L
(

p̃(1)
(
Zt, Xt

O,1 = 1, Xt
C = 0

)
, q
(
Zt)) arg max

φt
2

L
(

p̃(2)
(
Zt, Xt

O,2 = 1, Xt
C = 0

)
, q
(
Zt))

µzt
p,2

, σzt
p,2

, φt,∗
2

µzt
p,1

, σzt
p,1

, φt,∗
1

p(zt
p,1)

p(zt
p,2)

zg,1zg,2

q∗
(
Zt

n
)

q∗
(

zt+1
p,n

) q∗
(

zt+2
p,n

)
q∗
(

zt+3
p,n

)

Figure 3. The derived algorithm for cooperative navigation under uncertainty of multiple uni-cycle
type robots works by letting each robot solve a sub-problem with stochastic variational inference
and broadcast the solution to the other robots. Based on the broadcasted solution, a robot implicitly

derives a distribution over the other robot’s future positions, q∗
(

zτ
p,n

)
; τ > t, and use the information

in its sub-problem.

3.1. Problem Definition and Modelling

Consider N uni-cycle robots placed in the same environment. Each of them have to
navigate to a goal location, zg,n =

[
zx,g,n, zy,g,n

]T , by controlling their translational and
rotational velocities while communicating with the other robots to avoid collision. We
will consider the 2-dimensional case where the robots can obtain a mean and covariance
estimate of their own current pose at time t, zt

q,n =
[
zt

x,n, zt
y,n, zt

ψ,n

]T
, e.g. from a standard

localization algorithm such as AMCL from the Nav2 ROS2 package [21]. Therefore, we
model the current pose of the n’th robot as the following normal distribution
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p(zt
q,n) = N(µzt

q,n
, σzt

q,n
). (12)

We do not consider the dynamics of the robots but settle for a standard discrete
kinematic motion model of a uni-cycle robot given by

zτ+1
q,n = zτ

q,n +


cos
(

zτ
ψ,n

)
0

sin
(

zτ
ψ,n

)
0

0 1

A
(
zτ

a,n
)
∆T

︸ ︷︷ ︸
f (zτ

q,n ,zτ
a,n)

, (13)

where zτ
a,n =

[
zτ

a1,n, zτ
a2,n

]T
, zτ

a1,n and zτ
a2,n are the translational and rotational velocities

of the n’th robot at time τ normalized to the range
[
0, 1
]
, respectively, A is a linear scaling

of the velocity to be in the range
[
zτ

a,n, zτ
a,n

]
corresponding to the minimum and maximum

velocities of the n’th robot, and ∆T is the temporal difference between τ and τ + 1. Since
Equation (13), among other things, does not consider the dynamics of the motion an
estimate based on this will yield an error. To model this error, we employ an uniform
distribution and define

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
= U

(
f
(

zτ
q,n, zτ

a,n

)
−M, f

(
zτ

q,n, zτ
a,n

)
+ M

)
, (14)

where M is a constant vector that captures the magnitude of the model error. Since
Equation (13) is obtained through the use of the forward Euler method, M could potentially
be obtained as an upper bound by analyzing the local truncation error. However, this would
probably be too conservative. Instead, we consider M as a tuning parameter. The robots
do not naturally have any preference for selecting specific translational and rotational
velocities, thus, we also model the prior over the normalized velocities as a uniform
distribution. That is

p
(
zτ

a,n
)
= U(0, 1). (15)

So far we have modeled everything we need to describe the uncertainty in the motion
of each of the robots. Now we turn to the problem of modeling optimality and constraints.
The only criteria of optimality that we will consider are that the robots get closer to their
respective goal locations, zg,n. To do so we define the following simple reward function

r
(

zτ
q,n

)
=

√(
zg,n − zτ

p,n

)2
, (16)

where

zτ
p,n =

[
1 0 0
0 1 0

]
zτ

q,n.

To include the optimality into the probabilistic model we use a trick commonly utilized in
probabilistic Reinforcement Learning and Control [22]. We start by defining a set of binary
optimality variables, xτ

O,n, for which xτ
O,n = 1 denotes that time step τ is optimal for the

n’th robot, and conversely xτ
O,n = 0 denotes that time step τ is not optimal. We now define
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the distribution of this optimality variable at time τ, xτ
O,n, conditioned on the pose of the

robot at time τ, zτ
q,n, as

p
(

xτ
O,n|zτ

q,n

)
= Bernoulli

(
e−c1·r(zτ

q,n)
)

, (17)

where c1 is a tuning constant. Notice that since r
(

zτ
q,n

)
≥ 0 it follows that e−c1·r(zτ

q,n) ∈[
0, 1
]
. The intuition behind Equation (17) is that the state with the highest reward has the

highest probability and states with lower reward have exponentially lower probability.
As stated the robots should avoid colliding with each other. Therefore, we would like

to impose a constraint on the minimum distance, dmin, that the n’th and m’tn robots should
keep. To do so we define

c
(

zτ
q,n, zτ

q,m

)
=

{
0 ; dτ

n,m ≤ dmin

dτ
n,m − dmin ; dτ

n,m > dmin
, (18)

where dτ
n,m =

√(
zτ

p,n − zτ
p,m

)2
. Similarly, as we modeled optimality we can now also

define binary constraint variables, xτ
C,n,m, for which xτ

C,n,m = 1 denotes that the minimum
distance constraint between the n’th and m’tn robot is violated at time τ, and model the
constraint by the distribution given by

p
(

xτ
C,n,m|zτ

q,n, zτ
q,m

)
= Bernoulli

(
e−c2·c(zτ

q,n ,zτ
q,m)
)

, (19)

where c2 is a tuning constant. Again, when the distance between two robots becomes
larger it has an exponentially less probability of violating the distance constraint. With the
above variable definitions, we can now formulate a solution to the navigation problem at
time t as the following conditional probability distribution

p
(
zt

a,1, . . . , zt
a,N |Xt

O = 1, Xt
C = 0

)
=
∫

Zt\{zt
a,1,...,zt

a,N}
p
(
Zt|Xt

O = 1, Xt
C = 0

)
, (20)

where

Xt
O =

{
Xt

O,1, . . . , Xt
O,N

}
,

Xt
O,n =

{
xt+1

O,n , . . . , xk·t
O,n

}
,

Zt =
{

Zt
1, . . . , Zt

N
}

,

Zt
n =

{
zt

q,n, zt
a,n, zt+1

q,n . . . , zk·t−1
a,n , zk·t

q,n

}
,

Xt
C =

{
xt+1

C,1,2, . . . , xt+1
C,N−1,N , . . . , xk·t

C,1,2, . . . , xk·t
C,N−1,N

}
.

To capitalize, Equation (20) states that we are interested in finding the distribution over
the next action, zt

a,n, that each robot should take conditioned on that it should be optimal,
specified by the “observations” xt

O = 1, and should not result in violation of the constraints,
specified by the “observations” xt

C = 0. Furthermore, it states that we can obtain this
distribution as the marginal to the conditional distribution on the right-hand side of the
equal sign. If we can evaluate this problem efficiently in real-time, it will act as probabilistic
model predictive control taking the next k time-steps into account. However, as discussed
in the introduction solving such a problem is in general intractable. Therefore, the next
section will derive an approximate solution based on message-passing and Stochastic
variational inference.
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1: On each of the n robots
2: repeat
3: t← t + 1
4: Get µzt

q,n
, σzt

q,n
from localization algorithm

5: Initialize φt,∗
n =

{
αt

n, βt
n, . . . , αkt−1

n , βkt−1
n

}
6: repeat
7: if messages available for m ∈ [1, N]\n then
8: Store µzt

q,m
, σzt

q,m
and φt,∗

m

9: end if
10: Solve Equation (29) to find φt,∗

n
11: Broadcast µzt

q,n
, σzt

q,n
and φt,∗

n

12: until φt,∗
n converges or time is up.

13: until Suitable stop criteria; e.g. goal reached.

Figure 4. Navigation with Co-operative Avoidance under Uncertainty

3.2. Algorithm Derivation

Instead of solving Equation (20), we will in this section show how to find an approxi-
mate solution based on variational inference. The derived algorithm is shown in Figure 4.
At each time step, t, we want to approximate Equation (20) by solving the following
problem

min
q(Zt)

D
[
p
(
Zt|Xt

O = 1, Xt
C = 0

)
||q
(
Zt)], (21)

while making sure that it is easy to obtain the marginals for the variables of interest,
zt

a,1, . . . , zt
a,N , from this approximation. To utilize the idea of message-passing we need to

find a natural factorization of the model of the problem. By applying the definition of
conditional probability together with the chain rule, and by considering the dependency
structure of the model, the conditional probability distribution on the right-hand side of
Equation (20) can be rewritten to

p
(
Zt|Xt

O = 1, Xt
C = 0

)
=

p
(
Xt

C = 0|Zt)
p
(
Xt

C = 0
) ∏

n∈[1,N]

p
(
Zt

n|Xt
O,n = 1

)
. (22)

From Equation (22) it is seen that the model naturally factorizes into a fraction related
to the constraints and N factors related to the pose, actions, and optimality variables of
each of the N robots. Thus, it is natural to choose a variational distribution that factorizes
as

q
(
Zt) = ∏

n∈[1,N]

q
(
Zt

n
)
. (23)

Now considering Equation (8) we can distribute the computations by letting the n’th
robot solve a problem on the form

arg min
q(Zt

n)
D

 p(Xt
C=0|Zt)

p(Xt
C=0)

p
(

Zt
n|Xt

O,n = 1
)

·∏m∈[1,N]\n q
(
Zt

m
)

∣∣∣∣∣∣
∣∣∣∣∣∣ ∏
n∈[1,N]

q
(
Zt

n
), (24)

and broadcast the result, q∗
(
Zt

n
)
, to the rest of the vehicles. This could be repeated

until convergence or simply until a solution for the next time step, t + 1, has to be found.
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However, Equation (24) still include the unknown term p
(
Xt

C = 0
)
. To overcome this hurdle

we utilize stochastic variational inference, for which we can work with the unconditional
distribution given by Equation (25) instead.

p̃(n)
(
Zt, Xt

O,n = 1, Xt
C = 0

)
= p

(
Xt

C = 0|Zt)p
(
Xt

O,n = 1|Zt
n
)

p
(
Zt

n
)

∏
m∈[1,N]\n

q
(
Zt

m
)
, (25)

where

p
(
Xt

C = 0|Zt) = kt

∏
τ=t+1

N−1

∏
n=1

N

∏
m=n+1

p
(

xτ
C,n,m = 0|zτ

q,n, zτ
q,m

)
,

p
(
Xt

O,n = 1|Zt
n
)
=

kt

∏
τ=t+1

p
(

xτ
O,n = 1|zτ

q,n

)
,

p
(
Zt

n
)
= p(zt

q,n)
kt−1

∏
τ=t

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
p(zτ

a,n). (26)

All terms in Equation (25) except for the variational distribution, q
(
Zt

m
)
, were defined

in Section 3.1. To choose an appropriate variational distribution, q
(
Zt

m
)
, consider Equa-

tion (26) describing the motion of the robot. The only distribution in Equation (26) that
actually can be directly controlled is p(zτ

a,n), since p(zt
q,n) is the current best estimate of the

n’th robots current location provided by a localization algorithm, and p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
is

derived from the kinematics of the robots. Therefore, an appropriate choice of variational
distribution is

q
(
Zt

n
)
= p(zt

q,n)
kt−1

∏
τ=t

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
q(zτ

a,n), (27)

leaving only the distribution q(zτ
a,n) left to be choosen. q(zτ

a,n) has a direct connection
to p

(
zt

a,n
)

in Equation (15), and thus it is natural to choose a distribution that shares some
of the same properties such as the support. Therefore, we have choosen

q(zτ
a,n) = Beta(ατ

n, βτ
n), (28)

which has the exact same support as and even subsumes p
(
zt

a,n
)
. To summarize, at

each time-step, t, each robot, n, has to iteratively solve a sub-problem through stochastic
variational inference represented by

arg max
φt

n

L
(

p̃(n)
(
Zt, Xt

O,n = 1, Xt
C = 0

)
, q
(
Zt)), (29)

where φt
n =

{
αt

n, βt
n, . . . , αkt−1

n , βkt−1
n

}
, and broadcast the result φt,∗

n to the other ve-
hicles as illustrated in Figure 3. In practice, to easen the computational burden some of
the terms can be removed from Equation (29), since only the evaluation of the constraints
involving the n’th robot is non-constant. Overall we have divided the original approxima-
tion problem in Equation (21) into a series of less computational demanding sub-problems
that can be solved distributively on each of the robots. The next section presents a simula-
tion study and a real world experiment utilizing this algorithm to multiple robots safely
navigate the same environment.

4. Validation

To validate the algorithm described in Section 3 we both performed a simulation study
and a real-wold experiment descriped in Section 4.1 and Section 4.2, respectively. In both
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cases the models described in Section 3.1 were implemented utilizing the probabilistic
programming language Pyro [13], and Pyro’s build-in stochastic variational inference
solver was used. For solver options we chose “Trace_ELBO”, thus implicitly using the
Kullback–Leibler divergence, and the commonly used “Adam” stochastic optimization
solver with 10 epochs/iterations pr. send message.

Rgoal

Renv

goal zones

robots

Figure 5. Illustration of the simulated environment with N = 4. Two goal zones are generated for
each of the robots, and the robot is initialized in the center of one of these goal zones.

4.1. Simulations

To evaluate the stochastic properties of the proposed solution, we implemented a
simple simulation environment for simulating N uni-cycle robots in parallel and in an
asynchronous fashion. The environment where designed to cause as many close encounters
as possible. For each of the robots in this environment two goal zones with a radius,
Rgoal , are generated evenly on the circumference of a circle with radius, Renv. When the
simulation starts each of the robots are randomly initialized with a position in the center of
one of their respective goal zones. The goal of the robots is then to drive as many times a
possible between the two goal zones without colliding with the robots during the simulated
time. The setup is illustrated in Figure 5.

0 50 100 150 200 250 300

0

0.2

0.4

Time [s]

D
is

ta
nc

e
[m

]

SSD
Collision
mean(MSD(i))
mini∈[1,50]MSD(i)

Figure 6. The minimum separating distance between any of the 12 robots during each of the 50
simulations.

A series of 50 simulation with 12 robots and a simulated duration of 300 s where
conducted. During the simulations the real-time factor was adjusted to allow the robots to
send approximately 3-4 messages per time-step, imitating the capabilities of the hardware
used in real world experiment. The code and data for the simulations, together with a
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Figure 7. Histogram of the number of times the robots reached their goal zones during the simula-
tions.

video of each of the simulations are available at [23]. The parameters chosen for the model
are summarized in Table A1 in Section A. To quantify the ability of the algorithm to avoid
collisions we utilize the minimum separating distance (MSD) metric also used in [24]. We
calculate the MSD of the i’th simulation as the minimum distance between any of the robots
during the whole simulation:

MSD(i) = min
t∈[0,300]

SSD(t, i),

where

SSD(t, i) = min
n ∈ [1, N − 1]
m ∈ [n + 1, N]

||zt,i
p,n − zt,i

p,m|| − Ri
n − Ri

m.

and zt,i
p,n is the position of the n’th robot at time t in the i’th simulation, and Ri

n is the
radius of the n’th robot. Figure 6 shows the smallest separating distance (SSD) between
any of the robots during all of the simulation, together with the mean of the MSD of the 50
simulations, and the smallest MSD recorded in any of the simulations. Figure 7 shows how
many times the robots reached a goal zone during the simulations. From these simulations
it can be concluded that the algorithm successfully manages to guide the robots towards
their goals while still avoiding collisions.

4.2. Real-wold experiment

The real-wold experiment was performed with two TurtleBot3 Burger robots, each
equipped with the standard lidar and an Intel NUC10FNK as the on-board processing
unit. The parameters chosen for the model are summarized in Table A1 in Section A. To
facilitate communication between the robots as needed for message-passing as described
in Section 3.2 the meta operating system ROS2 was utilized. 5 Ghz Wi-Fi provided by an
Asus rt-ax92u router was used as the communication medium. As in the simulations, the
robots were programmed to get alternating goal locations, zg,n, each time they reached
within 20cm of their current goal locations. To provide the estimate of the robots current
pose distribution, p(zt

q,n), we utilized AMCL from the Nav2 ROS2 package [21]. The
implemented algorithm is available at [25].

The results of the experiments are shown in Figure 8, Figure 9, and Figure 10. On
average the robots managed to solve their sub-problem and sent a solution to the other
robot 3.01 times pr. time-step. Figure 8 shows the full path taken by the robots during the
388 s long experiment. Robot 0 and Robot 1 traveled approximately 37, 5 m and 34, 8 m,
respectively, while reaching their goals 17 times each giving plenty of opportunities for
collisions.

Figure 9 shows the distance between the robots and their respective goals together
with the SSD between to two robots themselves during the experiments, and the MSD for
the whole test. In this test the MSD was 7.8 cm. From the plot, it is clear to see that the
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||zg,1 − o|| < 0.2
||zg,2 − o|| < 0.2
µzτ

p,1
; τ ∈ [0, 388]

µz0
p,1

µzτ
p,2

; τ ∈ [0, 388]
µz0

p,2

Figure 8. Traces of the two robots mean positions, µzt
p,n

, during the experiment, together with the
mean of their initial positions distribution, µz0

p,n
, and goal areas defined as a circle with a radius of 20

cm around their goal locations, zg,n. The plots show how the robots sometimes deviate from the most
direct path between their goal locations to avoid collision with each other.

0 50 100 150 200 250 300 350
0

1

2
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D
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e
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||µzt
p,0
− zt

g,0||
||µzt

p,1
− zt

g,1||
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MSD
Collision

Figure 9. Each of the robots distances to their respective current goals, together with the distance
between the two robots for the first 100 s of the experiment, and the minimum distance conservatively
calculated as 2 times the length of the TurtleBot3 Burger platform, 2 · 138mm. The jumps in the plots
of the robots’ distances to their goals are due to change in goal location. The plots show that the
robots several times manage to reach their goal without violating a safe distance, dmin, to each other.

robots several times manage to reach their goal, while keeping a distance larger than dmin
to each other.

Figure 10 illustrates in more detail how the algorithm behaves in one of the situations
where the robots were close to each other. To avoid a collision, at time t = 33 robot 2
waits for robot 1 to pass. At time t = 34 robot 1 has passed and robot 2 begins planning a
trajectory towards its goal and drives towards the goal at t > 34. At time t = 39 robot 1 has
reached one of its goals and starts planning a trajectory towards its other goal. However,
for t > 39 robot 2 is blocking robots 1’s path, and therefore robot 1 does not drive that
far. Overall, the experiment illustrates how the algorithm successfully manages to make
the robots drive to their goals while avoiding collisions despite the uncertainty in the
localization from AMCL and uncertainty in the future movement of the other vehicle.

5. Conclusion

In this paper, we have discussed how variational inference can be a tractable way of
solving robotics problems with non-neglectable uncertainties. More specifically, we have
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Figure 10. Kernel density estimate plots of the robots final predicted positions, zτ
p,n; τ > t, together

with kernel density estimate plot of the robots initial positions, z0
p,n, the mean of the samples used to

generate each plot, µzτ
p,n

; τ > t and µzτ
p,n

, and finally the traces of their traversed paths, µzτ
p,n

; τ < t,
for each t ∈ [33, 45]. The plots clearly illustrate how the robots manage to negotiate trajectories that
avoid a collision while taking the relevant uncertainties into account.

shown how two main solution approaches to variational inference, message-passing algo-
rithms and stochastic variational inference, relate. We outline how these two approaches
potentially can be combined to flexibly solve problems with uncertainty in a distributed
manner. By deriving and implementing an algorithm for navigation of multiple robots
with co-operative avoidance under uncertainty, we furthermore demonstrate the feasibility
of the proposed approach. Finally, we demonstrate that the derived algorithm works both
in simulations with multiple robots and in a real-world experiment with two mobile robots.

6. Discussion

Many algorithms in robotics are already based on and derived directly from probabilis-
tic models. The wide set of possible models that can be employed in stochastic variational
inference, should make it straightforward to apply the approach proposed in this paper
to many of these probabilistic models. Thereby, resulting in new interesting algorithms.
Furthermore, due to the separation into sub-problems, the approach could potentially lead
the way for offloading more computations to the cloud. Since variational inference can
incorporate neural networks, the approach also allows for the combination of classical
modeling based methods and modern purely learning-based methods.
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Appendix A

Table A1 summarizes the parameters used during the simulations and the real-world
experiment.

Parameter Value
zt

a,n, zt
a,n [−0.22,−2.84], [0.22, 2.84]

c1, c2 3, 25
M [0.05, 0.05, 0.10]
∆T 1 s
k, N 4, 2

Simulations
N 12
Renv 2 m
Rn 138mm± 20%
dmin Rn + Rm

Real-world Experiment
Robot 1 Robot 2

R 138mm
dmin 2 · R = 276mm

zg,n
[0.00, 0.00]T ,
[2.00, 1.00]T

[0.50, 0.13]T ,
[1.50, 1.87]T

Table A1. Parameters used during the simulations and experiment.
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