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Abstract:  

Glioblastoma (GBM) is a very aggressive malignant brain tumor with the vast majority of patients 

surviving less than 12 months (Short-term survivors [STS]). Only around 2% of patients survive more 

than 36 months (Long-term survivors [LTS]). Studying these extreme survival groups might help in 

better understanding GBM biology. This work aims at exploring application of machine learning 

methods in predicting survival groups(STS, LTS). We used age and gene expression profiles belonging 

to 249 samples from publicly available datasets. 10 Machine learning methods have been implemented 

and compared for their performances. Hyperparameter tuned random forest model performed best 

with accuracy of 80% (AUC of 74% and F1_score of 85%). The performance of this model is validated 

on external test data of 16 samples. The model predicted the true survival group for 15 samples 

achieving an accuracy of 93.75%. This classification model is deployed as a web tool GlioSurvML. The 

top 1500 features which retained classification efficiency (Accuracy of 80%, AUC of 74%) were studied 

for enriched pathways and disease-causal biomarker associations using the HumanPSDTM database. 

We identified 199 genes as possible biomarkers of GBM and/or similar diseases (like Glioma, 

astrocytoma, and others). 57 of these genes are shown to be differentially expressed across survival 

groups and/or have impact on survival. This work demonstrates the application of machine learning 

methods in predicting survival groups of GBM.  
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1. Introduction 

The majority of patients with glioblastoma (GBM) have a short-term survival rate of fewer than 12 

months (short-term survivors [STS]), however there is a minority of individuals who have a long-term 

survival rate of more than three years (36 months), referred to as long-term survivors (LTS)(Hwang et 

al., 2019a). Clinical, radiological, and histological characteristics have not been found to be predictors 

of long-term survival or response to therapy in studies (Davis, 2016). (Hwang et al., 2019) Machine 

Learning (ML) techniques are increasingly being applied in GBM research, as evidenced by a rise in the 

number of publications in the recent decade (Valdebenito and Medina, 2019). With enormous volumes 

of high-dimensional data, machine learning aids in recognizing patterns, forecasting events, and 

interpreting the interactions of complex biochemical networks (Valdebenito and Medina, 2019). 

A biomarker is a biological marker that indicates a biological condition and can signal illness-associated 

molecular alterations at the molecular level which is valuable in understanding the disease state or 

diagnosis. ML based classification and feature selection methods have aided such a biomarker 

discovery (Mamoshina et al., 2018; Torres and Judson-Torres, 2019; Fortino et al., 2020; Xie et al., 2021). 

Some of the major examples of ML use in GBM research are the Stemness Subtype(I/II) Predictor (Wang 

et al., 2021), NF1 activation status predictor , GBM subtype-specific classifiers (Ensenyat-Mendez et al., 

2021), and temozolomide treatment response predictor(Geldof et al., 2020). (Senders et al., 2020)Joeky 

et al.,2020 has developed an online survival calculator for patients with glioblastoma based on 

demographic, socioeconomic, clinical, and radiographic variables to predict overall survival. 

Transcriptomics approaches have been demonstrated to be highly promising as they offer prognostic 

techniques for gaining a better knowledge of the condition. Using TCGA RNA-seq data from 129 

samples, a study has used an Autoencoder (AE)-based approach for the prediction of GBM patient 

survival (short-term or long-term survivors) with an accuracy 89%.(Kirtania et al., 2021) In this study, 

we evaluated 10 ML models to build a classifier which can classify GBM patients into short-term and 

long-term survivo groups using transcriptomic profiles and clinical information(age) of 249 patients, 

pooled from 5 publicly available datasets. Random forest model has performed best with an accuracy 

of 80% and is deployed as a webtool - GlioSurvML. Following model identification, the top 1500 

features are used for further analysis to identify important biological pathways and biomarkers. 

2. Materials and Methods  

2.1. Data Collection  

The genome-wide expression profiles based on the Human Genome U133 Plus 2.0 array and clinical 

information of patients with GBM were collected from the public repository of the GEO database. Age 

information was available for 75.5% of the samples, whereas information on Gender, Karnofsky score, 

MGMT status, or IDH status were not available for most of them (<30%) and hence only information of 

age is considered along with the transcriptome to build the survival predictor.  

All the datasets were pooled together leading to 176 and 73 samples corresponding to short-term 

survivors (STS; survival < 12 months) and long-term survivors (LTS; survival > 36 months), respectively 

(Table 1). Duplicates were not removed. Raw data, sample information, and cleaned datasets are given 

in Supplementary file 1. 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2022                   doi:10.20944/preprints202202.0051.v1

https://doi.org/10.20944/preprints202202.0051.v1


Table 1. Statistics of datasets studied in this work.  

 

 

2.2. Affymetrix microarray data pre-processing  

The raw data files (. CEL format) for the above-mentioned datasets were collected from the GEO 

database- from here on called as GSE dataset. RMA algorithm is used in R (affy package) for 

background correction, quality check, and normalization to obtain log2 transformed expression values 

(Gautier et al., 2004). Batch correction of the pooled expression data was performed using empirical 

Bayes framework is performed (Leek et al., 2012). PCA plot for the batch corrected data is given in 

Supplementary file 2. This batch corrected file is used for further analysis. Multiple Affymetrix ids 

were summarized to genes ids by choosing the maximum out of probe intensities of multiple probes 

belonging to a single gene. The final expression matrix comprised 21526 probes and 249 samples is 

given in Table S1-C.  

2.3 Development of a Prediction Model Using a Machine Learning Algorithm 

To develop a machine learning model, we have used several functionalities of model building in python 

sklearn (Pedregosa FABIANPEDREGOSA et al., 2011). The dataset used to build the model contains 

transcriptomics profiles of 176 STS and 73 LTS and the age of the corresponding patient. Using a 

variance filter the top 10,000 highly variant genes are identified and were considered for model 

building. Labels were encoded using label encoder. Figure 1 shows the work flow of model 

development.The samples were first split into 80% training and 20% test data. All the downstream 

operations to build the predictive model were performed only on training data and is later tested on 

test data. The training data is scaled and quantile transformed. The scaling and quantiles were saved 

so that they can be applied to test data.  
  
To deal with the problem of class imbalance during model training (training - STS:139, LTS=60), we 

have used the synthetic minority oversampling technique SMOTE of the imblearn package 

(LemaˆıtreLemaˆıtre et al., 2017). This oversampling strategy first randomly selects an instance from the 

minority class and finds its k nearest minority class neighbors. Synthetic data would then be made 

between the random data and the randomly selected k-nearest neighbor. With SMOTE oversampling, 

the number of samples in the minority class was increased to 139. On this resampled training data, we 

applied 10 ML models. However, only the random forest model performed better in terms of classifying 

the minority classes. For hyperparameter tuning of model parameters we used GridSearchCV. Models 

 Platform 
Short-term 

survivors 

Long-term 

survivors 

GSE53733 

(Reifenberger et al., 

2014) 

HU133 plus 2.0 

arrays 

 

16 23 

GSE108474 

(Gusev et al., 2018) 

HU133 plus 2.0 

arrays 

 

97 35 

GSE13041 

(Lee et al., 2008) 

HU133 plus 2.0 

arrays 

 

20 02 

GSE7696 

(Murat et al., 2008) 

HU133 plus 2.0 

arrays 

 

29 09 

GSE43378 

(Kawaguchi et al., 

2013) 

HU133 plus 2.0 

arrays 

 

14 04 
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were tuned for their hyperparameters (Table 2) for optimal performances. Hyperparameter tuning 

results for all ML models are given in Table S3-A.  

 
 
Table 2. Hyperparameter tuning in ML models 

Method Parameters 

Random forest Criterion, max_depth, n_estimators 

Logistic regression penalty, Solver & C 

Linear Support Vector Classification  

(Linear SVC) 
C, kernel, gamma, 

Support Vector Classification (SVC) Kernel, C, gamma 

Nu-Support Vector Classification (NuSVC) Nu, Kernel, decision_function_shape 

Naïve Bayes var_smoothing 

Classification and Regression Trees  

(CART) 
Criterion, max_features 

k-nearest neighbors (KNN) N_neighbors,algorithm & weights 

Balanced random forest 
max_features, n_estimators, max_depth, 

criterion 

Balanced Bagging n_estimators 

 

Hyperparameter tuned models were applied on the (20%) test data to evaluate model performances 

and choose the best performing classifier. The best performing model was evaluated on an external 

independent microarray data to evaluate the application of this classifier as a reliable tool for predicting 

Glioblastoma survival groups. The top best features based which retains higher classification efficiency 

were extracted and evaluated for biological relevance by using Gene set enrichment, Differential 

expression, Survival significance and their association with Glioblastoma or similar diseases.  
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Workflow explaining the steps of building ML models.  

2.4.Gene  Enrichment Analysis 

To explore the biological importance of these 1500features, gene list enrichment tool enrichR (Chen 

et al., 2013) is used. Enrichment for Molecular Signature Database (MSigDB) (Liberzon et al., 2011) is 

used.  

 

2.5  Differential gene expression (DEG) analysis  

 

LIMMA (Linear Models for Microarray Data) method was applied to identify differentially 

expressed genes (Ritchie et al., 2015) . Differential gene expression analysis for short-term and long-
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term survivors is performed in GSE108474 and TCGA GBM microarray data. Clinical information and 

cleaned datasets of GSE108474 and TCGA GBM microarray data are given in Supplementary 4.  

2.6.  Impact on survival  

Survival and Survminer libraries in R are used to perform univariate survival analysis. Univariate Cox 

regression for survival analysis is performed using the coxph function of the Survival package to 

calculate the Hazard ratio (HR) with p-value cutoff of 0.05 for significance (Therneau, 2021). KMplots 

are used to depict impact of genes on survival with non-overlapping 50% upper and lower quantiles. 

supplementary 4 

 

2.7  Identification of biomarkers  

 

Causal molecular mechanisms present a unifying principle for disease classification, analysis of clinical 

disorder associations, as well as prediction of disease genes, diagnostic markers, and therapeutic 

targets. A novel approach published (Stegmaier et al., 2010) built of 1000 causal gene-disease networks 

is now updated and available in the HumanPSDTM database (Wingender et al., 2007).  The important 

features identified using the ML model can serve as biomarkers of survival/prognosis in GBM. 

HumanPSD™ database 2021.2 is mined to fetch information on the association of these features with 

GBM or similar diseases 

 

 

3. Results  

3.1. Development of ML model:  

The genome-wide expression profiles from 5 independent experiments using Human Genome U133 

Plus 2.0 arrays with corresponding clinical information of Glioblastoma patients were collected, 

normalized and integrated to obtain a data matrix of 176 and 73 samples corresponding to short-term 

survivors (STS; survival < 12 months) and long-term survivors (LTS; survival > 36 months), 

respectively. Top 10k highly variant genes were used for building ML models for classification. See 

more details in methods section (Supplementary file 1 and 2) 

In the current work, we have used machine learning methods to predict the survival class of GBM 

patients using gene expression profiles. 

Ten ML models such as random forest, Naïve Bayes, Support Vector Classification, Linear SVC, 

NuSVC, Logistic Regression, Classification and Regression Trees (CART), k-nearest neighbors (KNN), 

and specialized packages of imbalanced learning like Balanced Random forest and Balanced Bagging 

are evaluated in this study. The dataset was split into 80% training and 20% test data. To address the 

problem of class imbalance, SMOTE oversampling is applied during the training of the model to 

balance the classes. GridSearchCV upon StratifiedShuffleSplit on the oversampled training data is used 

for hyperparameter tuning of the models (Table S3-A and Table S3-B). The performance of all the 

hyperparameter tuned models on the test data is given in Table 1. 

We found that hyperparameter-tuned random forest model (Figure 2) performed best out of all other 

models mentioned earlier, with f1_score of 86.48%, Accuracy of 80%, and AUC of 74% on test data. This 

corresponds to 86% of true labels in majority class and 62% true labels in minority class (Figure 3A) 
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Figure 2. Hyperparameter Tuning in RF. The following hyperparameters were tuned: Tuning 

parameters of criterion(gini/entropy), maximum depth (1/2) and number of estimators 

(500/1000/2000/5000) for random forest model upon 5-fold cross validation using GridSearchCV. 

The hyperparameter tuned BalancedRandomForest model performed with f1_score of 82.3%, Accuracy 

of 76%, AUC of 76.29% on test data. The model positively identified 77% of minority labels and 78% of 

majority labels (Figure 3B). The linear models like LR, SVC, NuSVC, LinearSVC had lower AUC values 

as they identified less than 35% of the minority class (LTS) and hence were not considered in our further 

analysis. 
 
Table 3. Performance of 10 ML models under study on 20% test data upon hyperparameter tuning  

 

Hyperparameter tuned ML model  F1_Score Accuracy  AUC 

Logistic Regression 0.81 0.720 0.636 

Random forest 0.864 0.800 0.740 

NuSVC 0.864 0.780 0.626 

SVC 0.864 0.787 0.626 

Balanced random forest 0.823 0.760 0.762 

Balanced Bagging  0.853 0.780 0.701 

Linear SVC  0.746 0.660 0.645 

Naïve Bayes  0.805 0.720 0.661 

KNN 0.407 0.360 0.417 

CART- Decision Trees 0.788 0.700 0.647 
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Figure3. Normalized Confusion Matrix for ML models.  

Normalized Confusion matrix for the classification of survival groupsis shown here.For the classes, 0(LTS) and 

1(STS), the X-axis in the plot is for the predicted class and the Y-axis is for the true class. The true class elements of 

a row are spread across columns and the elements of the matrix are normalized row wise, i.e., sum of fractions 

along a row sum to 1. The only true predictions are along the diagonal, i.e., each of the i–ith element of the matrix 

and all other off-diagonal elements along a row are wrong predictions. The more the correctness of a class, the 

darker the blue hue it has in a cell of the plot of the confusion matrix. A) Normalized Confusion Matrix of Random 

forest model on internal (20%) test data B) Normalized Confusion Matrix for BalancedRandom forest model 

without oversampling C) Normalized Confusion Matrix for Random forest model on external test data 

 

To build a robust machine learning model which can identify the survival class of the GBM patients, 

we tested the random forest model on an external microarray dataset (Supplementary file 7). The LTS 

are rare events and hard to find adequate samples for testing. The external dataset containing 16 

samples (1-LTS and 15-STS) was from a single experiment. Random forest model performed with an 

accuracy of 93.75% (AUC of 96.66%) (Figure 3C).   

 

Age was found to be one of the top important (Top 7) features of the random forest model developed. 

The random forest model built on gene-expression and age had better sensitivity (93.75%) than the 

random forest model built on gene expression alone (81.25%) (Supplementary file 7). 

3.2. Deployment of ML model:  

The random forest model developed here for survival class prediction is deployed as a webtool- 

GlioSurvML. All information associated is given in github repository. Webtool has 2 models of RF 

one with including age and one without age. The webtool prints the output as a PDF report as well 

as an excel-table. (Supplementary file 8) 

 

3.3.  Feature Importances  

Ranking of features/genes according to their importance in the random forest classification model 

discussed above is given in Table S3-C. The performance of the model using top 

100/500/1000/1500/2000 features (Table S3-D) is investigated. We observed that the top 1500 features 

(Table S3-E) were sufficient enough to maintain the 80% accuracy of prediction. These genes are looked 

for their relevance in the disease using gene enrichment analysis, differential expression analysis, 

univariate survival analysis to investigate prognostic value and by utilizing existing knowledge on 

biomarkers of the glioblastoma.   

We found that TNF-alpha Signaling via NF-kB, mTORsignalling, G2-M checkpoints, Epithelial to 

Mesenchymal transition are some of the top overlapping gene sets according to MsigDB Table S3-F.  

 

3.4  Biomarker Identification  

 

Exploiting the previously reported method on unifying disease mechanisms based on causal gene-

disease associations as described in HumanPSDTM database (Supplementary file 5), we find that, out 

of top 1500 genes, 63 known gene expression biomarkers of Glioblasytoma and 136 gene expression 

biomarkers from similar diseases to Glioblastoma and 35 markers were reported both in Glioblastoma 

and in one of the similar diseases according to HumanPSDTM database (199 unique biomarkers in total). 

Figure 4. Based on this analysis, we propose 171(136+35) gene expression based biomarkers to 

Glioblastoma. According to the database, these genes were mapped to 8 diseases like Osteosarcoma, 

Melonoma, Ovarian neoplasm, Nasopharangeal neoplasm including Glioma , astrocytoma, brain 
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neoplasms. Top 10 (based on feature ranking in random forest model) of these new proposed 

biomarkers of Glioblastoma prognoisis are given in Table 4. 

 

 
Figure 4: Venn Diagram of HumanPSDTM biomarkers and important features. 

HumanPSDTM database reports 537 mRNAexpression based Glioblastoma markers, 1946 mRNA expression based 

biomarkers of diseases similar to GBM. Out of the top 1500 important features required for classifying the survival 

group of GBM, 63 Glioblastoma and 171 similar disease biomarkers were found overlapping. 35 genes were found 

associated with both GBM and related disease.  

 

These biomarkers are checked for differential gene expression between STS and LTS and univariate 

impact on survival. The analysis is performed in GSE108474 dataset which is U133 plus 2 affymetrix 

platform and TCGA-GBM of 560 microarray (U133 Affy array) datasets (Supplementary file 4). 

 
Table 4. Top 10 features proposed as biomarkers of prognosis in Glioblastoma in our study  

 
Features Feature_R

ank 

Molec

ule 

Disease Disease_Association PMID 

CBX3 25 mRNA Osteosarco

ma 

increased expression of CBX3 mRNA correlates 

with increased neoplasm metastasis associated 

with osteosarcoma 

228702

17 

GHR 29 mRNA Melanoma increased expression of GHR mRNA correlates 

with neoplasm metastasis associated with 

melanoma 

241348

47 

HNRNPA

2B1 

38 mRNA Brain 

Neoplasm

s 

increased expression of HNRNPA2B1 mRNA 

correlates with oligodendroglioma tumors 

associated with brain neoplasms 

114858

29 

NES 41 mRNA Astrocyto

ma 

increased expression of NES mRNA may 

correlate with disease progression associated 

with astrocytoma 

176117

14 

SKP2 44 mRNA Ovarian 

Neoplasm

s 

decreased expression of SKP2 mRNA may 

correlate with increased response to 

salinomycin associated with ovarian neoplasms 

238072

22 

RARRES2 48 mRNA Glioma increased expression of RARRES2 mRNA 

correlates with glioma 

219491

24 

ERBB2 58 mRNA Ovarian 

Neoplasm

s 

increased expression of ERBB2 mRNA may 

correlate with malignant form of ovarian 

neoplasms 

809403

4 

ELAVL1 63 mRNA Ovarian 

Neoplasm

s 

decreased expression of ELAVL1 mRNA may 

prevent increased positive regulation of gene 

expression associated with ovarian neoplasms 

233945

80 

TGIF2 68 mRNA Ovarian 

Neoplasm

s 

increased expression of TGIF2 mRNA correlates 

with ovarian neoplasms 

110061

16 
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FZD1 80 mRNA Ovarian 

Neoplasm

s 

increased expression of FZD1 mRNA correlates 

with glandular and epithelial neoplasms 

associated with ovarian neoplasms 

191485

01 

 

 

 
The information of differential gene expression (Log2FC, adj.pvalue)  and survival significance (Hazard 

Ratio and FDR <0.05) for these 199 biomarkers in GSE108474 are given in Supplementary File 6. Out 

of these, 17 genes were significantly differentially expressed, 28 had survival significance and 12 

biomarkers were both differentially expressed and had significant impact on survival.  

4. Discussion   

In this study, we evaluated application of 10 ML models to build a classifier to differentiate patients 

between STS and LTS groups based on their transcriptomic profiles and clinical information(age) from 

249 patients data which is pooled from publicly available datasets. To the best of our knowledge this is 

the first application of its kind. Of the models evaluated, a random forest model performed best with 

accuracy of 80% (F1_score=86.4% AUC =74%). Furthermore, this model is evaluated on external 

microarray data and found to have high accuracy of 93.75% (AUC of 96.66%). The identification of age 

as an important feature is in line with the observation that age is an important clinical predictor for 

survival.We have noted that the top 1500 features alone can preserve the classification efficiency of the 

model and these are only used for further analysis. 

The enrichment analysis revealed enrichment of TNF-Alpha via NF-kB, mTOR signalling, G2-

M checkpoints, Epithelial to Mesenchymal transition signaling pathways. All of these 

pathways are identified as therapeutic targets in GBM (ref) and play a role in response to 

Temozolomide (ref), which is a first line of treatment in GBM.  

Using HumanPSDTM we have identified 8 disorders which are mapped to be similar to 

Glioblastoma. Of these three are related to central nervous system tumors and others include 

ovarian, osteosarcoma, melanoma, nasopharyngeal tumors and general neoplasms. This 

identified overlap of GBM with gliomas and melanoma is interesting as studies have shown 

increased risk of gliomas in malignant melanoma patients (Scarbrough et al., 2014) and 

increased representation of melanoma in GBM patients (Yang et al., 2021). The gliomas and 

melanoma are shown to be responsive to Temozolomide which is indicative of a common 

potential pathophysiological pathway (Desai and Grossman, 2008). 

From the HumanPSDTM we have identified 199 mRNA biomarkers that have previously been 

linked to Glioblastoma and/or related. 

Some of the important biomarkers include retinoic acid receptor responder 2(RERRES2), 

Distinct Subgroup of The Ras Family Member 3 (DIRAS3), DEP Domain Containing MTOR 

Interacting Protein (DEPTOR), Insulin like Growth Binding Protein 5(IGFBP5) and C-Type 

Lectin Domain Family 2 Member B (CLEC2B). RERRES2 is a critical gene of retinoic acid 

signaling which is reported to be highly upregulated in STS in GBM (Barbus et al., 2011). 

DIRAS3 drives autophagy by Ras/AKT/mTOR pathway in GBM and is reported to be 

significantly downregulated in long-term survivors of GBM (Zhong et al., 2019). DEPTOR is 

a natural inhibitor of MTORc1 and mTORc2 which plays an important role in autophagy. 

Inhibitors of mTOR signaling are widely discussed as an adjuvant therapy to regulate 
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autophagy in GBM (Xia et al., 2020). IGFBP5 promotes cell invasion by regulating Epithelial 

to Mesenchymal Transition and inhibits cell proliferation by suppressing the phosphorylation 

of AKT in GBM (Dong et al., 2020). Its expression was upregulated in high grades of glioma 

and is correlated with worse prognosis (Dong et al., 2020). CLEC2B - A rise in expression of 

CLEC2B was linked to a rise in the progression-free Hazard ratio (Serão et al., 2011) 

Identifying the signaling pathways and biomarkers that are related to Glioblastoma, mapping 

to the diseases which are related to CNS or those with shared biology gives strength to our 

machine learning model and reinforces the idea that machine learning models can be used for 

understanding the biology of GBM. Our analysis has shown inclusion of clinical information 

i.e. age has increased the sensitivity of survival group prediction which shows the importance 

of adding clinical information to the machine learning models. Other clinically important 

variables are not added to the model due to high levels of missingness in the datasets which 

needs to be addressed while collecting the future data.  One important limitation of the 

current study is that the method is applicable only for microarray platforms and extension of 

this model for application in RNA-seq data requires further work. 

 

5. Conclusion 

The current study presents a Machine Learning model for use in research to classify patients into 

Glioblastoma survival groups, deploys application as a webtool, discusses important features for 

relevance in the disease, proposes new plausible markers of survival in Glioblastoma.  
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