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Abstract: Plant geneticists and breeders have used marker technology since the 1980s in quantitative 

trait locus (QTL) identification. Marker-assisted selection is effective for large-effect QTL but has 

been challenging to use with quantitative traits controlled by multiple minor effect alleles. There-

fore, genomic selection (GS) was proposed to estimate all markers simultaneously, thereby captur-

ing all their effects. However, breeding programs are still struggling to identify the best strategy to 

implement it into their programs. Traditional breeding programs need to be optimized to imple-

ment GS effectively. This review explores the optimization of breeding programs for variety release 

based on aspects of the breeder’s equation. Optimizations include reorganizing field designs, train-

ing populations, increasing the number of lines evaluated, and leveraging the large amount of ge-

nomic and phenotypic data collected across different growing seasons and environments to increase 

heritability estimates, selection intensity, and selection accuracy. Breeding programs can leverage 

their phenotypic and genotypic data to maximize genetic gain and selection accuracy through GS 

methods utilizing multi-trait and, multi-environment models, high-throughput phenotyping, and 

deep learning approaches. Overall, this review describes various methods that plant breeders can 

utilize to increase genetic gains and effectively implement GS in breeding . 

Keywords: Plant Breeding; Speed Breeding; Training Population; Field Design; Multi-Environment; 

Multi-Trait; Deep Learning; High-Throughput Phenotyping; Genetic Gain  

 

1. Genomic selection 

With the advent of marker technology in the 1980s, geneticists and breeders have 

used marker technology to improve selection strategy and efficiency in breeding pro-

grams [1]. Marker technologies were first used in quantitative trait loci (QTL) identifica-

tion [2–4]. The identification of QTLs allowed marker-assisted selection (MAS) and intro-

gression to select and deploy specific marker-linked traits in a population efficiently [5]. 

Marker use is effective for large-effect QTL but has proven to be challenging to use with 

quantitative traits that are controlled by multiple genes with minor effects. Previous meth-

ods to deal with quantitative traits were developed, such as a multi-marker MAS system, 

but it is difficult to identify and account for all the allele effects [6,7]. Therefore, Meuwis-

sen et al. [8] proposed the idea of simultaneously estimating all markers regardless of 

“significance”, and thereby, capturing all their effects. Meuwissen et al. [8] coined this 

method “Genomic Selection” (GS), which has also been referred to as genome-wide selec-

tion or genomic prediction [1,8].  

The first successful studies using GS were in dairy cattle (Bos taurus) breeding, where 

it was implemented to market bulls [9]. Until recently, plant breeders have typically relied 

on phenotypic selection (PS). However, this trend has been changing within the last dec-

ade. The first GS study in plant breeding was conducted in maize (Zea mays L.) [10]; after 

which the approach has been successfully implemented in other cereal grains such as 

wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and oat (Avena sativa L.) [10–13]. 
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2. Genetic gain 

Genetic gain, also known as the genetic response (R), is calculated by what is known 

as the breeder's equation, 𝑅 =
𝑖𝑟𝜎𝐴

𝑡
 , where i is the selection intensity; 𝜎𝐴 is the square root 

of the additive genetic variance; r is the selection accuracy, which is the equivalent to nar-

row-sense heritability (h2) in PS; and t is the cycle time [14,15]. Plant breeders use the 

breeder’s equation to increase the genetic gain of their breeding program. By increasing 

one of the components in the numerator or decreasing cycle time (t), a breeder can increase 

genetic gain. The increase of genetic gain using PS is difficult for traits with low heritabil-

ity [12]. Consequently, selection on traits with low heritability, such as grain yield, is com-

pleted at the later stages of a breeding program. If the environmental effect on a trait is 

high enough, such as drought, disease, or other adverse conditions, the selection based on 

PS will be challenging. The limitations of changing the denominator (t) are affected by the 

ability to evaluate the gene in question. An example of this limitation is grain yield, in 

which the trait can only be measured after the full maturity of the plant. One of the ways 

to maximize the genetic gain is to increase the selection accuracy in a breeding cycle, 

which can be accomplished by different molecular genetics approaches such as MAS or 

GS [8,16].  

The traditional breeding program focuses on selecting varieties for release. Gaynor 

et al. [17] proposed reorganizing the traditional breeding program into two parts: the 

product development (PD) component which is similar to traditional breeding programs, 

and a population improvement component to utilize recurrent GS. Pipelines for PD have 

been extensively studied for the implementation of GS because it is easily integrated into 

existing structures of breeding programs [18–20]. Genomic selection allows the use of ge-

nomic-estimated breeding values (GEBVs) in lieu of phenotypic data. Replacing pheno-

types with GEBVs allows the restructuring of breeding programs. Genomic selection can 

simply replace phenotypic or MAS for selection purposes [21,22]. However, this strategy 

does not necessarily increase genetic gain for certain traits, such as grain yield, due to the 

lack of increase in selection accuracy compared to PS. There are several opportunities to 

increase genetic gain by optimizing breeding programs for GS. These include reorganiz-

ing field designs, increasing the number of lines evaluated, and leveraging the large 

amount of genomic and phenotypic data collected across different growing seasons and 

environments to increase heritability estimates, selection intensity, and selection accuracy 

[18–20]. The trait data consist of phenotypic values collected from multiple environments, 

multiple traits, and high-throughput phenotyping. Recent developments of multi-trait, 

multi-environment GS models are poised to leverage the large amount of phenotypic data 

in breeding programs to improve selection accuracy for quantitative traits [23,24]. In this 

review, we explore the optimization of breeding programs for GS for a wheat (inbred 

crop) breeding program based on the components of the breeder’s equation. 

3. Breeding program optimization 

Wheat breeding PD programs focus on developing inbred lines for release as inbred 

varieties. Traditionally, after crossing and population improvement, inbred lines are de-

veloped either through self-pollination or doubled haploids. The inbred lines are then 

phenotyped in headrows and field trials before being selected as parents in the crossing 

block. This method takes up to four to six years in wheat, depending on the breeding 

program structure and preference of the breeder. In the Washington State University Win-

ter Wheat breeding program, for example, the inbred lines are developed through both 

self-pollination and doubled haploids. Headrows are the first stage of phenotyping and 

happens in the fourth year, followed by unreplicated preliminary yield trials (PYT) in the 

fifth year. It takes until the sixth year to start with replicated field trials in the advanced 

trials. Inbred lines are in replicated yield trials up to five more years when varieties are 

released at the end of the 11th year. The long length of the breeding program allows for 

ample opportunity to optimize the breeding program (Figure 1). 
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Figure 1. Optimization of the traditional breeding pipeline and product development 

based on an 11-year breeding program from parental crossing to variety release. The effect 

of each component of optimization (genomic selection, training population design, inbred 

line development, field design, high-throughput phenotyping (HTP) on different aspects 

of the breeder’s equation (selection intensity, selection accuracy, genetic variance, and cy-

cle time) is shown by the coverage of the method of optimization within the respective 

column of the different factors of the breeder’s equation. For example, for Years 1-3 of the 

breeding cycle, the composition and structure of the training population (purple) affect 

both selection accuracy and genetic variance, whereas the choice of genomic selection 

models affects the intensity of selection, prediction accuracy, and genetic variance. 

 

3.1. Speed breeding and doubled haploids 

The optimization process for the PD pipeline can start immediately after hybridiza-

tion of the parental lines. The first optimization is in inbred development, which can de-

crease the length of the PD pipeline, and therefore cycle length. This can be achieved 

through traditional self-pollination such as single-seed descent (SSD) or through rapid 

fixation of lines via doubled haploids (DH). The creation of inbred lines allows the within-

line variation to be minimized while increasing between line variation to allow maximum 

genetic gain via selection. However, one of the most recent developments in inbred de-

velopment is speed breeding which does not require specialized labs for in vitro culturing 

and can be applied over diverse germplasm, unlike DH production [25]. Speed breeding 

accelerates generation advancement by manipulating growing conditions under pro-

longed photoperiod and through temperature control to increase the rate of development 

and growth in plants [26]. Therefore, speed breeding has the ability to reduce the genera-

tion time and accelerate breeding programs. Using speed breeding, Watson et al. [26] were 

able to reach six generations per year in wheat. After the creation of the inbred lines, they 

can be implemented into the training population and phenotyped in field trials. In another 

study, Watson et al. [27] integrated multivariate GS and speed breeding to reduce the 

breeding cycle by quickly producing inbred lines and integrate indirect selection for traits 

such as height and flowering time as well as yield-related traits before field trials.  
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3.2. Training population design 

The predictive ability of GS models is primarily dependent on the training popula-

tion used for predictions. Optimizing training populations have an effect on the genetic 

variance and selection accuracy factors in the breeder’s equation. The training population 

should be developed once the test (validation) population and goal of prediction are iden-

tified. Training populations range from biparental populations in some of the earlier GS 

studies [8,28,29]; to using exotic or diverse populations [30] or using the breeding lines 

themselves [31–33]. Regardless of the goal, the training population needs to balance the 

costs of phenotyping while maximizing predictive ability [34].  

The composition and structure of the training population directly relates to predic-

tion accuracy [35,36]. Utilizing GS within bi-parental populations reduces the number of 

lines phenotyped and genotyped for high levels of accuracy due to high levels of linkage 

disequilibrium [37]. They can also be readily applied to recurrent selection to predict fu-

ture cycles of selection from intermating related lines [12,13,28,38]. An advantage of bipa-

rental populations is the high level of genetic relatedness between the training and test 

populations. However, when combing unrelated or lines from various pedigrees, the pre-

diction accuracy generally decreases [39–41]. Training populations based on bi-parental 

populations and selecting within individual families has limited applicability within a 

large breeding program, especially when resources are limited [18]. There have been 

many comparisons of training populations within breeding programs [31,33,42,43].  

Another method is to use diversity panels that are commonly used and developed 

for genome-wide association studies [32,33,42,43]. These populations generally have large 

population structure and reduced prediction accuracy [33]. When there is greater diver-

sity within a training population, more lines and markers are needed to increase accuracy. 

This can be difficult to do within traditional breeding programs, as it requires the cultiva-

tion of an additional set of lines just for the training population. An alternative is to use 

the breeding program itself as the training population [31]. As lines being tested within 

the breeding program are genotyped and phenotyped, they begin to develop the basis for 

the training population, and over time, large datasets are collected with little additional 

work. However, with most breeding population trials, many lines share some degree of 

relatedness, which can increase GS prediction accuracy. Ensuring lines that are highly re-

lated with a limited population structure is ideal in training population optimization [36].  

One of the most important factors in determining the accuracy of GS is the population 

size [35–37]. Training population size affects genetic variance, and large diversity and ge-

netic variance require larger training populations [36,44]. The more diverse a training pop-

ulation is, the larger the number of genotypes needed to account for the large genetic di-

versity, specifically for low heritability traits [45]. Training population size impacts accu-

racy more than marker number or density. The size of the training population and marker 

density are dependent on QTL number and heritability of the trait. Low heritability traits 

require larger population sizes, but results have shown that there are effective population 

sizes for even extremely low heritability traits, and these traits can still be accurately pre-

dicted [37,46].  

Specifically, in a breeding program, the goal for optimum training population size is 

to create a population that maximizes prediction accuracy with the least number of indi-

viduals possible. Finding the optimum size reduces the cost of genotyping and phenotyp-

ing, and hence increases the efficiency of plant breeding programs. It has been shown that 

prediction accuracy improves as the number of genotypes increases due to the reduction 

of bias and variance of marker effect estimates [47,48]. Smaller training sets have the risk 

of overestimating the genotypic effect when predicting larger validation sets. In general, 

prediction accuracy in wheat has been shown to increase with the increase of training 

population size, with the highest accuracy around 300 genotypes and a gradual plateau 

after 300 lines [36,49]. Muleta et al. [30] further demonstrated an increase in accuracy as 

the training population increased in both elite breeding lines and diversity panels.  
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Methods to identify optimized training populations within populations have been 

compared. For example, Tiede and Smith [13] compared a stratified sampling method, 

Gmean, CDmean, and selection of training populations by genetic algorithms (STPGA) 

for predicting yield and disease resistance in barley. Stratified sampling creates training 

populations based on clusters from population structure already existing in the breeding 

program. Gmean calculates the means of the training population and validation popula-

tion within a genomic-relationship matrix, and lines within the training population with 

the highest mean relationships to the validation population were used. The CDmean max-

imizes the coefficient of determination, whereas STPGA utilizes genotypic and pheno-

typic data to minimize prediction error variance among selection candidates. While 

Gmean was found to perform best for grain yield, STPGA performed best for deoxyniva-

lenol. The best optimization is dependent on the population, and the breeder needs to 

compare the methods to determine the best fit for the trait in question [13]. In another 

study, a weighted relationship matrix with stratified sampling was shown to be the best 

method for training population optimization, especially in forward predictions of distant 

generations [50]. 

Within breeding programs, large amounts of phenotyped lines are not usually a con-

straint. In crops such as wheat, pooling together many small families for the training pop-

ulation is advised, whereas for hybrid crops such as maize, choosing a few families with 

a large number of lines is more appropriate [34]. The number of lines per family that typ-

ically reach the field trials is small, which reduces the ability to form a training population 

based on a few families with many lines. Therefore, by combining breeding populations 

trials with various pedigrees and genetic relatedness, many lines can form a training pop-

ulation, especially if their ancestral pedigrees have been genotyped. This can help opti-

mize genetic relatedness and training population selection through genomic relationship 

(GRM) or marker matrices [34]. By leveraging and optimizing the breeding program for 

GS purposes, large training populations with shared ancestry can be developed. How-

ever, in order to do so, one needs to design the program and models to deal with combin-

ing trials and environments. 

 

3.3. Field design 

Once lines are considered fixed in terms of allele frequency, the PD and selection can 

begin on a large scale. The inbred lines still need to be phenotyped in headrows and field 

trials, and GS can be fully implemented for selection. There have been various develop-

ments into optimizing PD pipelines for GS. Breeding programs have limited resources to 

allocate and can limit the size, number of replications, and locations of field trials. Ulti-

mately, these factors influence the ability to estimate marker effects and genetic gain. In 

general selection terms, screening more lines increases the chance to identify high-per-

forming lines while replicating individual lines creates more accurate genotypic estimates 

[34]. Due to increased genotypic estimates, the phenotypic variation is decreased, which 

increases heritability. However, the increase in heritability plateaus and further optimiza-

tion of field designs need to be completed [51].  

Individual trial designs are just as important to increase heritability and phenotypic 

data quality. Field trials can be optimized to increase heritability, genetic variance, selec-

tion accuracy, and an increase in lines screened which can improve selection intensity and 

genetic gain. This is due to GS model accuracy being contingent on the quality of the phe-

notypic data and control of spatial variation to increase heritability and selection accuracy 

[20,52].  

Spatial variation can be accounted for in the initial design of the trial through block-

ing and checks and through analysis via spatial correction. Blocking and randomization 

designs range from the basic with no blocking, to completely randomized design and ran-

domized complete block through the row-column designs. Incomplete block designs are 

a popular method to increase the amount of lines screened with limited resources, such 
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as the alpha-lattice design [53]. In early generations, un-replicated or augmented complete 

block design or incomplete block designs hinge on un-replicated genotypes with repli-

cated checks [54].  

Recently, other augmented designs have been explored, such as the partially repli-

cated experimental design (PREP) that uses replicated genotypes instead of checks which 

helps avoid bias [55]. The PREP design was shown to display optimum accuracies using 

a fixed budget and resources compared to other designs [55]. Moreover, the PREP design 

spreads replicates across locations instead of replicating all lines in all locations and thus 

increases the number of lines phenotyped. The augmented PREP (APREP) design ex-

tended the original PREP design with multi-environments in which lines are replicated in 

a single environment, and all other environments are un-replicated [56].  

Recent simulations showed that completely replicated designs such as the alpha-lat-

tice and row-column designs increased GS prediction accuracy over all other partially or 

un-replicated designs [20]. This was due to the increase in heritability from replication 

and the ability to partition genotypic and environmental effects and reduce error. Overall, 

the alpha-lattice design performed the best over all heritability and genotype-by-environ-

ment (GE) scenarios. The PREP designs outperformed the un-replicated designs and had 

the highest response to selection when the heritability was low, and the population size 

was large [20]. 

 Spatial variation can also be accounted for via spatial correction. Spatial corrections 

during statistical analysis range from the common two-dimensional autoregressive  

model for spatial variation for a row-column design [57] and a two-dimensional spline 

model [52,58]. Additionally, spatial correction can also be analyzed with nearest neighbor 

analysis and the one-dimensional linear variance model plus the incomplete block model, 

additive or separable form [56,59,60]. However, Hoefler et al. [20] noted that spatial cor-

rections had a minimal increase in GS prediction accuracy when implemented to a range 

of field designs stated previously but would be most beneficial in large trials. Therefore, 

the advantage of spatial corrections is case specific [52,56,58,61,62]. 

 

4. Leveraging phenotypic data 

4.1. Multi-environment models 

Genomic selection has been shown to be accurate in single environments, but most 

prediction models do not have the predictive power to make selections across multiple 

environments or account for genotype-by-environment (GE) interaction. In plant breed-

ing, GE plays a major role in the variation of certain traits, such as grain yield. Phenotypic 

variation can be divided into genetic and non-genetic effects [63]. GE increases phenotypic 

variation without increasing genetic variation and thus, decreasing heritability [64]. Ade-

quate experimental designs and phenotypic adjustments historically accounted for non-

genetic effects. However, accounting for GE in prediction models, such as using genomic 

best linear unbiased prediction (GBLUP), is important to optimize a breeding program to 

account for the combination of trials over multiple years and locations, which can ulti-

mately increase selection accuracy and genetic variance (Table 1).  

 

Table 1. Genomic selection (GS) models leveraging phenotypic data for multi-trait (MT), genotype-by-environment interaction 

(GE), and multi-trait, multi-environment (MTME) models that have shown an increase in prediction accuracy over single-

environment, single-trait, GS models. 

Model Factor Description Software 

Package 

(Programming 

Language) 

Reference(s) 
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Two-Step 

Genomic best 

linear unbiased 

prediction 

(GBLUP) 

GE Environmental and Phenotypic 

Adjustments made prior to GS using a 

linear mixed model. 

ASREML (R) 

BGLR (R) 

[65] 

Single-Step 

GBLUP 

GE, MT, 

MTEME 

GE GBLUP models using compound 

symmetry, heterogenous variance, and 

factor-analytic unstructured models. 

ASREML (R) 

BGLR (R) 

[65] 

Factor-Analytic 

(FA) GBLUP 

GE FA GE GBLUP Model ASREML (R) 

BGLR (R) 

[66] 

Crop-Growth 

(CG) covariate  

GBLUP 

GE CG model derived stress environmental 

covariates (EC) using the Kronecker 

product 

ASREML (R) 

BGLR (R) 

[67] 

Reaction-Norm 

(RN) GBLUP 

GE RN model where the main and 

interaction effects of markers and 

environmental covariates are introduced 

using highly dimensional random 

variance-covariance structures 

BGLR (R) [68] 

RN model for 

phenotypic 

plasticity (PP) 

GBLUP 

GE RN GBLUP model for phenotypic 

plasticity 

rrBLUP (R) BGLR 

(R) 

[69] 

Enviromic-aided 

(ET) GBLUP 

GE EC GBLUP using Envirotyping EnvRtype (R) [63] 

Genotype-by-

Genotype-

Environment  

(GGE) GBLUP 

GE GE base on GGE Mega-environments and 

additive main-effects and multiplicative 

interaction (AMMI) using the Kronecker 

product 

rrBLUP (R) BGLR 

(R) 

[70] 

Marker-

Environment 

Interaction (ME) 

GBLUP) 

GE ME model that decomposes the marker 

effects into components common across 

environments and environment specific 

deviations. 

BGLR (R) [71] 

ME Linear 

Genome-Based 

Kernel (GB) 

GBLUP 

GE ME with the Linear GB kernel BGLR (R) [72] 

ME Gaussian 

Kernel (GK) 

GBLUP 

GE ME with the Gaussian GK kernel BGLR (R) [72] 

GB GBLUP GE, MT, MTME GE using Kronecker product with the 

Linear GB GBLUP model 

BGLR (R); 

BMTME (R) 

[23,64,73,74] 

GK GBLUP GE, MT, MTME GE using Kronecker product with the 

Gaussian GK GBLUP model 

BGLR (R); 

BMTME (R) 

[23,64,73,74] 
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BGGE GB 

GBLUP 

GE GE using Hadamard product with the 

Linear GB GBLUP model 

BGGE (R) [75] 

BGGE GK 

GBLUP 

GE GE using Hadamard product with the 

Gaussian GK GBLUP model 

BGGE (R) [75] 

Approximate 

Kernel (AK) RN 

GBLUP 

GE Sparse Approximate Model using the RN 

GBLUP model 

BGLR (R) [76] 

AK GBLUP GE, MT, MTME Sparse Approximate Model using the 

Kronecker product for GB and GK 

GBLUP along with various other kernels 

BGLR (R) [77] 

Multi-Layer 

Perceptron 

(MLP) 

GE, MT, MTME Deep learning MLP that uses a 

combination of input, hidden, and output 

layers using a large number of neurons 

for building the relationship between the 

predictors and output that has the ability 

to incorporate GB and other kernels and 

use any GE method. 

TensorFlow (R 

and Python) and 

Keras (R and 

Python) 

[73,74] 

 

One of the simplest methods to account for GE in GS models is the two-step adjust-

ments (Two-step GBLUP). In this process, field and environmental corrections are applied 

to the phenotypic data before integrating them into the GS models. Predictions using two-

step models were shown to be equivalent in prediction accuracy to single-step GBLUP 

models that integrate covariates or GE marker interaction into the GS model [65]. In an-

other method to optimize environments for GS purposes, Lado et al. [70] grouped envi-

ronments based on genotype-by-GE biplots to create mega-environments and optimized 

variance-covariance matrices across environments (GGE GBLUP) with low GE to better 

predict genotype performance in untested environments. 

Further, several models implicitly account for the GE effect within the GS model it-

self. One of the first methods to deal with GE was implementing factor analytic (FA 

GBLUP) models that are flexible for the genetic variance-covariance for environments 

[66]. Jarquín et al. [68] extended the GE GBLUP model by using genetic markers and en-

vironmental covariates (EC) to increase prediction accuracy significantly. Further, GS has 

been modeled using reaction-norm (RN) from ECs, which is a linearized response from 

genotypes for a target environmental gradient, and can be modeled explicitly as genotype-

specific covariates using factorial regressions (RN GBLUP) [67,78,79]. Another approach 

for utilizing RN models is to model phenotypic plasticity (PP GBLUP) [69]. In understand-

ing phenotypic plasticity, they identified environmental indices to connect environments 

quantitatively using GS with RN parameters. Environmental covariates can also be mod-

eled using crop growth models (CG GBLUP) and deep kernel approaches [67,80–82]. Re-

cently, environmental covariates using geographic information system information have 

been used to better deal with GE [83]. Further, Costa-Neto et al. [63] developed an R pack-

age called “EnvRtype” to integrate large-scale envirotyping (enviromics) into quantitative 

genomics for implementation in GS. EnvRtyping was utilized for enviromic-aided GS (ET 

GBLUP) and outperformed conventional GBLUP for predicting grain yield in maize into 

untested environments.  

The next development for multi-environment GS models was accounting for the ef-

fects of Marker-Environment interaction (ME). GE can be modeled explicitly by modeling 

interactions between markers and environments using ME in GBLUP [71]. The ME model 

decomposes effects into components common across environments and environment-spe-

cific deviations. This can be used to model stable effects across environments and envi-

ronment-specific interactions [71]. Additionally, ME can be modeled using GBLUP (ME 
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GBLUP) or variable selection methods. However, the ME approach has limitations on co-

variance patterns, making the model positive and homogenous and best suited for joint 

analysis of positively correlated environments.  

Additionally, GE can be modeled using genome-based kernels, pedigree, and GRMs. 

In genomic prediction, linear models incorporate genetic values as linear combinations of 

markers so that the linear genome-based (GB) kernel is equivalent to ME. However, de-

partures from linearity happen regularly in GS due to complex interactions among genes 

and their interaction with the environments and can be addressed using nonlinear kernels 

such as Gaussian kernels (GK). Cuevas et al. [72] compared methods that applied the ME 

GBLUP method of Lopez-Cruz et al. [71] using the linear GB (ME GB GBLUP) and the 

nonlinear GK (ME GK GBLUP) model and displayed an increase in accuracy by up to 17% 

over ME GBLUP. However, the ME GK and GB GBLUP models also assume positively 

correlated environments [72]. These models assume a positive correlation because they 

use the Hadamard product for modeling GE and exchange information between environ-

ments using the variance-covariance matrix of the main effects. This method has an ad-

vantage when the number of lines in each environment is the same but can also be ex-

tended to an unbalanced number of lines in each environment, as shown in Bandeira e 

Sousa et al. [84]. 

 In contrast, GE GBLUP can be accomplished by using the Kronecker product of the 

variance-covariance matrices of the relationships between environments and GRMs. The 

Kronecker method allows negative correlations between environments. Bayesian regres-

sion models for GE previously used the Kronecker method for unstructured variance-co-

variance matrices between environments and genomic kernels using both the GK (GK 

GBLUP) and GB (GB GBLUP) kernels [85]. However, the Bayesian models used to imple-

ment the kernels increased computing time. To overcome this, Granato et al. [75] created 

the Bayesian Genomic GE (“BGGE”) package in R to fit Bayesian models with homoge-

nous error variances proposed in Jarquín et al. [68] and Lopez-Cruz et al. [71]. Cuevas et 

al. [86] compared the Hadamard product ME GBLUP model with the ME GB GBLUP and 

ME GK GBLUP kernels implemented in BGGE to the GB GBLUP and GK GBLUP kernels 

using the Kronecker product method. The Hadamard product models decreased compu-

ting time but proved the advantages of the Kronecker product models for environments 

with zero to negative correlations while confirming the increase in accuracy of using the 

GK over the GB [86].  

Another useful evolution in modeling GE is using sparse matrices to create approxi-

mate kernels to reduce computational time with comparable prediction accuracy (AK 

GBLUP) [76]. Approximate kernels are advantageous for large datasets requiring intense 

computation and matrix decomposition time [76]. The prediction accuracy of the approx-

imate kernels depends on the number of subset lines and the decrease in eigenvalue de-

composition of the GRM. Further, Montesinos-López et al. [87] outlined the implementa-

tion of sparse matrices from Cuevas et al. [76]. They integrated them with the Bayesian 

methods from Cuevas et al. [85] to create linear, polynomial, sigmoid, Gaussian, and Arc-

cosines with one or more hidden layers and exponential kernels in both a multi-environ-

ment and multi-trait framework. 

 

4.2. Multi-trait models 

In addition to GE, breeders simultaneously select multiple traits to advance lines. 

Genomic selection has been mainly used for the prediction of single traits, but the ability 

to select for multiple traits would be advantageous when trying to evaluate and select 

genotypes based on combinations of yield components, end-use quality, or disease traits. 

Additionally, multiple traits may be positively or negatively correlated, which increases 

the complexity of improving multiple traits simultaneously [23]. The joint analysis of mul-

tiple traits takes advantage of the genetic correlation between the traits, which can in-
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crease prediction accuracy, specifically for lowlyheritable traits that are genetically corre-

lated with highly heritable traits, and ultimately increases selection accuracy and genetic 

variance similar to accounting for GE [23,88–90].  

Multi-trait (MT) analysis can also facilitate predicting untested lines and unobserved 

traits. MT or multivariate models can take advantage of correlation to increase accuracy, 

statistical power, parameter estimation, and ultimately reduce selection bias when imple-

menting MT selection [23]. MT models range from GBLUP, Bayesian, and, recently, deep 

learning (DL) models [23,24,73]. The MT models have been used in BLUP models [91]. 

According to Calus and Veerkamp [92], multivariate Bayes Stochastic Search Variable Se-

lection outperformed Bayes C and GBLUP, when the trait had major QTLs and the MT 

models had higher prediction accuracies compared to single-trait models. However, for 

polygenic traits, the multivariate trait models performed similar to the single univariate 

models [88]. Multivariate models predict better when the traits in question are genetically 

correlated with each other [88]. Accuracy of GS for low heritability traits (e.g., grain yield) 

can also be significantly increased by multivariate models when a correlated highly herit-

ability trait is available [88,92]. MT models can improve indirect selection due to increased 

genetic correlation estimates [23,73,93]. Montesinos-López et al. [77] showed the higher 

the genetic correlation between traits, the higher the prediction accuracy and benefit of 

MT over single trait models. 

Using GS to predict selection indices is another way to select multiple traits. Index 

selection involves selecting multiple traits simultaneously on the basis of a selection index 

[94]. A selection index integrates and weights multiple traits to create greater genetic gain 

as compared to independent trait selection. Selection indices can use marker sets as indi-

rect selection traits. Using MAS and linear stepwise regression models violates selection 

index assumptions of multivariate normality since selection is based on only a few large-

effect loci. However, GS does not violate this assumption since it simultaneously predicts 

all marker effects [95]. Genotypic selection indices have been shown to be more efficient 

than PS indices in both simulated and empirical data [96]. 

4.3. Multi-environment, multi-trait approaches 

The advantages of GE and MT models can be combined into multi-trait, multi-envi-

ronment (MTME) models. In Ward et al. [65], a single-step MTME GBLUP model using 

unstructured variance-covariance matrices between residuals, main effects, and GE im-

plemented in ASReml displayed an increase in accuracy for lowly heritability traits. The 

common MT and GE GBLUP models are unable to estimate separable unstructured vari-

ance-covariance matrices for a three-way interaction term. The multivariate GBLUP 

model has to assume one of the variance-covariance matrices as a new variable created by 

merging two of the three factors and estimating the covariance matrix with two compo-

nents that cannot be separated [23]. The MT and GE Bayesian models have been exten-

sively used, as discussed previously, but a Bayesian MTME model (BMTME) was not de-

veloped until Montesinos-López et al. [23] unified the two models. The BMTME model 

can be advantageous when individuals are phenotyped for all traits in one environment 

but not in the others, and vice-versa for environments. The BMTME models were evalu-

ated using grain yield, disease index, and plant height using multiple covariance struc-

tures. Montesinos-López et al. [77] found that when trait correlations are above 0.50, the 

unstructured covariance matrix outperformed the diagonal and standard covariance ma-

trices. The standard covariance matrices are performed similarly to the other covariance 

structures when the correlation is low. The MTME models allow GS models to take ad-

vantage of common breeding program scenarios when lines are phenotyped for multiple 

traits in multiple environments and allow the leverage of compiling all available data to 

predict using a single model. As an approach, MTME models demonstrated an improved 

accuracy over single trait models for a variety of agronomic traits, including grain yield 

and enhanced resource efficiency in wheat [97]. 
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4.4. Deep learning 

The latest development in GS is the implementation of machine and deep learning 

models, which can significantly impact multi-environment and multi-trait applications to 

increase genetic variance and selection accuracy. Machine learning (ML) models use sta-

tistical methods to learn iteratively for improved performance and accuracy without ex-

plicitly being told what to do [73]. Deep learning  is a form of ML that uses artificial neu-

ral networks with multiple layers linked nonlinearly. In DL, layers that transform the data 

by higher abstract layers [73] are used. These models can be used for both classification 

and regression and have shown to be comparable or even increase prediction accuracy to 

linear regression GS models [24,73,98–100]. One of the most commonly used DL models 

is a multi-layer perceptron (MLP) neural network model, also referred to as a feed-for-

ward neural network [100]. The MLP uses densely connected layers, also called networks, 

composed of input, output, and multiple hidden layers. Weighted units or neurons are 

connected in a network. Another common DL model, convolutional neural networks 

(CNN), is a special case of DL models where hidden layers consist of convolutional layers 

that are flattened and fully connected via dense layers. The CNNs were first proposed in 

GS to account for inputs that are associated, such as LD between markers [100]. In another 

study, MLP outperformed CNN and rrBLUP models in a spring wheat nested association 

mapping population across five different agronomic traits [100]. 

In the context of GE, Montesinos-López et al. [73] compared GBLUP and DL MLP GE 

models. When GE was accounted for, the GBLUP model obtained the highest accuracy in 

eight of the nine data sets, but the DL MLP had the highest accuracy in six out of the nine 

data sets when GE was ignored. The increase in accuracy in the DL MLP when GE was 

not implicitly modeled was accounted for by the ability of DL MLP models to capture 

complex relationships in the data without explicitly accounting for them. The lack of im-

provement in accuracy for the DL was due to the scarcity of data in the smaller data sets 

when using grid-search and hyperparameter optimization. Further disadvantages of the 

DL were due to the increased computation time to optimize the models, increase in the 

number of layers and units, and a demand for higher experience to implement them. Ad-

ditionally, Montesinos-López et al. [74] compared an MTME DL MLP model to the MTME 

GBLUP models outlined in Montesinos-López et al. [23] using the BMTME package with 

comparisons to both models with and without the inclusion of GE. Montesinos-López et 

al. [74] showed similar results to Montesinos-López et al. [73] and found that MTME 

GBLUP models displayed higher accuracy in two of three data sets but had similar accu-

racy. Further, the MTME GBLUP displayed higher accuracy across environments with 

GE, and the MTME MLP displayed higher accuracy across environments without the in-

clusion of GE. However, in contrast to the single trait GE comparison in Montesinos-

López et al. [73], the MTME MLP required less computational resources than the MTME 

GBLUP models. Therefore, with contrasting results, the DL models are currently an addi-

tion to the GS toolbox rather than a replacement, and models for GE should be compared 

and used on a case-by-case basis. 

4.5. High-throughput phenotyping 

High-throughput phenotyping spectral data can also be integrated into univariate 

and MT models and can significantly impact genetic variance, selection intensity, and se-

lection accuracy. Spectral reflectance indices (SRI) are standardized secondary traits 

highly associated with primary traits of interest and difficult and expensive traits to phe-

notype. These secondary traits usually have higher genetic and phenotypic correlation, 

high heritability values, and are easier to phenotype than complex lowly heritable traits. 

This association and the underlying prediction improvement in MT models lie in the ge-

netic correlation of SRIs and grain yield [24,88,101]. Rutkoski et al. [102] were among the 

first to model SRIs collected using HTP tools using a multivariate GBLUP model and 

showed an increase in prediction accuracy for grain yield by 70% (Table 2). SRIs allow for 

the simple addition of a single or a few secondary traits in MT models. However, another 

common form of HTP data is hyperspectral. Hyperspectral sensors capture thousands of 
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points across the reflectance spectrum. Relationship matrixes generated from hyperspec-

tral data have been shown to model both genetic main effects and GE interaction effects 

[103]. By incorporating marker, pedigree, and HTP data, an additive benefit was found 

when evaluating genetic and GE effects across a breeding program. This, in turn, in-

creased prediction ability for grain yield when multiple kernels were used in GBLUP 

models. Furthermore, Sandhu et al. [24] demonstrated that MT ML random forest and DL 

MLP models increased prediction accuracy for grain yield and grain protein content by 

up to 29 and 15%, respectively, when SRIs were incorporated into the model. 

 

 

Table 2. Univariate and multivariate genomic selection (GS) models that have been used to incorporate high-throughput 

phenotyping (HTP) spectral reflectance indices (SRI). 

Model Description Software Package 

(Programming 

Language) 

Reference(s) 

Genomic best linear 

unbiased prediction 

(GBLUP) 

The GBLUP model using GRMs for 

predicting their performance. In addition, 

has the ability to use single and multi-kernel 

models combining hyperspectral and 

genomic marker information 

ASReml (R); BGLR 

(R) 

[24,101–103] 

Bayesian  Bayesian models (Bayes A, Bayes B, Bayes C, 

Bayes Cπ, Bayes D, Bayes Lasso, Bayes 

Ridge Regression) that use marker effects by 

assuming a scaled inverted chi-square 

distribution, scaled t distribution, or double 

exponential distribution for variance 

parameters to model marker effects. 

BLGR(R); BMTME 

(R) 

[24] 

Elastic Net (EN)  EN is the intermediate between ridge 

regression and lasso using an average 

weight penalty for marker effect 

estimations. 

glmnet (R) [101] 

Partial least square 

regression (PLSR) 

PLSR is a dimensional reduction approach 

which uses latent variables derived from 

predictors to link with the response 

variables. 

pls (R) [101] 

Random Forest (RF) RF uses a network of the tree with varying 

number of nodes, resampling, and depth for 

building the final tree regression for 

predictions 

caret (R);Scikit-learn 

(Python) 

[24] 

Support-Vector 

Machine (SVM) 

SVM is a non-parametric method that uses 

kernels functions, and cost function to 

model hyperplanes for predictions. 

caret (R);Scikit-learn 

(Python) 

[24] 

Convolutional Neural 

Network (CNN) 

Deep learning CNN that uses convolutional, 

flattening, pooling and dense layers for 

caret (R);Keras (R 

and Python); Scikit-

learn (Python) 

[24] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2022                   doi:10.20944/preprints202202.0048.v1

https://doi.org/10.20944/preprints202202.0048.v1


 

predicting using kernels to reduce the excess 

predictors from the model. 

Multi-layer Perceptron 

(MLP) 

Deep learning MLP that uses a combination 

of input, hidden, and output layers using a 

large number of neurons for building the 

relationship between the predictors 

caret (R);Keras (R 

and Python); Scikit-

learn (Python) 

[24] 

 

 

 

 

 

 

 

5. Genotypic data and major genes 

The development of next-generation sequencing (NGS) allowed an exponential ad-

vance in genotyping driven by the goal of sequencing different genomes. Sequencing has 

improved with the implementation of parallel sequencing that allowed polymorphism 

discovery, gene expression analysis, and population genotyping. The cost of genotyping 

has allowed the application of NGS and revolutionized applied plant breeding [104]. Be-

fore NGS, MAS was the primary use of genotypic data in selection. However, the ad-

vantages of GS over MAS have been observed in many studies [22,33,37,105]. Markers for 

major genes used in MAS in breeding programs for traits such as disease resistance can 

still be utilized with the integration of MAS and GS. Furthermore, markers for major genes 

and significant loci derived from GWAS can be integrated into GS models such as rrBLUP 

as fixed effects and help account for genetic variance and selection accuracy [21,22,33,106]. 

The advantage of integrating the major markers varies. For example, Rutkoski et al. [21] 

showed a significant increase in prediction accuracy for quantitative stem rust (Puccinia 

graminis f. sp. tritici). Conversely, integrating major markers for stripe rust (Puccinia strii-

formis f. sp. tritici) has been demonstrated to have little or no increase in prediction accu-

racy [33].  

Significant markers from GWAS can also be integrated into GS models; however, 

negligible increases for prediction accuracy have been found. Publicly available GWAS 

markers were integrated into GS models, but accuracy only increased by 0.01% [107]. 

Therefore, population-specific de novo GWAS markers were integrated. Arruda et al. [22] 

demonstrated an increase in accuracy of 0.14% when integrating significant de novo GWAS 

markers for Fusarium head blight (Fusarium graminearum Schwabe) and Spindel et al. 

[108] demonstrated an increase in accuracy by 0.10%. In contrast, Merrick et al. [33] and 

Rice and Lipka [106] demonstrated a decrease in prediction accuracy by using de novo 

GWAS markers for simulated traits across various types of genetic architectures. The lack 

of increase in accuracy can be a consequence of the GS models already accounting for the 

majority of variation of the trait in the genome-wide markers or that the major marker 

may not account for enough phenotypic variation [33]. Therefore, major genes should be 

integrated into GS models on a population basis; and further, as Bernardo [109] proposed, 

only markers that account for more than 10% of the variation should be incorporated into 

GS models. 

 

6. Real world applications 

The first practical application of GS for selecting lines in small grains was published 

by Asoro et al. [11] in oats. β-glucan was selected and compared by GS, MAS, and PS. In 

this study, GS and MAS increased β-glucan in their resulting populations. GS has also 

been applied in large scale at CIMMYT, Mexico, since 2010 [110]. CIMMYT has explored 
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the optimization of various aspects of GS, where it is currently implemented to increase 

the accuracy of line selection in the PD portion of the CIMMYT spring wheat program. At 

CIMMYT, GS is implemented to select lines in the same generation or to select lines in 

earlier generations with two selection cycles annually [110]. As the training population 

grew, newer genotyping technology and improved GS models were implemented, conse-

quently improving the GS accuracy for grain yield within the CIMMYT breeding program 

over the last ten years. In the case of grain yield, for example, CIMMYT was able to predict 

low performing lines for culling; however, finding the top 10% performing lines imposed 

some difficulty [110]. Additionally, the prediction accuracy for disease resistance and end-

use quality traits were high, with values reaching up to 0.83 [110]. Therefore, GS has the 

ability to discard lines for grain yield but should be used with caution when selecting top-

performing lines in the PD pipeline. However, there was a significant reduction in costs 

for the implementation of GS in early generation yield trials with low replication for grain 

yield and disease resistance, and no testing for end-use quality was required [110]. 

A new trend in public breeding programs is to leverage the resources of multiple 

breeding programs to efficiently phenotype early-stage lines and integrate GS consorti-

ums (GSC). These GSCs increase the size of programs and screening environments with-

out increasing the investment and resource allocation in a single program [111]. Lines are 

phenotyped in some or all programs in sparse testing schemes, and the GS is implemented 

to predict local (single program) and broad (multiple programs) values of lines. In addi-

tion, the GSC allows a common genotyping platform to implement large-scale genotyping 

to increase the size of the training populations without increasing investments. Further, 

large-scale GS allows the prediction of the performance of lines or traits not phenotyped 

in all environments. However, Sneller et al. [111] indicated the importance of creating 

training populations with related germplasm from each program rather than utilizing all 

lines. Overall, GSCs have the ability to increase individual breeding program’s size and 

accuracy of GS methods without increasing resource allocation and investments [111]. 

 

7. Conclusions 

In our review, we explored optimizing a breeding program for genomic selection 

based on aspects of the breeder’s equation. We outlined the need to redesign the PD pipe-

line from the ground up by integrating speed breeding and double-haploid technologies 

and implementing newer field designs while optimizing training populations in an effort 

to increase statistical power to increase selection accuracy and genetic gains. By utilizing 

GS and leveraging the existing program’s phenotypic data as well as the multi-environ-

ment trials, the PD pipeline can be optimized to increase selection accuracy and genetic 

gain. Multi-environment models can account for GE for complex traits, whereas multi-

trait models can take advantage of the genetic correlation of highly heritable traits to in-

crease the prediction accuracy of complex and low heritable traits. In addition, newer 

methodologies to integrate environmental variables and HTP can aid GS models as well 

as utilize newer statistical models such as DL to improve selection accuracy. Therefore, by 

redesigning the breeding program to take advantage of the plethora of new technologies 

while optimizing components based on the breeder’s equation, we can change the tradi-

tional thinking of breeding as a “numbers game” to a more precise and efficient “chess 

game” to maximize resources and exponentially increase genetic gains and improve new 

varieties. 
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