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Abstract: Peptide-based drugs are promising anticancer candidates due to their biocompatibility, 

and low toxicity. Particularly, tumor homing peptides (THPs) have the ability to bind specifically to 

cancer cells receptors and tumor vasculature. Despite their potential to develop antitumor drugs, 

there are few available prediction tools to assist the discovery of new THPs. Two webservers based 

on machine learning models are currently active, the TumorHPD 

(https://webs.iiitd.edu.in/raghava/tumorhpd) and the THPep (http://codes.bio/thpep), and more re-

cently the SCMTHP (SCMTHP (pmlabstack.pythonanywhere.com), based on scoring card method. 

Herein, a novel method based on network science and similarity searching implemented in the 

starPep toolbox (http://mobiosd-hub.com/starpep/) is presented for THPs discovery. The approach 

leverages from exploring the structural space of THPs with Chemical Space Networks (CSNs) and 

from applying centrality measures to identify the most relevant and non-redundant THPs se-

quences within the CSN. Such THPs were considered as queries (Qs) for multi-query similarity 

searches that applies a group fusion (MAX-SIM rule) model. The resulting multi-query similarity 

searching models (SSMs) were validated with three benchmarking datasets of THPs/non-THPs. Pre-

dictions achieved accuracies ranged from 92.64 to 99.18% and Matthews Correlation Coefficients 

between 0.894-0.98, outperforming state-of-the-art predictors. The best model was applied to repur-

pose AMPs from the starPep database as THPs, which were subsequently optimized for the TH 

activity. Finally, 54 promising THP leads were discovered, and their sequences were analyzed to 

encounter novel motifs. These results demonstrate the potential of CSNs and multi-query similarity 

searching for a rapid and accurate identification of THPs. 

Keywords: Cancer, tumor homing peptide, in silico drug discovery, complex network, chemical 

space network, centrality measure, similarity searching, group fusion, motif discovery, starPep 

toolbox software. 
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1. Introduction 

Cancer is a group of diseases developed in different cell and tissue types, and corre-

sponds to the second leading cause of death globally [1]. It is based on the abnormal 

growth of cells due to an inherited genetic mutation or induced by the environment [2]. 

Despite novel therapies development for cancer treatment, improving chemotherapeutic 

drugs' specificity towards cancer cells remains a challenge [2,3]. Additionally, cancer cells 

are generating multidrug resistance (MDR) [4]. Consequently, in the pharmaceutical in-

dustry, there is a need to develop new anticancer agents with a different mode of action 

to tackle the current drug resistance of cancer cells without being cytotoxic to healthy ones 

[2]. To fill this gap, peptides have emerged as a potential therapeutic alternative against 

cancer. From 2015 to 2019, 15 peptides or peptide-containing molecules were approved 

by the FDA as drugs demonstrating the growing interest of the scientific community [5]. 

Peptides have different biochemical and therapeutic properties than small molecules 

and proteins making them attractive to the pharmaceutical and biotechnological industry 

[6,7]. At being smaller than proteins allows peptides to penetrate tissues more easily, have 

low cost, more accessible synthesis, and do not require folding to be biologically active 

[8]. In contrast to small molecules, they have higher specificity and efficacy due to repre-

senting the smallest functional part of a protein [9]. Moreover, they are not supposed to 

interact with the immune system, are biocompatible, have tunable bioactivity, and have 

low cytotoxicity due to the degradation products are amino acids [10–14]. Hence, peptide-

based drugs open a new door to an improved cancer diagnosis and treatment. 

Tumor blood and lymphatic vasculature differ molecularly and morphologically 

from normal lymphatic and blood vessels [15]. Tumor homing peptides (THPs) take ad-

vantage of this peculiarity. Thus, they are widely investigated as drug carriers and for 

imaging purposes on oncology treatments and diagnosis [16]. First-generation of THPs 

have RGD (Arg-Gly-Asp) and NGR (Asn-Gly-Arg) motifs. RGD peptides have the char-

acteristic of selectively binding to α integrins expressed in vascular endothelial cells of the 

tumor and metastatic tumor cells, while NGR to aminopeptidase N (APN) receptors 

[17,18]. Although, there are non-RGD neither NGR peptides that home tumor blood vas-

culature and cancer cells by interactions with other receptors, such as endothelial growth 

factor receptor (EGFR) [19–23]. 

THPs are discovered by using in vitro and ex vivo/in vivo phage display technology, 

which is time-consuming, expensive and may not translate to humans due to differences 

between the animal models and humans [24–26]. For these reasons, bioinformatics tools 

such as databases and webservers are being employed for the accurate prediction of novel 

THPs [26–28]. In this way, short sets of the most promising THPs become the candidates 

for posterior experimental verification. 

To date, the databases available for experimentally validated THPs are TumorHoPe 

(included 744 THPs) [27] and starPepDB (included 659 THPs) [29], and the available TH 

activity predictors are TumorHPD [26], THPep [28], and SCMTHP [30]. TumorHPD uses 

the supervised ML method Support Vector Machine (SVM) as a classifier with three fea-

tures, amino acid composition, dipeptide composition, and binary profile patterns, 

achieving 86.56% as the highest accuracy [26]. The second ML method, THPep, has a Ran-

dom Forest (RF) classifier with three features, amino acid composition, dipeptide compo-

sition, and pseudo amino acid composition, resulting in 90.13% of maximum overall ac-

curacy [28]. However, the datasets used for training and testing both ML models contain 

peptides with high similarity sequences. On the other hand, SCMTHP is the most recently 

reported method based on the scoring card method (SCM) [30]. It determines the propen-

sity scores for the amino acids and dipeptides composition accounting for THP sequences 

and applies a threshold value to discriminate between THP and non-THPs. Nonetheless, 

the performance of SCMTHP is similar to ML-based predictors, achieving a maximum 

accuracy of 82.7%. 

Recently, Marrero-Ponce et al. published a new software named starPep toolbox, 

which is aimed to perform network analyses on the integrated graph database called 

starPepDB, which include the most comprehensive and non-redundant database of anti-

microbial peptides (AMPs) [29,31]. We propose an alternative methodology to identify 
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potential THPs by combining of network science with multi-query similarity searching 

against the AMPs of starPepDB. We used the starPep toolbox software as the main bioin-

formatics tool and the Chemical Space Network (CSN) to represent the chemical space of 

peptides as a coordinate-free system. To the best of our knowledge, there are no reported 

studies where data mining and screening is supported by network science to discover 

peptides for pharmaceutical purposes [29]. Firstly, we built models of representative and 

non-redundant THPs using centrality analysis and a supervised retrospective similarity 

searching to perform the TH activity prediction. The outstanding model, named THP1, 

predicted the TH activity of three benchmarking datasets of THPs/non-THPs achieving 

accuracies between 92.64-99.18% and Matthews Correlation Coefficient (MCC) between 

0.894-0.98, demonstrating the feasibility of this new methodology. Then, we performed a 

hierarchical screening for drug repurposing using network-based algorithms imple-

mented in the starPep toolbox, the best model THP1, local alignments, and webservers to 

predict relevant activities related to the TH. Their TH activity was optimized by generat-

ing random libraries, where the peptide undergoes amino acid's stochastic substitutions 

at different positions. Finally, a set of 54 potential THPs from AMPs is proposed, where 

common motifs were identified. 

2. Materials and Methods 

The overall workflow of this report, shown in Figure 1, is based on two steps: i) gen-

eration/selection of the model of representative THPs from starPepDB in starPep toolbox, 

and ii) prediction of potential new THPs. In the first step, some models of representative 

THPs from starPepDB were built using different centrality measures to rank the nodes 

and extract the representative and less similar sequences by applying local alignment. 

Then, the best multi-query similarity searching model (SSM) was selected by the classifi-

cation performance and its ability to retrieve correctly THPs from benchmark THPs data-

bases by using group fusion (MAX-SIM rule) similarity searching.  

 

Figure 1. General overview of the experimental procedure. 

In the second step, the model was used to perform similarity searching to repurpose AMPs as THPs 

from starPepDB, and their TH activity was optimized using the TumorHPD server. Additionally, 

sequence motifs were found from the set of potential THPs using multiple sequence alignments [32–

35], alignment-free methods [36], and PROSITE server (https://www.genome.jp/tools/motif). 

2.1. StarPep Toolbox Software 

The starPep toolbox uses FASTA files as inputs, and includes the starPepDB. Peptides 

are represented as nodes connected by an edge if they have any relationship. It can per-

form querying, filtering, visualization of networks, scaffold extractions, single or multiple 

queries similarity searching, and analysis of peptides by graph networks [29,31]. 

Networks can be built based on the metadata of peptides or based on the pairwise 

similarity measures calculated for their respective sequence. In metadata networks, nodes 
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are connected by a specific parameter in common, such as origin, the target which as-

sessed against, functionality, the database where they come from, the cross-reference, N-

terminus, C-terminus, or amino acid composition. In similarity networks, peptides are 

codified by descriptors, such as length, net charge, isoelectric point, molecular weight, 

Boman index, indices based on aggregation operators, hydrophobic moment, average hy-

drophilicity, hydrophobic periodicity, aliphatic index, and instability index [29,31,37]. 

Moreover, networks are visualized using different layouts, such as Fruchterman Reingold 

[38]. 

Networks can be clustered, and communities are optimized using the Louvain 

method [39]. Moreover, the centrality of each node can be particularly measured by har-

monic, community hub-bridge, betweenness, and weighted degree. Centrality is crucial 

to perform scaffold extractions because peptides are ranked according to their centrality 

score, and then redundant sequences are removed, prioritizing the most central. Thus, 

scaffold extractions depend on the type of centrality applied. 

On the other hand, similarity searching, which is the basis of this study, is performed 

using a set of queries against a target dataset, where different percentages of identity (or 

similarity thresholds) can be applied. An identity score is a number between 0-1, and it is 

calculated using the Smith-Waterman local alignment with BLOSUM 62 substitution ma-

trix [40]. Multiple queries similarity searching works using the group fusion model ex-

plained in the following section. 

2.2. Model Selection 

The dataset of reported THPs was extracted from starPepDB in the starPep toolbox. 

All 45120 peptides contained in starPepDB were filtered by the “Tumor Homing” query 

in the metadata function, where 659 entries were obtained (SI1-A). 

2.2.1. Network Analysis 

2.2.1.1. Similarity Threshold Analysis 

Network analysis of peptides was performed by building the CSN of 659 THPs in the 

the starPep toolbox. To choose the appropriate similarity threshold to build the network 

of THPs, CSNs were built by varying in 0.05 the cut-off value from 0.10 to 0.90 (17 CSNs 

in total). Some metrics were retrieved from each CSN using the starPep toolbox, such as 

density, number of communities, modularity, and number of singletons. 

By default, when CSN is built, nodes with higher than 98% of similarity were re-

moved using the local alignment Smith-Waterman algorithm. The similarity metric used 

to establish the pairwise similarity relationships between nodes was the min-max normal-

ized Euclidean distance. Then, a centrality was calculated and those nodes with 0 as vertex 

degree identified as outliers and then removed, remaining the giant (or connected) com-

ponents of the CSN, i.e., subgraph where all nodes are connected. In this case, community 

hub-bridge centrality was calculated. However, any centrality measure could have been 

calculated since singletons always have zero centrality. After that, the network was clus-

tered and the modularity optimized using the Modularity optimization algorithm based 

on the Louvain method [39]. 

The network was saved as a Graph ML file to be opened in Gephi [41] for subsequent 

calculation of ACC. Finally, density, modularity, and ACC as a function of similarity 

threshold were graphed in Origin to decide what similarity threshold is the best. 

2.2.1.2. Network Characterization 

CSN of the giant components derived from the application of the best similarity 

threshold is characterized by the number of nodes, edges, outliers, density, number of 

communities, and modularity. These parameters were obtained from starPep toolbox 

while ACC, diameter (larger shortest path), average path length, and a total of triangles 

were drawn from Gephi; and the distribution degree. These parameters allow knowing 

the topology, and structural patterns of the CSN. 

For network visualization, Force Atlas 2 was used as a layout algorithm where colors 

represent different clusters, and node size means how central is the node according to the 
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community hub-bridge centrality. Network visualization aims to obtain an aesthetically 

pleasing and understandable graph where nodes are not overlapped. 

On the other hand, CSN of outliers was built with a cut-off of 0.30 to procure an 

appropriate density and, then, it was clustered. Moreover, a subsequent scaffold extrac-

tion was applied based on hub-bridge centrality, and on 30% identity from local align-

ment. 

The network of outliers was characterized according to the number of nodes, edges, 

and communities, density, modularity, average degree, ACC, and diameter obtained be-

fore scaffold extraction, and the number of nodes and edges obtained after scaffold ex-

traction. For network visualization, Fruchterman Reingold was used as a layout algo-

rithm, colors represent different clusters while node size displays how central it is accord-

ing to hub-bridge measure. 

2.2.2. Centrality Analysis 

The most influential nodes were used to find the new potential THPs, and centrality 

is the crucial parameter that provides this information. Thus, the four available centrality 

types in the starPep toolbox, weighted degree, community hub-bridge, betweenness, and 

harmonic, were calculated and normalized using the min-max method. Then, redundant 

peptides were removed by applying the scaffold extraction procedure that is described as 

follows: peptides were ranked based on the scores obtained after centrality calculation 

and used 30% similarity cut-off of local identity from the Smith-Waterman algorithm to 

retrieve sets of sequences with a maximum of 30% similarity [40]. Subsequently, nodes 

with 10% lower centrality than the most central node were removed in each metric. The 

sets obtained after applying this process were named as 30+10%. 

On the other hand, harmonic and weighted degree were calculated, normalized, and 

redundant peptides were removed by applying the scaffold extraction procedure using 

four different similarity cut-offs of local identity, 30, 40, 50, and 60%. 

2.2.3. Similarity Searching Model for THPs Prediction 

This study’s proposed method for discovering potential THPs was based on similar-

ity searching. For that reason, multiple query similarity searching models (SSMs) com-

posed of several queries representing the most important and less redundant nodes of 

CSN and a similarity threshold were tested against datasets that contain well-known 

THPs/non-THPs through similarity searching. The recoveries from the similarity search-

ing were statistically evaluated to select the best model for identifying potential THPs 

within the AMPs. 

2.2.3.1. Query Datasets (Reference Sequences) 

The retrieved sets after applying scaffold extractions at each centrality measure, the 

two sets of outliers, combinations of outliers with sets obtained from centrality-based scaf-

fold extractions, and combinations between sets obtained from scaffold extractions per-

formed using different centrality metrics were used as queries (Qs). In total, we tested 22 

sets of Qs, where twelve sets resulted from the application of the scaffold extraction pro-

cedures, two sets of outliers, and eight sets resulted from the combination between sets. 

2.2.3.2. Target Databases 

Three training datasets that consider well-known THPs and randomly generated 

non-THPs [42] were used as the target or calibration for the recovery. THPep, TumorHPD 

and SCMTHP employed these datasets for training their methods [26,30,42]. 

• Main dataset: 651 experimentally validated THPs and 651 random non-THPs (SI1-B). 

They were collected from TumorHoPe [27], and the literature [26]. 

• Small dataset: 469 experimentally validated THPs and 469 random non-THPs (SI1-

C). They are peptides derived from the Main dataset with 4-to-10 aa residues. 

• Main90 dataset: 176 THPs and 443 non-THPs (SI1-D). They are peptides from the 

Main dataset with equal or lower than 90% of sequence similarity. 

Main and Small datasets were retrieved from Ref. [26], while Main90 from Ref. [27]. 

2.2.3.3. Group fusion 
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Group fusion is based on the variation of the query (reference peptide), but keeping 

constant the identity measure [43]. Each peptide's identity score is calculated from the 

target dataset varying the Qs. The fusion group's algorithm associates a fused score to 

each target peptide, i.e., the maximum similarity (MAX-SIM) scores from all resulting 

identity scores against the Qs. Therefore, considering peptide S from the target dataset, 

reference peptide Q from the Qs, and the identity score I(S,Q) the MAX-SIM score ob-

tained, the algorithm assigns I(S,Q) as the fused score to peptide S. The local identities 

were calculated with the Smith-Waterman, and is a number between 0-1, being one the 

maximum identity. The procedure is illustrated in Figure 2. 

 

Figure 2. Schematic representation of the group fusion and similarity searching processes. Q is a peptide from a query 

dataset, n the number of peptides contained in a query dataset, S is a peptide from the target dataset (Main, Small or 

Main90 dataset), m is the number of peptides included in the target dataset (1302, 938 or 619, respectively). The similar-

ity threshold is related to the percentage of identity. 

2.2.3.4. Retrospective Similarity Searching. 

Main Dataset was imported to starPep toolbox. The similarity searching was per-

formed using the "Multiple query sequences" option of the software and the Qs obtained 

from 30+10% similarity cut-offs of local alignment and outliers. The group fusion is ap-

plied by default during the similarity searching, and results were ranked according to the 

fused score (MAX-SIM value). Subsequently, seven different percentages of identity (sim-

ilarity thresholds), 30, 40, 50, 60, 70, 80, and 90%, were tested, where peptides with iden-

tities equal or higher than the applied threshold were retrieved as predicted THPs. Figure 

2 illustrates how the similarity searching works. 

The rescued nodes, i.e., predicted THPs, were statistically evaluated to validate the 

prediction. Thus, it is possible to identify the two centrality measures and percentages of 

sequence identity with the best performance. 

Then, similarity searching was performed using only the sets of the best two central-

ity measures as Qs: harmonic and weighted degree, and 30, 40, 50, 60, and 70% of identity. 

In Small and Main90 datasets, only the sets of harmonic and weighted degrees were used 

as Qs, applying 40, 50, and 60% of identity for recovery. In total 98 different SSMs were 

evaluated. 

2.2.4. Statistical Analysis 

The ability of the SSMs to predict THPs was validated by the measurement of their 

accuracy (Ac), kappa (κ), sensitivity (Sn), specificity (Sp), the precision of positives and 

negatives (Ppos and Pneg, respectively), MCC, and false accept rate (FAR%) using the 

following formulas. 

Ac = 
TP+TN

TP+TN+FP+FN
 , (1) 
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κ = 
Po−Pc

1−Pc 
, (2) 

Sn = 
TP

TP+FN
 , (3) 

Sp = 
TN

TN+FP
, (4) 

Ppos = 
TP

TP+FP
 , (5) 

Pneg = 
TN

TN+FN
 , (6) 

MCC = 
TP×TN−FP×FN

√(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
 , (7) 

FAR% = 
FP

FP+TN
× 100 , (8) 

where, TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, FN is the number of false negatives, Po is the relative observed 

agreement between the observers equal to the Ac, and Pc is the expected chance agree-

ment calculated by the formula 𝑃𝑐 =
(TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

(TP+TN+FP+FN)2 . 

Finally, the best 9 SSMs were compared and ranked using the Friedman test-based 

analysis performed in KEEL [44], open-source software from Java. The Friedman test iden-

tified the best model based on the statistical metrics previously shown [45]. Moreover, it 

allows us to compare the models and determine if their difference is statistically signifi-

cant and not due to chance. The confusion or classification matrix of the best model was 

constructed. The best models were compared with reported ML models used for THPs 

prediction, TumorHPD and THPep, using the same three calibration datasets. 

2.3. Identification of Potential THPs 

2.3.1. Hierarchical Screening 

Drug repurposing is an alternative methodology widely applied to discover drugs 

because it reduces approval time for their clinical use [46,47]. Thus, firstly, we repur-

posed AMPs from starPepDB as THPs. 

1. Pipeline Prospective Screening. First, AMPs without reported TH activity and tox-

icity with a sequence length between 3 to 25 residues were filtered from the chemical 

space of starPepDB. Secondly, the “Scaffold extraction” option removed AMPs with 

higher than 95% sequence similarity by local alignment. Thirdly, multiple query sim-

ilarity searching was performed using the best SSM (THP1), obtained in the previous 

section, to explore the chemical space of non-THPs, non-toxic, and non-redundant 

peptides with a length of 3-25 aa, using 60% as similarity threshold. In the recovered 

set, peptides with a similarity score of 1 were removed. 

2. Activity Prediction. Peptides with reported tumor homing activity in the literature 

were removed since the main objective of this study is to identify novel THPs. Then, 

theoretical activities of virtual hits were predicted using webservers TumorHPD [26], 

THPep [28], AntiCP [48], CellPPD [49], ToxinPred [50], and HemoPI [51], to corrobo-

rate their potential as THPs and prioritize those that do not harm healthy cells. The 

activities of interest were tumor homing, anticancer, cell-penetrating, toxicity, and 

hemolysis. The SVM thresholds used were 0.30 in servers TumorHPD, AntiCP, and 

CellPPD, and 0 in server ToxinPred. 

3. Redundancy Reduction by Network Analysis. CSN of hits was built, clustered, and 

the modularity was optimized using the Louvain method in the starPep toolbox. 

Then, harmonic and weighted degree centralities were calculated to perform a scaf-

fold extraction using a 60% identity as the threshold. 

4. Visual Mining. The neighborhood of well-known THPs of each potential THPs was 

visualized using the starPep toolbox. CSN of 659 THPs in starPepDB was built using 

0.60 as cut-off, clustered, and optimized modularity. Hits obtained in the previous 
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step after scaffold extraction were embedded into the CSN of 659 THPs to study the 

neighborhood of each peptide. Hence, the 3-nearest neighbors from 659 THPs di-

rectly attached to each hit, were visualized. If two peptides shared the same 2 or 3-

nearest neighbors, one of them was prioritized, choosing the one with better-pre-

dicted activities. 

2.3.2. Tumor Homing Activity Optimization 

Lead hits detected from hierarchical virtual screening are AMPs from starPepDB 

with a natural or designed activity different from tumor homing. That’s the reason why 

their tumor homing action should be enhanced. Lead hits were optimized by punctual 

amino acid mutations using the “Designing of Tumor Homing Peptides” module of Tu-

morHPD (https://webs.iiitd.edu.in/raghava/tumorhpd/peptide.php), and the procedure 

is shown in Figure 3. Both, lead and mutated sequences were shortened into fragments 5, 

10, and 15 residues in length using the same server. 

 

Figure 3. Procedure to optimize tumor homing activity of lead hits. 

The optimized sequences showing a higher tumor homing activity score than par-

ent hits were analyzed by CSN in the starPep toolbox using 0.60 as the similarity thresh-

old to build the network. Besides, tumor homing, toxicity, hemolytic, anticancer, and 

cell-penetrability were predicted using servers listed below THPep 

(http://codes.bio/thpep), TumorHPD (https://webs.iiitd.edu.in/raghava/tumorhpd), An-

tiCP (https://webs.iiitd.edu.in/raghava/anticp2), CellPPD 

(https://webs.iiitd.edu.in/raghava/cppsite1), ToxinPred 

https://webs.iiitd.edu.in/raghava/toxinpred, and HemoPI 

https://webs.iiitd.edu.in/raghava/hemopi. Redundant sequences with higher than 50% of 

similarity were removed by scaffold extraction. 

The optimized sequences and parent hits were merged, and its corresponding CSN 

was built using 0.50 of cut-off and clustered. Next, harmonic centrality was calculated. 

Each cluster was analyzed separately to prioritize the most central, potent, non-toxic, and 

non-hemolytic lead THPs. Finally, the heat map and histogram of pairwise sequence iden-

tity of lead compounds were constructed to explore their structural diversity. 

2.3.3. Motif Discovery 

2.3.3.1. Multiple Sequence Alignments 

As the resulting potential THPs were hard-to-align sequences because of their short 

length and variability. They were grouped into seven clusters according to the neighbor-

hood in the CSN. Given that two peptides underrepresented clusters 1 and 5, they were 

fused in a cluster labeled 1-5. Thus, peptide clusters (2-4, 1-5, and singletons) were aligned 

independently using multiple sequence alignments (MSA), publicly available at 

https://www.ebi.ac.uk/Tools/msa/. Four different MSA algorithms were applied with 

their default parameters to determine consensus motifs within each cluster: 1) Clustal-

Omega v 1.2.4 [32], 2) MAFFT (Multiple Alignment using Fast Fourier Transform) v7.487 
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with the iterative refinement FFT-NS-i option [33], 3) MUSCLE (Multiple Sequence Com-

parison by Log- Expectation) v3.8 [34], and T-Coffee (Tree-based Consistency Objective 

Function for Alignment Evaluation) v1.83 [35]. 

The resulting MSAs were employed to extract the conserved motifs by considering 

the consensus sequences estimation from the programs Jalview v2.11.1.4 [52], EMBOSS 

Cons v6.6.0 (https://www.ebi.ac.uk/Tools/msa/emboss_cons/), and Seq2Logov2.1 

(http://www.cbs.dtu.dk/biotools/Seq2Logo/) [53]. 

2.2.3.2. Alignment-Free Method 

Peptides were analyzed in STREME [36] (Sensitive, Thorough, Rapid, Enriched Motif 

Elicitation) to discover fixed-length patterns (ungapped motifs) that were enriched with 

respect to a control set generated by shuffling input peptides [52]. The analyses were per-

formed via its webserver (https://meme-suite.org/meme/tools/streme), by considering 

both total peptides and by each cluster. The motif width was set between 3-5 amino acids 

length. STREME applies a statistical test at p-value threshold = 0.05 to determine the en-

richment of motifs in the input peptides compared to the control set. 

2.2.3.3. Motif Search in PROSITE 

Peptides were queried by the Motif Search tool (https://www.genome.jp/tools/mo-

tif/), integrated into the GenomeNet Suite (https://www.genome.jp/). PROSITE Pattern 

and PROSITE Profile libraries were only considered for the motif search. 

3. Results and Discussion 

3.1. Model Selection 

3.1.1. Network Analysis 

3.1.1.1. Similarity Threshold Analysis 

Out of the set of 659 THPs retrieved from starPepDB, 627 peptides (SI1-A-I) were 

filtered with lower than 98% similarity by local alignment. The adequate similarity thresh-

old was chosen before building CSN with the 627 peptides. This step is non-trivial since 

it is the parameter that defines the topology and networks features [54]. Hence, the appro-

priate cut-off for building the CSN was determined based on the variability of network 

parameters such as density, modularity, ACC, and singletons at different cut-off similarity 

values. Graphml files corresponding to the 17 CSNs are available at SI2. Table S1 shows 

the obtained parameters at each cut-off. 

The graph of density, modularity, and ACC as a function of the similarity threshold 

is shown in Figure 4. The density is lower at a higher similarity threshold. ACC follows 

the same pattern until the 0.65 similarity threshold. By contrast, modularity increases as 

the similarity threshold increases, while the clustering is optimized. 

A well-defined network needs a compromise among the density, modularity, and 

ACC parameters, but also accounts the number of outlier nodes because they are atypical 

peptides with particular properties. Networks with very low density display too many 

outliers (see Table S1), while networks with very high density show a massive connection. 

In both cases, information is lost and interpretation becomes difficult. According to the 

literature, the best density percentages are generally around 1% or 2.5% because generate 

high modularity but allowing an adequate understanding of the network [54]. As modu-

larity indicates the existence of community structures, the ideal value must show an equi-

librium between a non-clustered network and an artificially-clustered network due to the 

high modularity value. In this sense, the selected similarity threshold was 0.60, where 

CSN shows the best trade-off among network parameters and connectivity: 2.3% of den-

sity, 0.47 of modularity, 0.428 of ACC, and 99 outliers (15.8% of overall nodes). Therefore, 

the giant components of the network were 528 nodes (SI1-A-II). 
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Figure 4. Density, modularity, and average clustering coefficient (ACC) as a function of similarity 

threshold of 627 THPs CSN. 

3.1.1.2. Network Characterization 

Some parameters such as density, number of clusters, modularity, average degree, 

ACC, and diameter were calculated and shown in Table 1 to get an overview on the giant 

component and outliers of the CSNs, which are represented in Figure 5 and Figure 6, re-

spectively. 

 
Table 1. Global networks properties of CSN of 528 nodes and outliers.  

Set* Nodes Edges  Density Clusters Modularity Average Degree ACC Diameter 
Nodes 

after Sc.** 

Edges 

after Sc.** 

THPs 528 4452  0.023 10 0.47 16.864 0.428 8 - - 

Outliers 99 2691  0.891 3 0.13 54.364 0.733 3 34 384 

*Density, number of clusters, and modularity were calculated in the starPep toolbox, while average 

degree, ACC, and diameter in Gephi. **Sc.: Scaffold extraction. 
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Figure 5. CSN of giant component conformed by 528 THPs retrieved from starPepDB. Nodes color 

represent the community (cluster), and nodes size symbolize the centrality values. 

  

(a) (b) 

Figure 6. CSN of (a) 99 outliers with a density of 0.30 and (b) 34 remaining outliers resulted after 

30% similarity extraction scaffold. Layout: Fruchterman Reingold. 

Additionally, the degree of distribution of the giant components is shown in Figure 

7. It gives some information about the structure of the CSN. In this case, the distribution 

degree is concentrated in the nodes with low vertex degrees. However, it has a tail asso-

ciated with the nodes with higher vertex degrees in lower proportion. The nodes with 

higher degrees correspond to the most central nodes, which, as can be corroborate in Fig-

ure 5, are in minority. 
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Figure 7. Degree distribution of the 528 giant components, where k is the vertex degree. 

 

Outliers are relevant THPs because they present characteristics regarding 528 nodes 

made up the giant component; so, they are unique or atypical sequences. CSN of the 99 

singletons (SI1-E) was built using 0.30 of similarity threshold (Figure 6a). Then, sequences 

with higher similarity than 30% by local alignment were removed based on hub-bridge 

centrality ranking, where 34 outliers (SI1-E-I) with unique sequences were obtained (Fig-

ure 6b). 

3.1.2. Centrality Analysis and Similarity Searching. 

Centrality is the crucial parameter to build the model will be proposed to identify 

THPs. It allows the identification of the most influential sequences of the giant compo-

nents. SI3 (Excel file) shows the normalized centrality measurements of 528 THPs. On the 

other hand, outliers are nodes with unique properties that enrich the influential sequences 

model. Therefore, both sets from centrality measurements and sets of outliers represented 

the chemical space of THPs and will be used as queries to perform the similarity searching 

against the target datasets. In total, 98 different SSMs were generated based on 22 query 

sets (FASTA files available at SI4) and similarity thresholds between 0.3 and 0.9. 

The predictions and performance of the 98 SSMs are shown in SI5 and SI6-A, respec-

tively, where active and inactive labels indicates predicted THPs and non-THPs, respec-

tively. In general, it is observed that the performance of query datasets followed the fol-

lowing tendency of relevance: weighted degree > harmonic > hub-bridge > betweenness > 

singletons (outliers). Although, the combination of query datasets from different central-

ity types overperforms the sets selected with only one centrality measure. The addition of 

the outliers set improved the performance of the combination sets since it generates the 

complete representation of the chemical space of THPs. Moreover, better performance 

was obtained using 40, 50, and 60% identity in the similarity searching. 

The performance of the best nine SSMs to predict activity in Main, Small and Main90 

datasets are shown in Table 2, *H is the set obtained when harmonic centrality was calcu-

lated, W is the set obtained when the weighted degree was calculated, and sing is the set 

of 99 outliers. 

Table 3 and *H is the set obtained when harmonic centrality was calculated, W is the 

set obtained when the weighted degree was calculated, and sing is the set of 99 outliers. 

Table 4, respectively. It can be noticed that the best statistics were achieved using the 

query composed by the union of harmonic, weighted degree, in both using 60% similarity 

cut-off of local alignment during scaffold extraction, and the 99 outliers sets, in total 479 

query sequences. Moreover, 60% was the best percentage of identity where there was a 
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compromise for all statistical parameters. All statistical parameters showed values higher 

than 0.88. 

Table 2. Statistical analysis for the performance of the best 9 SSMs on the target Main dataset.  

Query 

Set* 
Nodes % Id Ac 

Correct 

class 

Incorrect 

class 
κ Sn Sp Ppos Pneg 

H+sing 467 40 0.933 1215 87 0.866 0.877 0.989 0.988 0.89 
  50 0.935 1218 84 0.871 0.877 0.994 0.993 0.89 
  60 0.935 1218 84 0.871 0.874 0.997 0.996 0.888 

W+sing 469 40 0.934 1216 86 0.868 0.879 0.989 0.988 0.891 
  50 0.936 1219 83 0.873 0.879 0.994 0.993 0.891 
  60 0.937 1220 82 0.874 0.877 0.997 0.997 0.89 

H+W+sing 479 40 0.942 1226 76 0.883 0.894 0.989 0.988 0.903 

  50 0.944 1229 73 0.888 0.894 0.994 0.993 0.904 

  60 0.945 1230 72 0.889 0.892 0.997 0.997 0.903 
*H is the set obtained when harmonic centrality was calculated, W is the set obtained when the 

weighted degree was calculated, and sing is the set of 99 outliers. 

Table 3. Statistical analysis for the performance of the best 9 SSMs on the target Small dataset.  

Query 

Set* 
Nodes % Id Ac 

Correct 

class 

Incorrect 

class 
κ Sn Sp Ppos Pneg 

H+sing 467 40 0.917 860 78 0.834 0.838 0.996 0.995 0.86 
  50 0.916 859 79 0.832 0.836 0.996 0.995 0.858 

  60 0.914 857 81 0.827 0.832 0.996 0.995 0.855 

W+sing 469 40 0.92 863 75 0.84 0.844 0.996 0.995 0.865 
  50 0.92 863 75 0.84 0.844 0.996 0.995 0.865 
  60 0.919 862 76 0.838 0.842 0.996 0.995 0.863 

H+W+sing 479 40 0.928 870 68 0.855 0.859 0.996 0.995 0.876 
  50 0.928 870 68 0.855 0.859 0.996 0.995 0.876 
  60 0.926 869 69 0.853 0.857 0.996 0.995 0.875 

*H is the set obtained when harmonic centrality was calculated, W is the set obtained when the 

weighted degree was calculated, and sing is the set of 99 outliers. 

Table 4. Statistical analysis for the performance of the best 9 SSMs on the target Main90 dataset.  

Query 

Set* 
Nodes % Id Ac 

Correct 

class 

Incorrect 

class 
κ Sn Sp Ppos Pneg 

H+sing 467 40 0.985 600 9 0.964 0.983 0.986 0.966 0.993 
  50 0.99 603 6 0.976 0.983 0.993 0.983 0.993 
  60 0.992 604 5 0.98 0.983 0.995 0.989 0.993 

W+sing 469 40 0.98 597 12 0.952 0.966 0.986 0.966 0.986 
  50 0.984 599 10 0.96 0.966 0.991 0.977 0.986 
  60 0.987 601 8 0.968 0.966 0.995 0.988 0.986 

H+W+sing 479 40 0.985 600 9 0.964 0.983 0.986 0.966 0.993 

  50 0.989 602 7 0.972 0.983 0.991 0.977 0.993 

  60 0.992 604 5 0.98 0.983 0.995 0.989 0.993 
*H is the set obtained when harmonic centrality was calculated, W is the set obtained when the 

weighted degree was calculated, and sing is the set of 99 outliers. 

 

The best nine SSMs were compared and ranked using the Friedman test by compar-

ing multiple statistical metrics from each SSM on the three target datasets (details in SI6-

B). The best SSM was the set CSN-TH-0.60Sc-479-H+W+s-0.6-583 (479Q_0.6), named 

THP1, showing excellent statistical metrics (>0.85) for the model (Table 2, *H is the set 
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obtained when harmonic centrality was calculated, W is the set obtained when the 

weighted degree was calculated, and sing is the set of 99 outliers. 

Table 3, and *H is the set obtained when harmonic centrality was calculated, W is the 

set obtained when the weighted degree was calculated, and sing is the set of 99 outliers. 

Table 4). It is composed of the union of nodes with identity lower than 60% from the 

global centrality harmonic with those obtained from applying weighted degree and the 

set of 99 outliers (479 nodes). The best percentage of identity used to search similarity was 

60%. The confusion matrices of THP1 are shown in SI6-C. It can be seen that the prediction 

of the model was not at random as the MCC being much greater than 0 [55]. 

Finally, the Friedman test of the THP1 versus the reported models used in Tu-

morHPD [26] and THPep [28] servers revealed there is a significant difference between 

the models being the performance of the similarity searching methodology is superior 

(details in SI6-C and SI6-D). Figure 8 shows the ranking scores from the test, where THP1 

is the first ranked method. Finally, Table 5 compares between the model on the three 

benchmarking datasets. The MCC of predictions using THP1 improved with an average 

of 28.76 % over ML-based models. 

 

Figure 8. Ranking scores obtained in the Friedman Test. Friedman statistic (distributed according to chi-square with 2 degrees of 

freedom): 11.166667. P-value computed by Friedman Test: 0.00376. 

Table 5. Comparison between the best SSM THP1 and the state-of-art ML model to predict tumor homing activity of benchmarking 

datasets. 

Dataset Method Ac(%) Sn(%) Sp(%) MCC 

Main 

TumorHPD 86.56 80.63 89.71 0.7 

THPep 86.1 87.07 85.18 0.72 

THP1 94.47 89.25 99.66 0.894 

Small 

TumorHPD 81.88 73.13 90.92 0.65 

THPep 83.37 81.24 85.81 0.67 

THP1 92.64 85.71 99.5 0.861 

Main90 

TumorHPD 89.66 83.64 80.68 0.74 

THPep 90.8 91.8 87.97 0.77 

THP1 99.18 98.3 99.54 0.98 

3.2. Identification of Potential THPs 

3.2.1. Hierarchical Screening 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2022                   doi:10.20944/preprints202202.0046.v1

https://doi.org/10.20944/preprints202202.0046.v1


 

Starting from the 45120 AMPs contained in starPepDB, and after applying the previ-

ously explained filters and performing the similarity searching, 43 lead hits were retrieved 

(SI7-A). Figure 9 shows the step-by-step the hierarchical virtual screening. Until today, 

these repurposed sequences have not been reported any tumor homing activity. 

 

Figure 9. Hierarchical virtual screening for repurposing of peptides from starPepDB. 

3.2.2. Tumor Homing Activity Optimization 

A library of 180 sequences (SI7-B) was obtained from the optimization of 43 hits in 

TumorHPD. They have a higher TH score, lower toxicity, and hemolytic activity than the 

originals. Mutations enriched the sequences with W and C residues. Mainly, G and V res-

idues from originals were mutated to W, while R and K to C. Studies report the presence 
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of W contributes positively to the intracellular translocation of peptides [56]. Additionally, 

it was reported that W enhances the stability of peptides in serum and salt [57]. 

Forty-one peptides from the library were prioritized by studying their CSN, where 

50% scaffold extraction by local alignment was accomplished. The sequences were clus-

tered and ranked according to the global harmonic centrality to perform the scaffold ex-

traction. Only the most central sequences with a similarity among them lower than 50% 

were kept. Forty-one sequences have higher predicted TH activity by TumorHPD than 

original peptides with scores between 0.39 and 1.92. Furthermore, they are anticancer and 

have less toxicity and hemolytic activity. 12 out of 41 sequences come from fragments of 

original sequences of 5, 10, and 15 lengths; 15 resulted after four punctual mutations from 

originals; and 14 from fragments of mutated sequences of 5, 10, and 15 lengths. Two out 

of 41 peptides, CNGRCGGKLA and WCAMS, are part of reported THPs, validating the 

novel methodology to discover potential THPs. CNGRCGGKLA is the N-end of the 

CNGRCGGKLAKLAKKLAKLAK peptide containing NGR TH motif and a disulfide 

bridge that gives stability. CNGRCGGKLAKLAKKLAKLAK binds to CD13 of tumor cells 

acting as ACP and THP [58]. At the same time, WCAMS is the C-end of KLWCAMS pep-

tide that homes mouse B16B15b melanoma [59]. 

We selected the most promising 13 sequences from the 43 lead hits and were com-

bined with the 41 optimized hits. In total, we proposed 54 peptides (SET 1, FASTA file in 

SI7-C) with a diverse molecular structure, low toxicity, hemolytic activity, and most of 

them also show potential anticancer activity (SI7-D). Among the 54 lead hits, only one 

sequence has the well-known NGR motif. Therefore, SET 1 is composed of new structural 

entities within the known structural space of the THPs. 

The sequence diversity of the SET 1 was evaluated using all vs. all global alignment 

where pairwise sequence identities are explored. As shown in Figure 10, the 54 lead hits 

presents structure singularity sharing pairwise identities than 30%. 

3.2.3. Motif Discovery 

As a consequence of the structural diversity of SET 1, the discovery of motifs account-

ing for the TH activity is not a straightforward task. In this sense, sensitive multiple se-

quence alignment (MSA) tools and alignment-free (AF) approaches (e.g., STREME) were 

applied to unravel new TH motifs. 

The resulting 54 lead THPs were mapped onto CSN space to identify putative com-

munities and make possible the application of MSA algorithms for motif identification. 

These networks communities were considered clusters containing related peptides. Fi-

nally, 6 clusters were conformed with 14, 10, 8, 4, 10, and 8 members, respectively (SI7-E). 

The last cluster grouped the singletons (peptides identified as atypical in the CSN). 

Clustal-Omega [32], MAFFT [33], MUSCLE [34], and T-Coffee [35], which are MSA 

algorithms developed after the classical ClustalW, were applied, so that they can deal with 

hard-to-align sequences shown in each cluster, and thus to detect any conserved signature 

or motif. Since each MSA has implemented a different algorithm to improve alignment 

quality, their consideration for the estimation of consensus regions helped us identify TH 

motifs by using the Jalview, EMBOSS Cons and Seq2Logo programs (SI8). As the EMBOSS 

Cons, gives a more legible output, only displaying high scored amino acids/positions 

(capital letters), less scored but positive residues (lower-case letters), and non-consensus 

positions (x), were selected as the primary source to set consensus/conserved regions. The 

non-consensus positions were estimated using default parameters by visual inspection of 

the corresponding positions in the Jalview program [52] and the Seq2Logo [53]. Table 6 

depicts the consensus motifs, unraveled by each MSA algorithm. 
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(a) 

 
(b) 

Figure 10. (a) Heat map and (b) histogram of pairwise sequence identity of SET 1 (54 lead com-

pounds). 

None of the motifs found by MSA have been reported as TH motifs (Table 6). How-

ever, one of the motifs from No.3 CxxxR, CGGCR, contains the CXXC motif, which is the 

active site of thioredoxin (Trx), a relevant protein in mammalian cells that act as an anti-

oxidant and participates in programmed cell death inhibition and cell growth, commonly 

used as a target for cancer treatments [60,61]. Moreover, CWKG (No.5) is contained in a 

nanoscale molecular platform used as drug delivery system in chemotherapy to enhance 

the conjugation of mitomycin C to the carrier [62]. 

Table 6. Discovered motifs by Multiple Sequence Alignment (MSA).  
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No Motif EMBOSS Consensus Cluster Cluster size Frequency* MSA Method 

1 wwW 
wwW 

2 14 1/(1) 
CLUSTALW-O 

xxW MAFFT 

2 C[fl][rg][vl]rW CxxxrW 
3 10 0/(0) 

MAFFT 

3 C[gpi][gs]cR CxxxR MUSCLE 

4 [rkl]GLC 

RGlc 

4 8 0/(0) 

CLUSTALW-O 

kGLC MAFFT 

xGLc MUSCLE 

5 c[wp]kG 
cwkG 

1+5 4 

0/(0) 

0/(0) 

0/(1) 

CLUSTALW-O 

MUSCLE 

cxkG T-Coffee 

6 Not Found Non-consensus 6 10 0/(0) 

CLUSTALW-O 

MUSCLE 

MAFFT 

T-Coffee 

7 l[rp][cw]c lxxc Singletons 8 0/(0) MUSCLE 
*Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis). 

On the other hand, the AF approach STREME was used to find unaligned patterns 

ranging 3-5 aa length within the overall 54 peptides and each peptide cluster. STREME 

has been recently reported as the most accurate and sensitive algorithm among its com-

peting state-of-art partners [36]. Unlike previous algorithms [63–65], STREME uses a po-

sition weight matrix (PWM) to count position matches efficiently for a motif candidate 

against a Markov model built up from shuffling the same input set (control sequences). 

Table 7 displays the enriched motifs discriminating the 54 lead peptides against the con-

trol sequences. The same search was also performed by considering each cluster content. 

Motifs appearing in more than 20% of the query sequences are listed according to their 

statistical significance (score). 

One of the motifs discovered by STREME had been reported as tumor homing, WRP 

interacting with VEGF-C [66,67]. Other found motifs have been reported but not as TH, 

such as WRPW, PRW, WKG, and PSHL. WRPW is the binding site of the 7 Enhancer of 

split E(spl) basic helix-loop-helix (bHLH) protein and the Hairy protein to the corepressor 

protein Groucho-TLE via WD40 domain [68]. PRW is part of a biocatalyst, which is con-

jugated to a lipid by an ester or amide bond [69]. WKG is a ribosomally synthesized and 

post-translationally modified peptide [70] and PSHL is a tetrapeptide that affects HIV-1 

protease (PR) [71]. 

Lastly, 54 lead THPs were queried against PROSITE's pattern and profile databases 

using the search engine Motif Search of the GenomeNet suite [72]. Only two query pep-

tides, which are shown in Table 8, had significant matches with motifs found in Gonado-

tropin-releasing hormones (GnRH) and Bombesin-like peptides.  

These two peptide signatures and their receptors are involved in neuroendocrine sig-

naling pathways associated with physiological states and tumors. GnRH is the hypotha-

lamic decapeptide that plays a crucial role controlling women's reproductive cycle. GnRH 

binds to specific receptors on the pituitary gonadotrophic cells, but it also is expressed in 

other reproductive organs, e.g. ovaries, and tumors derived from the ovaries. It has been 

shown GnRH is involved in the ovarian cancer regulation proliferation and metastasis 

either by indirect signaling pathway or direct interaction with the GnRH receptors placed 

at the surface of ovarian cancer cells [73]. 

 

Table 7. Discovered Motifs by STREME. 
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*Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis). 

Table 8. Motifs found in PROSITE.  

No Motif Found Hit Peptide 
Acces-

sion 
Match with Signature 

Related 

Seqs. 
Frequency* 

1 QHWSYGLRPG 
star-

Pep_07237 
PS00473 Q[HY][FYW]Sx(4)PG 

Gonadotropin-

releasing hor-

mones 

67 1/(1)QHWSY 

2 WARGHFM 
star-

Pep_10020 
PS00257 

WAxG[SH][LF]M 

 

Bombesin-like 

peptides 
36 0/(0) 

*Taken from TumorHoPe (outside parenthesis), and starPepDB (inside parenthesis). 

Bombesin-like peptides were initially discovered from the frog skin, where they are 

secreted from cutaneous glands as a means of communication and defense. They were 

later found to be widely distributed in mammalian neural and endocrine cells represented 

by the neuromedin B (NMB) and the gastrin-releasing peptide (GRP), respectively.  

Bombesin-like peptide receptors are G protein-coupled and have seven membrane-span-

ning domains, so they are involved in signal transduction pathways [74]. Growing evi-

dence shows that bombesin-like peptides and receptors play essential roles in physiolog-

ical conditions and diseases. An abnormal expression of bombesin receptors has been ob-

served in several types of tumors, which has motivated the development of more specific 

and safer bombesin-derivatives for tumors diagnosis and therapy [75]. 

The motif search by using different approaches may render a diversity of outcomes. 

However, some hits shared by different search approaches can support the reliability of 

the findings. For example, one motif WSY found by the PROSITE search was also encoun-

tered by STREME, an algorithm that works regardless of database and sequence similar-

ity. Some of the motifs estimated by MSA algorithms were also identified by the AF ap-

proach STREME such as WWW and WKG. All motifs were searched against TH data-

bases, TumorHoPe, and starPepDB to discriminate the possible new signatures from the 

existing ones. New motifs appear at very low frequency within THPs (last column of Table 

6, Table 7 and Table 8), except CNG found by STREME, which appears 34 times in Tu-

morHoPe and 32 in starPepDB. However, CNG has not been reported as a TH motif. 

No Motif Cluster 
Cluster 

size 

Matches in 

positive 

seqs. 

Matches 

in control 

seqs. 

Sites (%) Score 
Fre-

quency* 

1 WRP 

2 14 

7 1 50 1.6e-002 5/(5) 

2 WVL 5 1 35.7 8.2e-002 0/(0) 

3 WS[YR] 3 0 21.4 1.1e-001 1/(1)Y 

4 WWWM 3 0 21.4 1.1e-001 0/(0) 

5 CFRV 

3 10 

3 0 30 1.1e-001 1/(1) 

6 HWK 2 0 20 2.4e-001 0/(0) 

7 PRW 2 0 20 2.4e-001 3/(3) 

8 CN[WG] 

4 8 

3 0 37.5 1.0e-001 34/(32)G 

9 WARG 3 0 37.5 1.0e-001 0/(0) 

10 GIC 2 0 25.0 2.3e-001 5/(4) 

11 WKG 1-5 4 3 1 75.0 2.4e-001 0/(0) 

12 KNKHK 
6 10 

3 0 30.0 1.1e-001 0/(0) 

13 PSHL 3 0 30.0 1.1e-001 0/(0) 

14 LRLRI 
Singletons 8 

2 0 25.0 2.3e-001 1/(1) 

15 CC[CQ] 3 1 37.5 2.8e-001 0/(0) 

16 LSP 
All se-

quences 
54 

11 1 20.4 3.4e-003 3/(3) 

17 WSYG 7 0 13.0 8.2e-003 0/(0) 

18 WRPW 5 0 9.3 3.2e-002 2/(2) 
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4. Conclusions 

In this study, a novel methodology based on network science and similarity search-

ing was introduced to explore the chemical space of THPs and discover potential THPs 

from known AMPs. Statistically, the performance of the strategy’s performance trans-

cends current supervised ML approaches used in THPs predictions, demonstrating the 

potential of this approach. Hence, in silico predictions using the model based on repre-

sentative THPs in conjunction with TumorHPD and THPep servers give high reliability 

to discover potential THPs. As a result, 54 lead compounds are repurposed as potential 

from AMPs. In the set, novel motifs with promising tumor homing activity are proposed.  

The good performance of the methodology for predicting peptide activity based on 

similarity searching and network science suggests its application for the prediction of 

other endpoints in peptides, e.g. antibacterial activity, toxicity, hemolytic, or anticancer. 

Our models and pipeline are freely available through the starPep toolbox software at 

http://mobiosd-hub.com/starpep. 
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