
Article 

Stray light correction algorithm for high performance optical 

instruments: the case of Metop-3MI 

Lionel Clermont 1,*, Céline Michel 1 and Yvan Stockman 1 

1 Centre Spatial de Liège, STAR Institute, Université de Lège; lionel.clermont@uliege.be 

* Correspondence: lionel.clermont@uliege.be 

Abstract: Stray light is a critical aspect for high performance optical instruments. When stray light 

control by design is insufficient to reach the performance requirement, correction by post-pro-

cessing must be considered. This situation is encountered for example in the case of the Earth ob-

servation instrument 3MI, whose stray light properties are complex due to the presence of many 

ghosts distributed on the detector array. We implement an iterative correction method and discuss 

its convergence properties. Spatial and field binning can be employed to reduce the computation 

time but at the cost of a decreased performance. Interpolation of the stray light properties is required 

to achieve high performance correction. For that, two methods are proposed and tested. The first 

interpolate the stray light in the field domain while the second applies a scaling operation based on 

a local symmetry assumption. Ultimately, the scaling method is selected and a stray light reduction 

by a factor of 58 is obtained at 2σ (129 at 1σ) for an extended scene illumination. 

Keywords: stray light, radiometric accuracy, Earth observation, correction algorithm, ghost reflec-

tions 

 

1. Introduction 

Stray light (SL) degrades the performances of optical instruments due to effects such 

as ghost reflections or scattering [1]. In high end applications such as space instrumenta-

tion, SL is a key limiting factor. It must be controlled by design, for example by using 

baffles, apertures or anti-reflection coatings [1,3]. However, if the desired performances 

cannot be reached by design, an additional post-processing step must be included to de-

crease the SL level. 

This situation is encountered in the Metop-3MI Earth observation instrument [4-7]. 

With an on-axis refractive configuration, its many lenses are necessary for correcting op-

tical aberrations over a wide field-of-view (FOV) of ±57°. Hence many ghost paths reach 

the detector and, despite anti-reflection coatings, it affects the radiometric accuracy be-

yond user requirements. This paper discusses the SL correction algorithm developed for 

3MI to reach satisfactory SL performances. Previously, the Earth observation instrument 

POLDER [8] had a similar optical configuration and also required an algorithm to de-

crease the SL. With the trend of users requiring always higher performing instruments, it 

is likely that SL correction algorithms will become the norm in the near future of Earth 

observation missions (e.g., FLEX [9], ALTIUS [10], etc.). Furthermore, many other appli-

cations could benefit from this type of algorithms, including non-space optical systems. 

In Earth observation instruments, SL level is often specified based on an extended scene 

illumination [11]. Also referred as a black and white (B&W) scene, it consists in illuminat-

ing half of the FOV with a bright uniform radiance Lmax, and the other side with a dark 

radiance Lref. Fig 1 (a) shows the corresponding nominal image Inom (i.e., SL free) on the 

3MI VNIR detector, with a signal Imax in the region illuminated at Lmax, and Iref=0.1∙Imax on 

the other side (flat field is neglected). The detector has N×N pixels of 26 µm (N=512), the 

corners are dark as the optical FOV is slightly smaller than the detector encircled diameter. 

The effective area of the detector is therefore the full area except for the corners. 
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Figure 1. Nominal signal for the B&W extended scene (a) and corresponding SL computed by ray 

tracing at 410nm (b). 

To fulfill the 3MI mission requirements, the residual SL (ΔISL) for the B&W extended 

scene must be smaller than 0.017%∙Imax. The level is evaluated at 2σ percentile (95.4%) over 

the effective detector area except for the region located at less than 5 pixels from the tran-

sition. We write dSL the residual SL on pixels from this requirement area, evaluated at 2σ 

unless stated otherwise. Thus, the requirement writes as per equation (1). In comparison, 

Fig 1 (b) shows the SL map, ISL, of the instrument by design at 410 nm. This map was 

obtained by ray tracing simulation considering second order ghost reflections, by far the 

most dominant SL contributor in the system. With an initial 2σ level dSL = 0.97% ∙ Imax 

(Table 1), the correction algorithm needs to decrease the SL by about 2 orders of magni-

tude (factor ≥ 58 at 2σ). 

𝑑𝑆𝐿 ≤ 0.017% ⋅ 𝐼𝑚𝑎𝑥  (1) 

Several authors developed methods for correcting SL. Deconvolution can be used to 

correct the SL contribution from scattering on optical surfaces [12-14]. This can occur due 

to lens roughness or contamination, it creates a simple SL profile which broadens the 

point-spread function (PSF) [1,15]. When the SL pattern is more complex, for example, 

with ghosts distributed all over the detector with discontinuous geometries and strong 

field dependence, this approach is insufficient. In that case, we can take advantage of the 

fact that SL is a linear, additive phenomenon [8]. On a given pixel of the detector, the total 

SL is the sum of the contributions coming from all fields. If the SL dependance with the 

field is known, it can be used to estimate the total SL reaching the detector for any input 

scene. The estimated map is then subtracted from the measurement to obtain the corrected 

image. Janson et al. [16,17] use that principle to estimate iteratively SL maps, assuming a 

shift-variant but rotationally symmetrical shape for the SL as a function of the field. For 

the POLDER instrument, Laherrere et al. [8] apply a similar approach by calibrating the 

SL coming from different regions of the FOV. As a direct extension, Zong et al. [18-20] use 

an inverse matrix formulation to correct SL without the need for iterations. This approach 

can be applied for SL correction in different kinds of instrument, including spectrographs 

[19] and hyperspectral instruments [21,22]. 

Based on these principles, a correction method is developed for the 3MI instrument. 

An iterative approach is used rather than the inverse matrix formulation, due to its versa-

tility for high performance correction. Convergence properties are studied and we show 

that the residual error at first iteration cannot always be neglected. Spatial and field bin-

ning are used to limit the computation time and required computer memory, however it 

has consequences on the SL correction ratio. Furthermore, SL calibration on a restricted 

grid limits the performance, therefore interpolation methods are introduced to deduce the 
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SL at intermediary fields. The SL correction performance for 3MI is predicted by testing 

the method with data obtained by ray tracing simulations (410nm) with the FRED® soft-

ware [23]. This is performed by considering experimental limitations such as the reason-

able quantity of fields to calibrate, or the modeling of detector noise. 

2. SL correction method 

2.1. Principles 

We define the spatial point source transmittance (SPST) as the SL map when the in-

strument is illuminated by a point-like source, normalized to the nominal signal. Hence, 

we write SPSTi,j(x,y) the SL map as a function of the spatial coordinates (x,y) on the detec-

tor, for an illumination at field (i,j) such that Inom(i,j)=1. The spatial and field coordinates, 

respectively (x,y) and (i,j), are integers considered in units of pixels ranging from 1 to 

N=512 for the 3MI VNIR instrument. Because the PSF is sub-pixel, an illumination at field 

(i,j) gives a nominal signal of 0 on all the pixels other than (i,j). Fig 2 shows examples of 

SPST maps for different fields in 3MI. They are composed of multiple ghosts distributed 

on the detector array. In each case, intense and localized ghosts are present around the 

nominal pixel (i,j), due to ghost reflections close to the focal plane. 

 

 

Figure 2. SPST maps for second order ghosts in 3MI, for different fields along the x direction. 

The signal at the detector is the sum of the nominal and SL signals (equation (2)). 

When the instrument is illuminated by an extended scene, the total SL is the sum of the 

SL contributions from the different fields. Therefore, ISL is obtained with equation (3), cor-

responding to the linear combination over the FOV of the SPST maps, modulated by the 

nominal signal at the corresponding field. This equation can also be written as a matrix-

vector multiplication (equation (4)), where the map Inom is reshaped as a vector of dimen-

sion N²×1 and ASL is a N²×N² matrix composed of the SPST maps also reshaped as vectors 

N²×1 (see appendix A). 

𝐼𝑚𝑒𝑠 = 𝐼𝑛𝑜𝑚 + 𝐼𝑆𝐿  (2) 

𝐼𝑆𝐿(𝑥, 𝑦) = ∑ 𝑆𝑃𝑆𝑇𝑖,𝑗(𝑥, 𝑦) ⋅  𝐼𝑛𝑜𝑚(𝑖, 𝑗)

𝑁,𝑁

𝑖,𝑗

 (3) 

𝐼𝑆𝐿 = 𝐴𝑆𝐿 ∙ 𝐼𝑛𝑜𝑚 (4) 

 

From the matrix formulation of equation (4), the nominal signal can be recovered 

with equation (5), where id is the identity matrix [18-20]. However, it can be impractical 

to compute the inverse matrix when composed of many elements. For example, the full 

resolution matrix ASL for 3MI is composed of 6.9∙1010 elements. Moreover, equation (5) is 

only valid for a non-singular matrix and, even if it is the case, the inversion process can 

lead to error amplification. The condition number can be used to estimate the sensitivity 
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to errors [24,25]. Finally, a practical limitation of equation (5) is that it requires ASL to be 

square. This restricts the applications of spatial and field binning as we will discuss later. 

𝐼𝑛𝑜𝑚 = (𝑖𝑑 + 𝐴𝑆𝐿)−1 ∙ 𝐼𝑚𝑒𝑠 (5) 

For these reasons, a more versatile iterative approach to SL correction is preferred for 

3MI. The first iteration consists in estimating the SL (𝐼𝑆𝐿,1) by modulating the ASL matrix 

by the measured signal. This provides a first estimation of the corrected image (𝐼𝑐𝑜𝑟𝑟,1). At 

second iteration, ASL is modulated by 𝐼𝑐𝑜𝑟𝑟,1 to obtain a better estimation of the SL (𝐼𝑆𝐿,2). 

This iterative process is described in equations (6) to (8), with 𝐼𝑆𝐿,𝑝 and 𝐼𝑐𝑜𝑟𝑟,𝑝 respectively 

the estimated SL and corrected maps at iteration p. The more this process is repeated, the 

more accurate the correction. 

𝐼𝑆𝐿,0 = 0 (6) 

𝐼𝑆𝐿,𝑝 = 𝐴𝑆𝐿 ⋅ (𝐼𝑚𝑒𝑠 − 𝐼𝑆𝐿,𝑝−1) (7) 

𝐼𝑐𝑜𝑟𝑟,𝑝 = 𝐼𝑚𝑒𝑠 − 𝐼𝑆𝐿,𝑝 (8) 

2.2. Convergence of the iterative method 

The residual SL error at first iteration is not always negligible, as opposed to what 

some authors state [9,16,17]. At convergence (𝑝 = ∞), 𝐼𝑆𝐿,𝑝 = 𝐼𝑆𝐿  and 𝐼𝑐𝑜𝑟𝑟,𝑝 = 𝐼𝑚𝑒𝑠 . By 

mathematical induction, we find that the residual convergence error Δ𝑆𝐿𝑝 at iteration p 

is given by equation (9). The error alternates between positive and negative values. In-

deed, at first iteration the SPST maps are modulated by a scene 𝐼𝑚𝑒𝑠  larger than the nom-

inal scene, thus the SL is overestimated. At second iteration, the SPST maps are modulated 

by a scene smaller than the nominal (𝐼𝑚𝑒𝑠 − 𝐼𝑆𝐿,1), therefore underestimating the SL. This 

gives a convergence profile similar to a damped harmonic oscillator. 

Δ𝑆𝐿𝑝 = (−𝐴𝑆𝐿)𝑝+1 ⋅ 𝐼𝑛𝑜𝑚 (9) 

Fig 3 shows the 2σ error d𝑆𝐿𝑝 at iteration p. The residual error at p=0 corresponds to 

the initial SL of the instrument before applying the correction. To evaluate how the con-

vergence is affected by the initial SL level of the instrument, the curve is computed for the 

situation of 3MI as well as in the case where its initial SL level is multiplied by a factor s 

(s=1/5, 1, 5 and 10). As Fig 3 shows, the residual error at iteration p=1 increases when the 

initial SL level increases. A quadratic dependance is found between d𝑆𝐿1 and the initial 

SL level, which can also be deduced directly from equation (9). In each case, the residual 

error decreases linearly on a semilog scale, characteristic of an inverse power law or an 

exponential decay. The lower the initial SL level and the faster the convergence. The con-

vergence curve is compared on Fig 3 to the performance requirement of equation (1). With 

the SL level of 3MI, a single iteration is sufficient to fulfill the requirement. However, the 

convergence error is only one contributor among others, therefore an additional iteration 

is preferable. With two iterations the convergence error is two orders or magnitude below 

the requirement and can be considered as negligible. 
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Figure 3. Residual SL as a function of the iteration, for different initial SL levels in 3MI. 

It is interesting to remark that we are here in the case of a Jacobi convergence. Rigor-

ously, the convergence is ensured if the modulus of all eigenvalues of (𝑖𝑑 + 𝐴𝑆𝐿) are in-

ferior to 1. Moreover, the convergence speed can be increased with the Gauss Seidel 

method [26]. Each time the product of a line of ASL by a column of 𝐼𝑐𝑜𝑟𝑟,𝑝 is calculated, it 

gives a new estimated value 𝐼𝑆𝐿,𝑝+1 for the SL at the same line. Therefore at that line a 

better estimation of the corrected scene is obtained and can be used for the estimation of 

the SL at the next line. This speeds the convergence as the SPST are modulated with a map 

closer to the real nominal scene (see appendix C for details). 

Another way for speeding the convergence is to apply the basic principles of the mul-

tigrid method [27]. This consists in first correcting the SL with a lower resolution matrix 

ASL, then increasing it up to N²×N² as we progress in the iterations. Therefore, the com-

putation is less cumbersome for the first iterations, resulting in time saving.  

2. Impact of errors 

In practice, SPST maps will be affected by errors and the matrix from equation (4) 

becomes 𝐴𝑆𝐿∗ = 𝐴𝑆𝐿 + Δ𝐴. Errors can come from detector noise during the calibration, or 

from the interpolation process as it will be shown later. While Δ𝐴 has negligible impact 

on the convergence speed, the limit of ΔSL𝑝 is not 0 anymore but Δ𝑆𝐿 = Δ𝐴 ⋅ 𝐼𝑛𝑜𝑚. A sim-

ple case to derive is when each element of Δ𝐴 is a random variable centered on zero and 

with Gaussian distribution. For example, this is typically the case for detector noise. In 

that condition, the value Δ𝑆𝐿 on each pixel is a random variable with mathematical ex-

pectation of zero. Its standard deviation given by equation (10), a root square sum (RSS) 

of the standard deviations of the elements of Δ𝐴 modulated by Inom. If each elements of 

Δ𝐴 has the same standard deviation δ, the equation (10) simplifies to (11). 

𝑠𝑡𝑑[𝛥𝑆𝐿(𝑞)] = √∑(𝑠𝑡𝑑[𝛥𝐴(𝑞, 𝑟)] ⋅ 𝐼𝑛𝑜𝑚(𝑟) )2

𝑁2

𝑟=1

 (10) 

= 𝛿√∑ 𝐼𝑛𝑜𝑚(𝑟)2

𝑁2

𝑟=1

 (11) 

In a Gaussian distribution assumption, the standard deviation is the error at 1σ per-

centile and the 2σ error is twice that value. Therefore, introducing equation (11) in the 

equation (1) gives the maximum error δ to fulfill the performance requirement (equation 

(12)). For the B&W extended scene, this gives a 2σ error on the SPST maps below 2.4 ⋅

10−5%. 
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𝛿 ≤
𝐼𝑚𝑎𝑥 ⋅ 0.017%

2 ⋅ √∑ 𝐼𝑛𝑜𝑚(𝑘)2𝑁2

𝑘=1

 
(12) 

In practice, errors on the SPST maps don’t necessarily have a Gaussian distribution 

centered on zero. However, this assumption provides an estimation in order of magnitude 

of the maximum allowed error. This is useful for establishing a preliminary error budget 

or to specify the accuracy to achieve in the calibration and interpolation processes. 

2. Spatial and field binning 

The quantity of data is very large when SPST maps are known in high resolution over 

the N×N field grid. Binning of the SPST maps can be done to decrease the quantity of data 

and reduce the SL correction computation time. Two types of binning can be done: spatial 

binning and field binning. The first decreases the resolution of the maps while the second 

decreases the number of maps considered in the SL calculation. Therefore, spatial binning 

reduces the number of lines in matrix ASL and field binning reduces the number of col-

umns. As the inverse matrix approach requires a square dimension for ASL, spatial and 

field binning must reduce the number of columns and lines in the same ratio. With the 

iterative approach, ASL does not need to be a square matrix, thus any choice of spatial and 

field binning can be made. 

Spatial binning consists in decreasing the resolution of the SPST maps. From a high 

resolution map of dimension N×N, spatial binning to a dimension n×n is done by averag-

ing groups of N/n by N/n adjacent pixels. Fig 4 shows a high resolution SPST map (a) and 

the same map binned with n=16 (b). The SL correction process provides an estimation of 

the SL map in dimension n×n, an oversampling to N×N is thus necessary before subtract-

ing it from the measured image. 

Fig 5 (a) shows the SL map for the B&W extended scene illumination, estimated with 

spatial binning (n=16). The result is the same as if the SL was computed with high resolu-

tion maps and that spatial binning was applied afterward. The SL map undergoes a reso-

lution loss, causing a deviation from the theoretical SL. Fig 5 (b) shows the 2σ error dSL 

on the estimated SL as a function of the spatial binning. The smaller n compared to N and 

the larger the error. Here, a binning as low as n=100 still provides a residual error within 

performance requirement and reduces the number of data by (512/100)2 ≈ 26. Neverthe-

less, the impact of spatial binning depends on the scene and other sources of errors will 

add up, therefore n should not be so small in practice. The choice of n for 3MI will be 

discussed afterward. 
 

 

Figure 4. (a) SPST145,32 at the resolution of the detector array (512×512). (b) Spatial binning reduces 

the dimension of the map to n×n with n=16. (c) Field binning averages the SPST for adjacent fields 

(m=16) but keep unchanged the resolution. 
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Figure 5. (a) SL map for the B&W extended scene illumination, estimated with spatial binning 

(n=16). (b) Error on the estimated SL map as a function of the binning n. 

Field binning consists in averaging the SPST maps associated to neighboring fields. 

If the maps are known for the fields associated to each of the N×N pixels, field binning on 

a grid m×m consists in averaging SPST maps associated to groups of N/m by N/m adjacent 

fields. An example is shown on Fig 4 (c), where the map from Fig 4 (a) is binned in the 

field domain with m=16. SL correction with field binning involves a linear combination of 

the SPST maps by the scene signal over the m×m field grid. Therefore the same binning 

must be applied to the scene too. Moreover, for energy conservation the estimated SL is 

multiplied by (N/m)². 

Field binning has the same consequences for SL correction as if the SL was estimated 

based on the N×N field grid, but with SPST maps modulated by a lower resolution scene. 

Hence, field binning does not affect the SL estimation from uniform regions of the FOV, 

but only from non-uniform regions. Consequently, the impact of field binning is depend-

ent upon the scene illuminating the instrument. Errors typically come from areas of the 

FOV with the higher spatial frequencies, however it depends on how they are distributed 

on the detector array. For example, field binning on the B&W scene of Fig 1 (a) does not 

introduce any error on the SL estimation if m is even, as the transition is exactly at the 

center. However, a scene with a transition within a binned area of the FOV undergoes SL 

estimation errors. For example, Fig 6 (a) shows a B&W scene with a tilted transition and 

field binning of m=16. Due to the tilt, the field binning impacts the transition for any value 

of m. Fig 6 (a) shows the corresponding SL map estimation. As the SPST have bright ghosts 

localized around the nominal pixels, and because SL errors occur only for fields around 

the transition, the estimated SL emphasizes an irregular transition. 

Fig 6 (c) shows the error dSL as a function of the field binning m for the B&W scene 

with tilted transition. The error remains small even for small values of m, as the field bin-

ning only impacts the contribution from fields localized around the transition. Therefore, 

reduction of the quantity of data should preferably be done with field binning rather than 

spatial binning. Nevertheless, the impact of field binning depends on the type of scene 

and one with high contrast and multiple transitions is more sensitive. Ideally, m should 

be as close to N as possible within computational capabilities. In the case of 3MI, m=128 is 

reasonable in terms of quantity of data and it gives an error significantly lower than the 

performance requirement. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2022                   doi:10.20944/preprints202202.0034.v1

https://doi.org/10.20944/preprints202202.0034.v1


 

 

Figure 6. (a) Nominal image for a tilted B&W scene with field binning (m=16). (b) Corresponding 

estimated SL scene, emphasizing an irregular transition due to field binning. (c) SL estimation error 

as a function of the field binning. 

Finally, let’s mention that binning can have a consequence on SPST calibration errors 

(detector noise, interpolation, etc.). As spatial binning averages the signal of adjacent pix-

els, the error on these pixels is averaged. If the error is random and centered on zero, the 

statistical error in the binned dimension is reduced too. The error is however not reduced 

if the distribution is not centered on zero. Moreover, random noise reduction is usually 

compensated by the intrinsic error of spatial binning occurring by reducing the SL map 

resolution. Regarding field binning, it averages the SL signal from the same pixels and 

therefore it does not decrease the SPST noise. 

5. SPST maps interpolation 

5.1. The need for interpolation 

In practice, it is usually not possible to calibrate the SPST maps on the full N×N field 

grid. For example, in 3MI this would mean N²=262144 fields to calibrate. Instead, maps 

are calibrated on a restricted field grid with a lower density. A simple case is a k×k grid 

regularly spaced at detector level (k<N). Similarly as field binning, where maps are avail-

able on a m×m grid, correction with the restricted grid is done by modulating the maps by 

the scene binned on the k×k grid. Also, the SL map is multiplied by (N/k)² for energy con-

servation. If the inverse matrix approach is used, spatial binning with n=k must be applied 

so that ASL is square. Alternatively, spatial binning can be avoided if the columns of ASL 

are filled with N×N maps, attributing for each field the SPST calibrated at the closest field. 

With the iterative approach, this is not necessary as ASL does not need to be square. 

While SL correction on a restricted grid involves similar practical considerations as 

with field binning, its impact on the performance is worse. Indeed, using a restricted grid 

is equivalent to assuming that within a group of fields associated to N/k×N/k pixels, the 

SPST is equal to the one of the central field. Fig 7 (a), (b) and (c) shows the estimated SL 

for the B&W scene, obtained with a restricted grid with different values of k. When the 

grid density is small (k<<N), the map has a dark background and bright localized features. 

These come from the bright localized ghosts present on the individual SPST maps, in par-

ticular around the nominal pixel. When the grid density increases, the number of localized 

features increases while their brightness decreases, resembling more to the theoretical SL 

map. The continuous line on Fig 7 (g) shows the error on the SL estimation, dSL, as a 

function of the restricted grid size k. As it shows, the error increases very fast when k 

decreases. 
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Figure 7. SL of the B&W extended scene, estimated with SPST maps known on a restricted grid k×k 

((a), (b) and (c)). The SL estimation can be improved by applying an optimal spatial binning ((d), (e) 

and (f)). (g) SL estimation error dSL as a function of the grid size k, with or without the optimal 

spatial binning. (h) Error dSL as a function of the spatial binning n for different values of k. For each 

k, there is an optimal value of n minimizing the error. 

While spatial binning usually increases the SL estimation error, in the case of a low 

density restricted grid, it can be used to smooth the localized features from individual 

SPST maps. Fig 7 (h) shows the error dSL as a function of the spatial binning (N/n), for 

different values of k. As it shows, for each value k there is an optimal spatial binning (N/n) 

minimizing dSL. For k<256, the optimal binning is n=k. A stronger spatial binning is there-

fore required when the grid density is decreased. However, if k≥256 the optimal spatial 

binning is n=512. This is because the bright localized ghosts present on the individual 

SPST maps have a width larger than the pixel. Therefore when k≥256 the localized ghosts 

from adjacent fields overlap each other. Fig 7 (d), (e) and (f) show the estimated SL ob-

tained with the same restricted grid as (a), (b) and (c) but with the optimal spatial binning 

applied. The dotted line on Fig 7 (g) also shows the error as a function of the restricted 
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grid size k, this time with the application of the optimal spatial binning. As it shows, spa-

tial binning improves the SL estimation in the case of a low grid density. 

A dense grid is required for accurate estimation of the SL, however sufficient number 

of maps cannot be realistically calibrated to achieve the 3MI performance requirement. 

Indeed, even with maps calibrated with no experimental errors, Fig 7 (g) shows that at 

least about 180×180 maps are needed. In practice it is estimated that about 27×27 (729 

maps) can be measured within a realistic time frame. Consequently, maps at intermediary 

fields should be deduced numerically by interpolation. While the idea of using an inter-

polation method is vaguely stated in literature [18], to the best of our knowledge there has 

been no detailed description about how this can achieved. In the following sections, we 

introduce two interpolation methods and discuss their performance: field domain inter-

polation and scaling interpolation. 

Another way to solve the impact of a restricted grid is to calibrate the SL by illumi-

nating groups of pixels simultaneously, instead of a single pixel. This is equivalent to cal-

ibrating SPST over the N×N field grid and then applying field binning. However, the lim-

itation is that the FOV sustained by groups of pixels varies with the elevation and azi-

muth. Therefore it is difficult in practice to illuminate precisely a group of pixels and not 

their neighbors, thus introducing either gaps or overlaps between fields. In POLDER, this 

is the reason why the SL is calibrated with an integrating sphere illuminating large areas 

of the detector [8]. In that case, the FOV was divided in 13×17 zones, which in addition of 

the gaps and overlaps between the different zones is equivalent to a strong field binning. 

5.2. Field domain interpolation 

We define the Field Point Source Transmittance (FPST) such that 𝐹𝑃𝑆𝑇𝑥,𝑦(𝑖, 𝑗) =

𝑆𝑃𝑆𝑇𝑖,𝑗(𝑥, 𝑦). While the SPST is the SL spatial distribution for a single field illumination, 

the FPST is the SL on a single pixel as a function of the field. In the matrix ASL, the SPST 

are the columns while the FPST are the lines. 

If the SPST are calibrated on a regularly spaced field grid, we can plot for any pixel 

the FPST map as a function of the field (i,j). For example, Fig 8 (a) shows the FPST map on 

pixel (x,y)=(359,205), considering a calibration on a 27×27 field grid. In comparison, Fig 8 

(c) shows the theoretical FPST on a higher resolution grid. Field domain interpolation con-

sists in interpolating the FPST map from the calibration grid to a higher density grid. Fig 

8 (b) shows the result of the interpolation of the map (a), using a cubic kernel. 

Field domain interpolation can be applied to the FPST on each pixel (x,y). Then, in-

terpolated FPST maps are transformed back into SPST over the interpolation field grid. 

The interpolated FPST can also be directly introduced into matrix ASL. Field domain inter-

polation is conceptually straight forward, however its accuracy is strongly dependent on 

the calibration grid density. It cannot recover variations of the SL faster than the grid sam-

pling. Moreover, as it considers the SL on one pixel at a time, it is sensitive to detector 

noise. 
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Figure 8. FPSTx,y(i,j) at pixel (x,y)=(359,205). (a) FPST on a 27×27 grid calibration grid. (b) FPST inter-

polated in the field domain from the 27×27 grid to a high resolution grid. (c) Theoretical FPST on 

the high resolution field grid. (d) FPST on the high resolution grid, obtained by scaling interpolation 

with SPST maps calibrated over the grid of Fig 10. 

5.3. Scaling interpolation 

Another approach to SPST interpolation is based on the observation that SL evolves 

with the field with a symmetry with respect to the optical axis, at least locally. Fig 9 (a) 

shows SPST maps at fields (i,j) with i=32 and j from 96 to 256. All SL features are aligned 

along the radial direction, joining the detector center to the nominal pixel, and have a 

mirror symmetry with respect to that axis. 

When varying the field along the horizontal direction x (j varies, i stays constant), the 

nominal signal as well as most SL features move along that direction as well. Therefore, 

the distance from the features to the center varies with about the same ratio. While this 

might not be true for every single ghost, it is verified at least locally for the most significant 

ones. Furthermore, locally the features do not change significantly in shape and size when 

the field is varied. Based on these observations, a scaling interpolation method can be im-

plemented. 

The SPST maps are calibrated on a restricted grid. To obtain the SPST at an interme-

diary field (𝑖∗, 𝑗∗), we search for the closest calibrated field (𝑖𝑐 , 𝑗𝑐). Then, we operate to 

𝑆𝑃𝑆𝑇𝑖𝑐,𝑗𝑐
 a scaling by a factor 𝑠 = 𝑟∗ 𝑟𝑐⁄  and a rotation by an angle 𝛼. Here, 𝑟∗ and 𝑟𝑐  are 

the radial distance of pixels (𝑖∗, 𝑗∗) and (𝑖𝑐 , 𝑗𝑐), respectively. The angle 𝛼 is the difference 

of the azimuth for both fields. This operation places the nominal pixel from the calibrated 

map from position (𝑖𝑐 , 𝑗𝑐) to (𝑖∗, 𝑗∗) and moves the SL features to about the right position as 

well. 
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A drawback of the scaling method is that it modifies the size of the ghosts. With a 

regularly spaced grid, the ratio s has the largest deviation from 1 when the nominal pixel 

(𝑖𝑐 , 𝑗𝑐) is close to the center (i.e., small elevation angle). Hence, the ghosts undergo the 

largest scaling for those fields and the interpolated maps are less accurate. For that reason, 

the density of the calibration grid is increased at the center. Fig 10 shows the calibration 

grid considered for 3MI. It consists of a regularly spaced grid of dimension 27×27, to which 

are added extra fields at the center such that the grid density is double for small elevations. 

This gives a total of 797 calibration fields, including the 90 additional fields at the center, 

and not considering the fields in the corners of the detector. Moreover, a threshold is set 

on s such that if its deviation from 1 is too important, the SPST map of the closest neighbor 

is applied with no scaling or rotation. This is equivalent to applying a restricted grid for 

the SL correction from these fields. In the case of 3MI, the threshold is set to a maximum 

deviation from 1 of 0.2. Finally, scaling and rotation of an SPST map can have as a conse-

quence the absence of signal along the edges, as shown on Fig 9 (b). This gap can be filled 

by applying a scaling and rotation operation to the second closest neighbor. If a gap is still 

present, the next neighbors can be considered, it is found that the gap is always filled by 

using up to 4 neighbors. Moreover, the scaling factor is minimized by sorting the 4 closest 

neighbors by their deviation of s from 1. Hence, the first neighbor is the one within the 4 

closest which has the closest ratio s from 1. Fig 9 (b) shows the SPST map interpolated 

with this method, where no signal is missing on the edges. 

Fig 8 (d) shows the FPST at pixel (359,205), obtained by interpolating the SPST maps 

from the calibration grid to a higher density grid with the scaling method. In this case, 

features and details smaller than the calibration grid sampling are recovered, which was 

not the case with field domain interpolation. Fig 11 shows the 2σ error on the FPSTx,y 

(dFPST) as a function of the radial distance of pixel (x,y), considering the scaling method 

or the field domain interpolation. In average, the scaling method gives an error 1.5 times 

smaller than field domain interpolation, despite using nearly the same number of calibra-

tion maps (797 and 707 respectively). The exception is close to the center of the detector, 

where the scaling method has a lower performance as in that area the scaling factor s is 

the largest. For both methods, the error is below the target value derived in the previous 

section which predicted the SL calibration accuracy (2.4 ⋅ 10−5%) to reach the performance 

requirement. 

In the case of a purely rotationally symmetrical optical system but with a square de-

tector aligned on the optical axis, it is sufficient to calibrate only 1/8th of the field grid, 

with an azimuth between 0° and 45°. Indeed, the other portions can be obtained directly 

by symmetry. It is not sufficient however to calibrate only the maps along the radial di-

rection. Indeed, a rotation applied to the maps would always introduce missing signal on 

the edges of the detector. 
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Figure 9. (a) SPSTi,j with i=32 and j=96 to 256. When the field is varied along the horizontal direction, 

ghosts moves in that direction too, thus their distance from the center all evolve with the same ratio. 

(b) SPST interpolated with one neighbor, with missing signal on the edges. (c) SPST interpolated 

with up to 4 neighbors to fill, with no missing signal on the edges. 

 

Figure 10. Calibration grid for the scaling interpolation method. The grid is regularly spaced every-

where but at the center where the density is doubled. 
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Figure 11. 2σ error on FPSTx,y as a function of the radial distance of pixel (x,y). The FPST is interpo-

lated either with the scaling method in in the field domain. 

5.4. SL correction performance 

While both interpolation methods seem promising, the scaling method is selected as 

it has better performances. Maps are interpolated from the calibration grid to the N×N 

grid. Matrix ASL is then built and the estimated SL is computed at the convergence of the 

iterative method (equation (4)). For now, no spatial or field binning is applied. The result 

for the B&W scene is shown on Fig 12 (a) and is very similar to the theoretical scene of Fig 

1 (a). The Fig 12 (b) shows the profile along x of the estimated SL at the center or the 

detector (y=256). It is superposed to a gray envelope corresponding to the theoretical SL 

profile and the performance requirement interval. As it shows, the estimated SL is mostly 

inside that area. 

Table 1 gives the residual SL after correction with interpolated maps, compared to 

the initial SL level. While the performance requirement is evaluated at 2σ, the 1σ and mean 

residual SL are also shown. At 2σ, the correction method decreases the SL by a factor 58, 

reaching the performance requirement. The ratio is even higher at 1σ or at mean value (up 

to 129). No spatial binning should be added, as the correction performance is already very 

close to performance requirement (spatial binning would increase the residual 2σ SL level 

by a factor 1.5). However, a field binning will be added with m=128. In the case of the 

B&W scene, the field binning does not affect the SL correction as the transition is located 

at the center and along the y direction. For other kinds of scenes, this choice will have 

limited impact as shown previously for a scene with tilted transition. 

Table 1. SL performance of 3MI before and after correction with maps interpolated with the scaling 

method, considering or not the detector noise. 

  1σ 2σ Mean value 

Initial SL level 0.7243 % ∙ Imax 0.9669 % ∙ Imax 0.5729 % ∙ Imax 

Residual SL 0.0056 % ∙ Imax 0.0166 % ∙ Imax 0.0052 % ∙ Imax 

Correction factor 129 58 110 

Residual SL with detector noise 0.0061 % ∙ Imax 0.0174 % ∙ Imax 0.0054 % ∙ Imax 

Correction factor 119 56 106 
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Figure 12. (a) SL for the B&W scene, estimated with SPST maps interpolated with the scaling 

method. (b) Profile along x at y=256. The gray background represents the performance requirement 

envelope. 

6. Calibration of SPST maps 

SPST maps calibration can be performed experimentally by illuminating the 3MI in-

strument with a collimated beam. The collimated beam is obtained by placing a point-like 

source at the focal plane of an off-axis parabola (OAP). Source diameter and OAP focal 

length are set such that the collimated beam has an angular width smaller than a pixel at 

instrument level. A rotation stage enables calibration of SPST maps at different fields. Ide-

ally, the collimated beam should cover the full entrance aperture of the instrument (170 

mm diameter in 3MI). An alternative is to use a smaller collimator with square pupil and 

to scan the instrument entrance aperture, with no gap or overlaps. Significant gain in time 

is achieved by scanning only over the stray light entrance pupil [28,29] (SLEP), which rep-

resents the areas of the entrance aperture to illuminate in order to measure all the possible 

SL paths. 

The 3MI detector records signals on 14 bits, with a saturation signal 𝐼𝑠𝑎𝑡 . On any 

pixel, a white noise is present with a standard deviation 𝜖, described by the theoretical 

model of equation (13). It contains two contributions, one function of the received signal 

I and one independent. With a single acquisition of the SL, the dynamic of the detector is 

insufficient to resolve the faint features of the map. Therefore, dynamic range decompo-

sition is performed by acquiring images with different levels of illumination or different 

integration times. Three levels are considered, with ratio of the received signal of respec-

tively 1, 102 and 104. The three images are then normalized and recombined, keeping for 

each pixel the signal from the image where it is the highest yet below saturation. Next, the 

map is normalized to the nominal signal. The signal on the nominal pixel is then removed 

to keep only the SL. 

𝜀 = √32 + 0.0133 ⋅
𝐼

𝐼𝑠𝑎𝑡

⋅ 12000 ⋅
1

12000
 (13) 

Based on the model of equation (13), the experimental process was simulated to de-

termine the impact of detector noise on the SL correction. The dark continuous line on Fig 

13 shows the theoretical profile along x, for y=256, when the instrument is illuminated by 

a point-like source at field pixel (i,j)=(256,32). The nominal signal is visible at x=32, while 

the signal on all the other pixels come from SL. The gray dotted line shows the same pro-

file when performing a single shot acquisition. The curve is obtained by applying the de-

tector noise with equation (13) and clearly shows that SL features are not resolved cor-

rectly. The gray continuous line shows the result of the acquisition with a dynamic range 
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decomposition. In that case, we are able to measure faint ghosts with a noise significantly 

smaller than the accuracy derived from the simplified model from section 3 (2.4 ⋅ 10−5%) 

The detector noise model and dynamic range decomposition process was applied for 

all the calibrated SPST maps. The maps were then interpolated to the N×N field grid and 

were used to estimate the SL for the B&W scene. As shown in Table 1, the SL error when 

considering the detector noise is slightly increased compared to the case where the noise 

is neglected. A residual SL of 0.0174%∙Imax is obtained at 2σ, nearly equal to the perfor-

mance requirement. Of course, in practice this will require a calibration facility with low 

SL so that the SPST is correctly measured without measurement artefacts. 

 

Figure 13. Profile along x (at y=256) of the signal when the instrument is illuminated by a point-like 

source at the field (i,j)=(256,32). The continuous curve gives the theoretical profile that would be 

obtained for a noise-free detector. The case of a detector with a noise modeled as per equation (13) 

is also shown, considering a single shot acquisition or dynamic range decomposition. 

7. Conclusions 

When SL control by design is not sufficient to reach the performance requirement, 

correction by post-processing must be considered. A correction method is developed for 

the Earth observation instrument Metop-3MI. The SL performance is specified based on 

the B&W extended scene illumination, with a required correction factor of at least 57 at 2σ 

percentile. The SL correction algorithm is based on the calibration of the SPST maps as a 

function of the field. The SL is estimated by a linear combination of the SPST maps by the 

scene, it is then removed from the measured signal to get the corrected image. An iterative 

correction approach is selected due to its versatility for high performance correction, with 

only two iterations required to reach performance requirement. Convergence speed can 

be increased by using the Gauss Seidel form or the multigrid method. Also, spatial and 

field binning can be performed to reduce the quantity of data and computation time, how-

ever it affects the SL correction performance. Spatial binning has the worse effect and 

should be limited. Field binning only impacts the estimation of SL from regions of the 

FOV with high spatial frequencies, for example a transition between two high contrast 

zones. Field binning is thus an effective way to reduce the computation time with limited 

impact on the performance. In practice, only a limited number of SPST maps can be cali-

brated. As SL correction over a low density field grid gives poor performance, interpola-

tion is required to deduce the SPST maps on a denser field grid. Two methods were pro-

posed, one in the field domain and the second which consists in applying scaling and 

rotation operations to the SPST maps based on a verified local symmetry assumption. Both 

methods are promising but the scaling method is selected as it gives better results. With 

interpolated maps, a correction factor of 58 is demonstrated at 2σ for the SL on the B&W 

scene (129 at 1σ). No spatial binning is considered, but a field binning to a dimension 

128×128 can be applied. In practice the calibrated SPST maps will be affected by detector 

noise and therefore dynamic range decomposition is necessary to resolve the faint SL 
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features. Considering the detector theoretical model, a SL correction factor of 56 is ob-

tained at 2σ (119 at 1σ). It is hard to compare this factor with other reported SL correction 

algorithms, as it is strongly dependent upon the specific parameters such as number of 

pixels on the detector. SL correction algorithms are likely to become the norm in the near 

future, as performance requirements are getting always more challenging while SL con-

trol by design is intrinsically limited by physics, practical constraints and processes. This 

method could also be used in other kinds of applications, from scientific instruments to 

even personal cameras. 

In  the future, a variant of this method could be to use theoretical SPST maps rather 

than calibrated ones. This could be done either with ray traced SPST maps, or with ana-

lytical functions. This will however require to be able to adapt theoretical SL models to 

the reality of experiments, which is a complex task when many ghosts are present. Ultra-

fast SL characterization is an interesting prospect for that matter as it can be used for re-

verse engineering the SL properties of an instrument [30,31]. 
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Appendix A 

The equation (3) can be formulated as a matrix-vector multiplication (equation (4)) 

by reshaping the maps into vectors as shown here below: 

 

Appendix B 

If we assume that all elements of ASL have the same value a=< ASL >, and if we replace 

all elements of 𝐼𝑛𝑜𝑚  by the mean value < 𝐼𝑛𝑜𝑚 >, equation (9) simplifies to (< 𝐴𝑆𝐿 >⋅

𝑁2)𝑝+1 ⋅  < 𝐼𝑛𝑜𝑚 >. From there, it can be shown that this simple equation fits accurately 

the curve when estimating the average residual error (< |Δ𝑆𝐿𝑝| >). Therefore, based on 

the knowledge of a few SPST maps, we estimate the mean value of ASL and evaluate the 

mean residual error as a function of the iteration p. With this model, the convergence cri-

teria is 𝑎 ⋅ 𝑁2 < 1. This simplified model however fails to estimate accurately the residual 

error at a statistical value, for example at 2σ. 

< |Δ𝑆𝐿𝑝| >= (< 𝐴𝑆𝐿 >⋅ 𝑁2)𝑝+1 ⋅< 𝐼𝑛𝑜𝑚 > (14) 

Appendix C 

The iterative SL correction algorithm presented in this paper is a case of Jacobi con-

vergence. Equation (15) gives the column q of the estimated SL at iteration p+1. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2022                   doi:10.20944/preprints202202.0034.v1

https://doi.org/10.20944/preprints202202.0034.v1


 

𝐼𝑆𝐿,𝑝+1(𝑞) = ∑ 𝐴𝑆𝐿(𝑞, 𝑟) × (𝐼𝑚𝑒𝑠(𝑟) −  𝐼𝑆𝐿,𝑝(𝑟))

𝑁2

𝑟=1

 (15) 

The convergence speed of the SL correction can be increased by using the Gauss 

Seidel method. The principle is the following: 

 

- The first line of the estimated SL at iteration p+1, 𝐼𝑆𝐿,𝑝+1, is computed with equa-

tion (16) similarly as in the case of the Jacobi convergence. 

- The second line, 𝐼𝑆𝐿,𝑝+1(2), is computed with equation (17). This is the same 

equation as in the case of the Jacobi convergence, except that 𝐼𝑆𝐿,𝑝(1) is replaced 

by the value 𝐼𝑆𝐿,𝑝+1(1) that was just obtained above. 

- The third line, 𝐼𝑆𝐿,𝑝+1(3), is computed with equation (18). This is the same equa-

tion as in the case of the Jacobi convergence, except that 𝐼𝑆𝐿,𝑝(2) is replaced by 

𝐼𝑆𝐿,𝑝+1(2) and 𝐼𝑆𝐿,𝑝(2) is replaced by 𝐼𝑆𝐿,𝑝+1(3). 

- This process continues and the line q+1, 𝐼𝑆𝐿,𝑝+1(𝑞 + 1), is computed with equa-

tion (19). 

𝐼𝑆𝐿,𝑝+1(1) = 𝐴𝑆𝐿(1,1) × (𝐼𝑚𝑒𝑠(1) − 𝐼𝑆𝐿,𝑝(1)) + 𝐴𝑆𝐿(1,2) × (𝐼𝑚𝑒𝑠(2) − 𝐼𝑆𝐿,𝑝(2))

+ ⋯ + 𝐴𝑆𝐿(1, 𝑁2) × (𝐼𝑚𝑒𝑠(𝑁2) − 𝐼𝑆𝐿,𝑝(𝑁2)) 
(16) 

𝐼𝑆𝐿,𝑝+1(2) = 𝐴𝑆𝐿(2,1) × (𝐼𝑚𝑒𝑠(1) −  𝑰𝑺𝑳,𝒑+𝟏(𝟏))

+ 𝐴𝑆𝐿(2,2) × (𝐼𝑚𝑒𝑠(2) −  𝐼𝑆𝐿,𝑝(2)) + ⋯

+ 𝐴𝑆𝐿(2, 𝑁2) × (𝐼𝑚𝑒𝑠(𝑁2) −  𝐼𝑆𝐿,𝑝(𝑁2)) 

(17) 

𝐼𝑆𝐿,𝑝+1(3) = 𝐴𝑆𝐿(3,1) × (𝐼𝑚𝑒𝑠(1) − 𝑰𝑺𝑳,𝒑+𝟏(𝟏))

+ 𝐴𝑆𝐿(3,2) × (𝐼𝑚𝑒𝑠(2) − 𝑰𝑺𝑳,𝒑+𝟏(𝟐)) + ⋯

+ 𝐴𝑆𝐿(3, 𝑁2) × (𝐼𝑚𝑒𝑠(𝑁2) −  𝐼𝑆𝐿,𝑝(𝑁2)) 

(18) 

𝐼𝑆𝐿,𝑝+1(𝑞) = ∑ 𝐴𝑆𝐿(𝑞, 𝑟) × (𝐼𝑚𝑒𝑠(𝑟) − 𝐼𝑆𝐿,𝑘+1(𝑟))

𝑞−1

𝑟=1

+ ∑ 𝐴𝑆𝐿(𝑞, 𝑟) × (𝐼𝑚𝑒𝑠(𝑟) −  𝐼𝑆𝐿,𝑘(𝑟))

𝑁2

𝑟=𝑞

 

(19) 
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