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Abstract: Amyotrophic lateral sclerosis (ALS) is also called "motor neuron disease”. In this review, 

we propose that ALS is not just a neuromotor disorder, but begins as a disorder of P53-modulated 

skeletal muscle metabolism, leading to failures at the energy state of the cells, incorrect redox 

states, motor denervation, and a loss of muscle fibers. Motoneurons die as a consequence of the 

lack of muscular feedback, and the oligomeric TDP43 aggregates progressively and relentlessly 

lead to mistakes in peripheral immune self-tolerance sustained over time. An effective treatment 

has not been found for this devastating pathology, as for 152 years the target has not been accu-

rately defined. Scientists and doctors should consider new knowledge regarding ALS and consider 

immunomodulatory therapies that, based on genetic analysis and symptoms, can be combined 

with compounds that regulate metabolism and promote the elimination of useless organelles and 

cells. What if ALS could be cured as a result of seeing motor neuron disease differently? This re-

view aims to develop that goal and change the paradigm of our understanding of ALS. 
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1. Introduction 

Amyotrophic lateral sclerosis (ALS), also known as "Lou Gehrig's disease,” is the 

most common neurodegenerative disease of the neuromotor system. It was described for 

the first time in 1869 by the French neurologist Jean-Martin Charcot, so the history of this 

devastating and incurable disease goes back more than 150 years. It is characterized by 

the degeneration of the upper and lower somatic motor neurons that innervate the vol-

untary muscles, leading to muscle atrophy and weakness of the skeletal muscles. The 

autonomic nervous system’s motor neurons, which are peptide-dependent, are less af-

fected in the gradual degeneration and subsequent death. The outcome is always fatal, 

with a mean survival of 2–5 years after diagnosis. ALS shows a multifactorial pathogen-

esis of unknown etiology and currently lacks an effective treatment despite the scientific 

advances that have occurred in the last decade. Patients diagnosed with possible or 

probable sporadic ALS do not receive, for the most part, any intervention other than 

electromyogram tests, blood tests, and magnetic resonance imaging. In these sporadic 

cases, which are the majority, genetic studies are only carried out in highly specialized 

ALS units that are not accessible to all patients, and tests are restricted to the study of the 

most abundant mutations involved in the disease, namely, in genes SOD1, TARDBP, 

C9orf72, and FUS. Comprehensive genetic studies are never carried out unless requested 

from private clinics by the patients themselves, even though there are many other genes 

that are mutated in sporadic ALS. 
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Another complication in the diagnosis and treatment of this disease is determining 

when it detonated in the body of the patient, as according to the latest scientific studies, 

the observable symptoms, such as stress, inflammation, and muscle fatigue, appear long 

after the first biochemical and/or physiological imbalances take root. Only by searching 

for the origin can we approach its multidisciplinary study quickly and efficiently [1, 2, 3, 

4].  

Mitochondria have been shown to be an early target in the pathophysiology of ALS 

and contribute to the progression of the disease. The interruption of their axonal 

transport, the excessive generation of reactive oxygen species (ROS), the disorganization 

of their structure and dynamics, the alterations in mitophagy, the failures in the Krebs 

cycle and in the oxidative phosphorylation chain, the poor buffering of calcium, and 

apoptotic activation are directly involved in the pathogenesis of the disease and have 

been extensively documented in patients with ALS and animal models of the disease. 

Alterations in energy production are therefore an evident symptom of ALS [5].  

 

This article reviews the literature at the forefront of science worldwide, and we seek 

to identify an origin of the disease that only a few have suggested for different types of 

ALS. In addition, we propose new treatments using medicine and physiotherapy for the 

stabilization and possible reversal of symptoms to mitigate the certainly fatal outcome of 

the disease. We then detail a novel model of the beginning of ALS that could change the 

paradigm of this pathology, which has been overlooked due to its low incidence and 

prevalence [1, 2, 3, 6, 7]. 

 

2. ALS is an immunometabolic disease that commences with P53-modulated skeletal 

muscle energy impairment 

 

In humans, the muscular system is divided into two distinct categories: smooth and 

striated muscles. The cellular density, organization, and function of skeletal muscle (SM) 

require high energy consumption compared to the rest of the body. Striated or skeletal 

muscles are innervated by the central nervous system (CNS), specifically by α-motor 

neurons, which are cholinergic neurons whose soma are found in the anterior horn of the 

spinal cord and in the motor nuclei of the cranial nerves. The set formed by an α-motor 

neuron and the skeletal muscle fibers that it innervates constitutes a functional unit called 

a “motor unit” [8]. 

 

In ALS, not all motor neurons (MNs) are vulnerable; slow, fatigue-resistant type I 

MNs are slow to degenerate, and fast-twitch type II MNs are much more susceptible to 

apoptosis. Type I MNs are characterized by their aerobic energy production and high 

mitochondrial density, high activity of oxidative enzymes, high concentration of 

citochrome c, rich capillary supply, high myoglobin concentration, and low activity of 

myosin-ATPase. They have a slower conduction speed and lower threshold of excitation 

to produce an action potential than their counterparts. Conversely ,type II MNs are ac-

companied by anaerobic energy production and are characterized by low mitochondrial 

density, high glycolytic enzyme activity, poor capillary supply, low myoglobin concen-

tration, and high myosin-ATPase activity. They innervate large muscle fibers that can 

exert great force in short periods of time by employing anaerobic metabolism. They have 

high conduction speeds and a high excitation threshold [8]. 

 

MN populations that do not have extensive corticospinal entrances, such as MNs 

within the trochlea and nuclei of Onuf, are resistant to degeneration even when the dis-

ease is in its later stages [9]. Nuclei of Onuf MNs innervate striated voluntary pelvic floor 

muscles, and the neurons themselves are histologically and biochemically comparable to 

other somatic spinal MNs. However, curiously, these neurons also show some autono-

mous characteristics since, for example, they receive strong peptidergic innervation. 

Between the axons of the MNs and the skeletal muscle fibers, a synapse is established 
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that has been widely studied as a model of chemical transmission, which is called the 

neuromuscular junction (NMJ) or motor plate. 

 

Although recent neurophysiological data obtained in ALS patients support early 

hyperexcitability of cortical MNs, dismantling of the NMJ is one of the earliest anatomical 

pathogenetic events in ALS. In both ALS patients and murine models of SOD1 disease, 

dismantling of the NMJ occurred before the degeneration of MNs, when clinical motor 

signs had not yet been seen [10, 11]. This indicated that the death of the motor neuron is 

not, as previously thought, the cause of the dismantling of the NMJ, or at least not the 

only cause. There seems to exist an inverse process that begins in the skeletal muscle and 

continues towards synaptic degeneration in the most distal portion of the axon. This 

novel idea has been supported by research showing that safeguarding the motor neu-

ronal soma did not prevent the loss of the NMJ [12, 13]. 

 

Although ALS has traditionally been considered an intrinsic disease of somatic 

MNs, scientific data obtained in recent years have strongly suggested that there are other 

tissues, such as muscle, vascular, and the organ, involved in the onset and progression of 

the disease and in energy metabolism; therefore, ALS has a multisystemic pathology. 

Since glucose is the main circulating energy substrate for muscle and the adult brain, the 

dysfunction of glucose metabolism inevitably disrupts the normal functioning of the 

neuromotor system [1, 2, 3, 4, 12, 13, 14]. 

 

There are multiple mechanisms that regulate different aspects of skeletal muscle bi-

ology, including its development, regeneration, and glucose and oxidative metabolism. 

Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the 

methylation of arginine residues in target proteins, and thus mediate a diverse set of in-

tracellular functions that are essential for muscle survival. Indeed, PRMT1 null mice are 

embryonic lethal. Since their first description in muscle in 2002, studies in a wide variety 

of experimental models have supported the hypothesis that PRMTs regulate other pro-

teins, such as peroxisome proliferator-activated gamma coactivator (PGC-1α), which in 

turn modulate metabolism and inflammation through the activation of nuclear receptors, 

transcription factor E2F1, and tumor suppressor protein p53, which ultimately determine 

the remodeling of the muscle phenotype (i.e., muscle plasticity). Recent studies showing 

that PRMT function was dysregulated in Duchenne muscular dystrophy, spinal muscu-

lar atrophy, and amyotrophic lateral sclerosis have indicated that altering PRMT expres-

sion and/or activity could have therapeutic value for neuromuscular disorders (NMD) 

[15, 16]. 

 

During environmental changes (strenuous exercise, toxin ingestion, lack of nutrients 

during long-term forced labor, dehydration, poor sleep, contact with cyanobacteria, la-

tent infections such as Epstein–Barr viral infection or chronic inflammatory demyelinat-

ing polyradiculoneuropathy (CIDP), etc.), cells undergo metabolic adaptation through 

the use of evolutionarily preserved stress response programs. This metabolic homeostasis 

is exquisitely regulated, and its imbalance could be the basis for many human patholog-

ical conditions [17, 18, 19]. The C9orf72 gene, which is related to the most common forms 

of familial and sporadic ALS, is a key regulator of lipid metabolism under stress. The 

non-coding repeat expansion leading to loss of function of the protein product C9orf72 

leads to an overactivation of starvation-induced lipid metabolism, which is mediated by 

the deregulated autophagic digestion of lipids and increased de novo fatty-acid synthe-

sis. C9orf72 works by promoting the lysosomal degradation of coactivator-associated 

arginine methyltransferase 1 (CARM1), also known as PRMT4, which in turn regulates 

autophagiclysosomal functions and lipid metabolism. In neurons and tissues derived 

from patients with ALS, a reduction in the function of C9orf72 has been associated with 

dysregulation in the levels of CARM1, fatty acids, and NADPH oxidase (NOX2). Fur-

thermore, the genetic deletion of Nox2 in the murine SOD1-G93A model of ALS mark-
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edly increased survival. These results revealed a C9orf72–CARM1 axis in the control of 

stress-induced lipid metabolism and implicated epigenetic dysregulation in devastating 

human diseases such as ALS [20, 21].  

 

The muscles of whole-body PRMT7 knockout (KO) animals have exhibited de-

creased ROS and reduced expression of genes such as PGC-1α. In skeletal muscle, 

PGC-1α serves as a key regulator of the slow oxidative myogenic program. For example, 

transgenic overexpression of the coactivator specifically within skeletal muscle results in 

mitochondrial biogenesis, rapid-to-slow myosin changes, structural and functional al-

terations in the NMJ, improvements in VO2max, and increased endurance capacity [22]. 

PRMT7 KO mice have shown attenuated endurance exercise capacity, as compared to 

their wild-type littermates, and decreased energy expenditure. In addition, PRMT7 reg-

ulates the slow oxidative phenotype by interacting with the p38/ATF2 pathway and thus 

improving the expression and activity of PGC-1α [22]. 

 

Many other studies have also shown that PRMT1-mediated arginine methylation 

regulates nuclear–cytosolic transport of FUS, another ALS-associated protein [23]. While 

in vivo research clarifying the expression and function of PRMTs in muscle has been 

limited, recent work clearly demonstrated the emerging importance of this family of 

enzymes as regulators of skeletal muscle plasticity, and they should be further studied in 

ALS [24, 25]. In fact, some altered epigenetic profiles of PRMT genes have been detected 

in the blood and may be useful biomarkers for diagnosis and evaluation of disease or 

treatment progress [26]. 

 

Since 2007, p53 has been known to play a role in cell metabolism, growth, and de-

velopment, and its involvement in glucose metabolism has recently been demonstrated 

[27]. Resistance exercise encourages localization of p53 in skeletal-muscle mitochondria, 

where it stimulates organelle biogenesis [24]. p53 also promotes aerobic metabolism in 

skeletal muscle, plays a role in muscle differentiation, and may be a therapeutic target for 

diseases of mitochondrial etiology. Previous studies have revealed the participation of 

PRMT1 and CARM1 in the activation of p53. More recent research has shown that the 

PRMT5 protein, as a cofactor of the DNA damage-sensitive coactivator complex that in-

teracts with p53, is responsible for p53 methylation. This methylation affects the speci-

ficity of p53 for target genes, and the depletion of PRMT5 triggers apoptosis that is de-

pendent on this tumor suppressor. Therefore, methylation of arginine residues is an un-

derlying mechanism of control during the p53 response [25].  

 

There are close connections between the p53 pathway and pyruvate metabolism. 

MDM2, an E3 ubiquitin-protein ligase that recognizes the N-terminal transactivation 

domain (TAD) of the protein, acts as an important negative regulator of p53 both in its 

degradation and in its transcriptional inactivation. MDM2 and p53 itself are part of a 

regulatory network in pancreatic beta cells that control pyruvate carboxylase (PC) activ-

ity, influencing glucose-stimulated insulin secretion and glucose homeostasis. Important 

aspects of the metabolic activities of p53 are related to its multiple functions in the 

transport and storage of lipids; in the biosynthesis of fatty acids and their desaturation; in 

the metabolism of cholesterol and sphingolipids; and in the oxidation of fatty acids 

(FAO). Additionally, several studies have documented that p53 interferes with adipocyte 

differentiation in stressed cells [28, 29, 30, 31, 32, 33]. 

 

Previous studies have underscored the importance of p53 in the autophagy network 

to promoting cell survival. However, p53 can also trigger autophagic cell death under 

various conditions of severe stress. P53 can regulate mitophagy and macroautophagy, a 

process that leads to the synthesis of double-membrane vesicles and their fusion to ly-

sosomes to recycle macromolecules and maintain intracellular groups of metabolites. 

Depending on its subcellular location, its mutational status, and the type of stress, p53 
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can inhibit or stimulate autophagy through multiple mechanisms, including the tran-

scriptional control of many genes related to autophagy; the regulation of the kinase 

mTORC1, which closely controls the autophagic process in accordance with intracellular 

energy and nutrient levels through regulation of members of the BCL2 family, which also 

control autophagy; and upon direct interaction with the key autophagic regulator BE-

CLIN 1 [34, 35]. 

 

Despite the significant amount of data on this pleiotropic tumor suppressor, there is 

currently no unifying model that explains how p53 and its multiple regulators coordinate 

metabolism, but the latest scientific publications have answered questions that are ap-

plicable in many physiological and pathological contexts, including metabolic diseases 

such as diabetes or ALS. P53 is an important effector in many metabolic stress responses 

that works by controlling the transcription of numerous metabolic genes. Several studies 

have shown that its DNA-binding properties are directly controlled by intracellular lev-

els of reactive oxygen species (ROS) and by metabolites such as L-serine, all of which 

would support the theory that p53 is also a metabolic sensor that plays a central role as a 

mediator in the plastic cell response to redox changes and serine levels. Moreover, its 

recruitment to chromatin is mediated by the metabolic sensor PKM2, a glycolytic enzyme 

that has its activity modulated by intracellular levels of serine, and the transcription fac-

tor ATF4, which controls the expression of genes involved in the de novo synthesis of 

serine and serine transport. Whether the activities of other components of the p53 path-

way are also directly modulated by metabolites through conformational changes that 

could affect protein–protein interactions, DNA binding, subcellular localization, and 

even E3 ligase function, remains to be investigated. It is possible that when cells face a 

transient decrease in intracellular serine levels, they initially activate de novo serine 

synthesis by chromatin-bound MDM2 but later induce the p53-mediated repression of 

PHGDH, an enzyme known as 3-phosphoglycerate dehydrogenase that catalyzes the 

transition from 3-phosphoglycerate to 3-phosphohydroxypyruvate, which is the con-

comitant step in the phosphorylated pathway of L-serine biosynthesis. It is also essential 

in the synthesis of cysteine and glycine, both of which are downstream. This pathway 

represents the only way to synthesize serine in most organisms, except in plants. Taken 

together, these convergent lines of evidence indicate that the p53 pathway controls a 

highly branched metabolic network that is essential for maintaining cellular homeostasis 

and cannot be ignored in diseases such as ALS [36, 37].  

 

Second, it is interesting to consider these complex metabolic functions from an 

evolutionary point of view. The observation that p53, and perhaps other key regulators of 

this pathway, initially favor cell survival under nutrient-deprived conditions has led to 

the hypothesis that one of its evolutionarily conserved functions was to protect, at both 

cellular and systemic levels, the body’s integrity when access to nutrients was limited. 

This idea was initially proposed by Murphy et al. in studies aimed at understanding the 

functional differences of the arginine and proline variants at codon 72 of the TP53 gene. 

Interestingly, population-based studies and genetically modified murine models have 

indicated that this single nucleotide polymorphism (SNP) was not associated with a 

higher incidence of cancer (based on its role as a tumor suppressor par excellence), but 

rather with a higher body weight and an increased risk of diabetes. As compared to cells 

expressing the proline variant (P72), those harboring the arginine variant (R72) showed 

greater cell survival under nutrient-deprived conditions, but not after genotoxic stress. 

These findings led to the hypothesis that the R72 allele may have been selected in popu-

lations in which a better response to nutrient deprivation provided a selective advantage. 

Notably, some Li–Fraumeni syndrome patients with TP53 germline mutations showed 

increased mitochondrial oxidative phosphorylation system capacity in their skeletal 

muscles. These genetic traits confirmed the close links between p53 and metabolism, a 

role that may have influenced its selection in human populations. The mutation repre-

sents only the tip of the iceberg, and future studies may link other components of the p53 
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pathway with metabolic disorders with currently unknown etiology and perhaps many 

types of ALS [38]. 

 

Although challenging, systematically characterizing the multiple metabolic defects 

triggered by the most common genetic alterations of the p53 pathway should aid the de-

sign of streamlined therapies targeting potential metabolic bottlenecks. Furthermore, p53 

is abnormally elevated and active in the CNS of patients with ALS, and it is a central 

regulator that drives neurodegeneration caused by intragenic repeat variants of C9orf72, 

key in familial and sporadic ALS [30, 31, 32, 33, 34, 39, 40]. Furthermore, Courney et al. 

demonstrated that neuromuscular junction NMJ loss was a p53-dependent process and 

this ubiquitous tumor suppressor was a clear effector of axonal and synaptic degenera-

tion in an ALS-like neuropathy [41]. 

 

However, it is not clear whether the degeneration of the motor system (MS) in ALS 

is intrinsically triggered and autonomous or whether the initiating mechanisms of the 

disease are extrinsic. We hypothesized, in agreement with Martin et al., that skeletal 

muscle is a primary site of pathogenesis in ALS that triggers degeneration of NMJ by 

failures in the obtaining of energy by the skeletal muscle, as for instance those that take 

place in the enzymes of the glycolysis or in the mitochondrial complex I. These energy 

disruptions  generate subproducts (ROS, Lserina) which regulate the action of p53 in the 

muscle metabolism. If p53 does not correct and adapt the muscle fiber on time, if there is 

not myophagia or any other process of muscle clearance, then the muscle fiber stops be-

ing innervated by its motor neuron. As a consequence, it dies for it misses the feedback of 

its target (the healthy muscle). This is the way changes would take place given the huge 

muscle plasticity; thus, there would be loose motor neurons as the neuromuscular junc-

tions would be lost. These synaptopathies would be the beginning of the progressive 

degeneration of the whole neuromotor system [9].  

 

 Some inherited forms of ALS are caused by mutations in the superoxide dismutase-1 

(SOD1) gene, which encodes a well-characterized antioxidant protein that is dependent 

on the copper/zinc balance. In fact, most murine models for ALS were full-length SOD1 

mutants. Martin et al. created different types of transgenic mice that expressed the vari-

ants of the human SOD1 genes G37R and G93A, the latter of which is the variant most 

used in ALS murine models, but only in skeletal muscle. The presence of human SOD1 

protein (hSOD1) in skeletal muscle was verified by Western blotting, enzymatic activity 

gels, and immunofluorescence. These mice developed limb weakness and paresis with 

motor deficits, muscle wasting of the limbs and chest, atrophy of the diaphragm, and 

life-threatening age-related disease. Murine myofibers developed crystalline inclusions, 

individualized sarcomere destruction, vesiculating mitochondriopathy, DNA damage, 

and p53 activation. Satellite muscle cells became apoptotic. The diaphragm developed a 

severe loss of presynaptic and postsynaptic integrity of the neuromuscular junction, in-

cluding decreased innervation, loss of synaptophysin, nitration of synaptophysin, and 

the loss of the nicotinic acetylcholine receptor and scaffold protein rapsyn. Coimmuno-

precipitation identified the hSOD1 interaction with rapsyn. The spinal cord of these 

transgenic mice developed macrosomic atrophy. Spinal MNs formed cytoplasmic and 

nuclear inclusions; exhibited axonopathy, mitochondriopathy, accumulated DNA dam-

age, activated p53, and cleaved caspase-3; and then died. The mice had a 40%–50% loss of 

MNs. This work published in Frontiers in Neurology dated December 14, 2020, identified a 

non-autonomous mechanism for MN degeneration that explained its selective vulnera-

bility as potentially a form of retrograde target-deprived neurodegeneration [39, 42]. 

 

One of the main events of ALS is weight loss, which has often been studied us-

ingbody mass index (BMI) measurements. As the disease progresses, there is a reduction 

in the BMI and body fat of the patients. Early insulin resistance and glucose intolerance 

have also been verified in ALS patients. This insulin resistance, which leads to a decrease 
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in the sensitivity of peripheral tissues and limits the entry of nutrients into cells, could 

participate in the reduction of the BMI observed in patients. Data from the literature have 

also reported that hypermetabolism affects up to 66% of patients with ALS and is an early 

event that persists throughout the course of the disease. Surprisingly, SOD1-G86R and 

SOD1-G93A mice were hypermetabolic, and this change in their metabolism was already 

detectable in the clinically asymptomatic stage of the disease, before any motor abnor-

mality. Furthermore, an experimental induction of muscle hypermetabolism was suffi-

cient to cause muscle denervation and the loss of MNs [13]. Therefore, the loss of MNs 

may be due to the metabolic change that takes place in the innervated muscle.  

 

We propose, therefore, that in the skeletal muscles, ALS alters energy metabolism 

before any symptoms appear, possibly months or even years prior to diagnosis, and 

gradually modifies the predominant type of muscle fiber to adapt to the lack of energy in 

order to obtain it (i.e., muscle starvation); that is, glycolysis decreases while β-oxidation 

increases. This likely constitutes an adaptive compensatory mechanism modulated by 

genes related to p53 to obtain energy when glucose metabolism is cut off and would ex-

plain why, in most cases of ALS, patients experience abnormal fatigue and have noctur-

nal muscle cramps before they feel the need to go to the doctor. 

 

3. There are many causes of energy failure in ALS 

 

Inexplicable muscle fatigue, a clear sign [13], may be due to multiple causes, possi-

bly contributing to the different known ALS subtypes in terms of aggressiveness, mor-

phological changes, age of onset, speed of progression, etc. Onset is indisputably influ-

enced by the particular genetic environment of each patient. We list below some of the 

best described initiators in the literature: 

 

3.1. Mutated genes are involved in the mitochondrial oxidative phosphorylation 

chain. The main mitochondrial abnormalities found in ALS have to do with the respira-

tory complexes. Wiedemann et al. reported severe dysregulation of respiratory chain 

complex I and decreased activity of respiratory complexes I and IV in the muscle of 

sporadic ALS patients, and in the muscles of murine SOD1-G93A models, presympto-

matically [5, 43, 44]. 

 

3.2. Reactive oxygen species (ROS) are very short-lived metabolites produced during 

oxidative phosphorylation. Under normal physiological conditions, a cell consumes ox-

ygen to produce energy, and at the same time must eliminate the ROS produced through 

defense mechanisms such as superoxide dismutase (SOD) and antioxidant metalloen-

zymes. Under conditions of oxidative stress and impaired mitochondrial respiration, 

large amounts of ROS are produced, leading to cellular damage, such as inflammatory 

responses, excitotoxicity, protein aggregation, and apoptosis. Furthermore, increased 

β-oxidation of fatty acids leads to the generation of lipid byproducts that contribute to 

lipotoxicity and increased ROS production. Many studies have already shown the im-

plications of oxidative stress for aging and ALS. Abnormally high levels of ROS markers 

were observed in postmortem fluids and tissues from sporadic ALS patients. In the 

muscles of SOD1-G86R mice, oxidative stress was observed even before the appearance 

of motor symptoms and obvious signs of denervation. Likewise, in the muscle of 

SOD1-G93A mice, SOD1 activity increased throughout the progression of ALS, indicat-

ing the presence of oxidative stress in the muscle. Dobrowolnyet al. [45] demonstrated 

that the muscle expression of the SOD1-G93A mutant was sufficient to induce oxidative 

damage, muscle atrophy, and the dismantling of the NMJ. Recently, increased ROS 

production was observed in the muscles of SOD1-G93A mice and in the muscles of 

wild-type mice with transient overexpression of the SOD1-G93A mutation. The changes 

in mitochondrial functions depended on the progression of the pathology. The finding 
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that the mutation directly contributed to mitochondrial dysfunction long before MN 

death was surprising [45]. 

 

3.3. Mitochondrial functions also progressively deteriorate as the disease progresses, 

and abnormalities in mitochondrial DNA result in decreased activity of certain enzymes 

(e.g., NADH and COX). Significant induction of the UCP3 protein has been observed in 

the muscles of ALS patients and mice. UCP3 is an uncoupling protein expressed mainly 

in the mitochondria of skeletal muscles, and the overexpression of UCP3 in this tissue 

would induce increases in lipid oxidation (i.e., β-oxidation) and energy expenditure. 

UCP3 overexpression in SOD1-G86R mice has led to the degeneration of MNs, the dis-

mantling of NMJs, and decreased survival [46]. 

 

3.4. Environmental toxins such as the non-proteinogenic amino acid 

β-N-methylamino-L-alanine (BMAA) from cyanobacteria are capable of forming protein 

aggregates and the consequent cellular proteotoxic stress. Furthermore, BMAA molecu-

larly competes with the cellular proteinogenic L-serine. Cyanobacteria are abundant in 

warm, widely fertilized environments such as fields and lawns. 

Nitrogen is one of the primary plant nutrients, being the main limiting factor for 

agricultural productivity. The impacts of excessive nitrogen application are the eutroph-

ication of water, acidification, and toxicity. Cyanobacteria have been studied for years in 

the literature on motor neuron diseases (MND) due to the enormous increase in the in-

cidence of these pathologies in the places where they appear, starting from those first 

cases observed in the Chamoru, the indigenous inhabitants of the island of Guam, whose 

diet was contaminated by cyanobacteria symbionts in the cycads from which they made 

flour for their sustenance, and by the bats that fed on their seeds [47, 48]. In recent years, 

conclusive studies have been recorded in European populations exposed to cyanobacte-

ria [49]. Toxins from heavily fertilized lawns where soccer and other sports are played 

could be one explanation for why there is a significantly higher incidence of ALS among 

soccer players than among the general population. The age, sex, and race-adjusted inci-

dence and mortality from ALS among all National Football League (NFL) players who 

debuted between 1960 and 2019 were nearly four times higher than in the general popu-

lation [50]. Likewise, cases of fulminant deaths have been observed in higher mammals 

after drinking from warm lakes contaminated with cyanobacteria. These deaths could not 

be attributed to hepatotoxicity due to the rapidity of their occurrence, and they were 

most likely due to the many copies of pro-apoptotic genes such as TP53 that they have in 

their genomes. In addition, such mammals have many skeletal muscle fibers—some of 

these animals were elephants [51, 52, 53, 54]. 

 

3.5. Dysfunction in the pyruvate dehydrogenase enzyme and/or in its metabolic 

modulators (i.e., kinases and phosphatases) would prevent the passage of glycolysis into 

the Krebs cycle [55, 56, 57]. A family history of diabetes and/or epilepsy also suggests 

defects in this enzyme and is correlated with ALS disease (studies of confidential medical 

reports were obtained from clinical trials and references [58, 59, 60, 61, 62]).  

 

3.6. The inhibition of mitophagy and the accumulation of abnormal mitochon-

drialbrain-derived neurotrophic factor (BDNF) causes mitochondrial fission and clear-

ance in skeletal muscle through the PRKAA/AMPK-PINK1-PRKN/Parkin and 

PRKAA-DNM1L/DRP1 MFF pathways [63]. The parkin protein is present in the cyto-

plasm of most cells, but it is translocated to the mitochondria in those cells that have 

suffered damage to the organelle. Repositioning of parkin in damaged mitochondria re-

sults in the delivery of dead organelles to autophagosomes for degradation (i.e., mi-

tophagy). Depletion of BDNF expression in myotubes reduced fatty-acid-induced mito-

chondrial fission and mitophagy, which were associated with mitochondrial lengthening 

and poor lipid management. Muscle-specific BDNF KO mice exhibited defective mi-

tophysis and mitophagy, along with accumulations of dysfunctional mitochondria in 
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muscle, when fed a high-fat diet. These animals also exacerbated poor metabolic flexibil-

ity and increased insulin resistance. In contrast, consumption of a BDNF mimetic 

(7,8-dihydroxyflavone) increased mitochondrial content and improved mitochondria 

and mitophagy in skeletal muscles. Therefore, BDNF is an essential myokine for main-

taining mitochondrial quality and function, and its repression could contribute to im-

paired metabolism in ALS and to the degeneration of MNs that innervate the muscles 

[64]. 

 

3.7. Muscle hypoxia is when mitochondria become sources of intracellular ROS due 

to alterations in oxidative phosphorylation (OXPHOS). During the adaptive response to 

hypoxia, mitophagy eliminates mitochondria while stimulating energy production 

through anaerobic glycolysis, but if this response is insufficient, the mitochondrial net-

work itself can initiate the process of programmed death (e.g., intrinsic apoptosis of 

p53-dependent mitochondria) [30]. 

 

The aforementioned causes would explain the fact that muscle fibers with a low 

number of mitochondria are the first to degenerate in ALS, as they are energy deficient [9, 

65, 66]. Pathological changes in muscle that occur before disease onset and independent 

of MS degeneration have reinforced interest in studying muscle tissue as a potential tar-

get for the administration of ALS therapies. Skeletal muscle has recently been described 

as a tissue with an important secretory function that is toxic to MNs within the context of 

ALS. Therefore, a fine balance between the biosynthetic and atrophic pathways is needed 

to induce myogenesis for the repair of muscle tissue. Compromising these pathways due 

to primary metabolic abnormalities in the muscle could trigger faulty muscle regenera-

tion and neuromuscular junction restoration, with detrimental consequences for MNs, 

thereby accelerating the development of ALS. According to the proposal of López-Vales 

et al., bioactive lipid mediators such as Solutex from Lipinova could be of great utility for 

promoting muscle regeneration [67]; to such a daily treatment plan, it would be necessary 

to add a compound such as metformin, an inexpensive drug that has been widely pre-

scribed primarily for type 2 diabetes, has been in clinical use for over 60 years, and has a 

remarkable safety profile. It directly inhibits mitochondrial complex I, that has been 

shown to operate incorrectly in ALS, which would make oxidative phosphorylation 

starts in complex II, and thus it would avoid the bottlenecking of metabolic intermedi-

aries and promote the use of fats as energy substrates. It can also target motoneurons, 

and stabilizes blood glucose levels [68]. This backward signaling from the muscle sus-

tained over time that causes the death of MNs in ALS in a progressive manner may be 

delayed or even stopped with the proposed drugs, which have already been deemed to 

be safe. We may therefore avoid the progression of ALS towards the alteration of pe-

ripheral adaptive immunity by TDP43 oligomers. In this direction, the investigations of 

Pozo et al. [69, 70] continue, whose research also indicates a type of a special autoim-

munity that will be discussed later in this paper. 

 

4. The subcellular communication between organelles, especially mitochondri-

al-associated-membrane (MAMs), modulates ion currents and thresholds of moto-

neuronal action potentials 

 

For the nerve impulse to be transmitted efficiently at the neuromuscular junction, 

we know that Ca2+ ions are required. To open a cholinergic synaptic vesicle loaded with 

the neurotransmitter acetylcholine, it is essential to maintain a minimum concentration of 

extracellular Ca2+. Only then will the conduction of the nerve impulse be possible, and the 

acetylcholine released into the synaptic space will be able to bind to the binding sites on 

postsynaptic receptors (i.e., α subunits). When two acetylcholine molecules simultane-

ously stimulate the two α subunits, a channel opens in the receptor, allowing the passage 

of Na+ and Ca2+into the myocyte and the exit of K+. It has been estimated that 400,000 re-

ceptors must open to create enough stimulus to generate an action potential that triggers 
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muscle contraction. Acetylcholine binds for a very short time to its postsynaptic receptors 

before being broken down into acetate and choline by acetylcholinesterase. 

 

The denervation of a fast muscle and its reinnervation into slow muscle can change 

the properties of its motor units. The fast motor units acquire the properties of the slow 

motor units after denervation/reinnervation and vice versa. This is attributed to the 

change from phasic activity to the new tonic activity imposed by the MNs that reinforce 

them. Therefore, the pattern of synaptic activity can vary the types of proteins expressed 

by muscle fibers. Focusing on ALS, we know that potassium channel expression is 

markedly reduced in the ventral roots of the spinal cord, which are the efferent motor 

roots that carry information from the cerebral cortex to the muscle (according to autopsy 

studies). In line with these findings, elevated potassium channel antibodies were found 

in a cohort of ALS patients, along with higher mean and abnormal titer levels, as com-

pared to a cohort of patients with peripheral nervous system disorders. These results 

suggest the possibility of a subset of ALS patients where autoimmunity could play a role 

in the development and progression of the disease [71]. The increased sodium and de-

creased potassium currents, pathological findings, decreased expression of the potassium 

channel in the motor axons of ALS, and serological study, together with the presence of 

antibodies against the potassium channel in patients with ALS, support our interpreta-

tion that the pattern of synaptic activity in ALS can change the types of proteins ex-

pressed in muscle fibers; that is, there would be an adaptive mechanism of muscle plas-

ticity at the beginning and during the progression of the disease [72]. 

 

The main adaptation responsible for the increase in muscular endurance is an in-

crease in the number of mitochondria. However, this adaptation occurs too slowly to 

provide a survival advantage when there is a sudden change in the environment that 

requires prolonged exercise. Therefore, there is another more rapid adaptation, 

down-regulation of the expression of glycogenolytic and glycolytic enzymes in the mus-

cle, which mediates a deceleration in both the depletion of muscle glycogen and the ac-

cumulation of lactic acid. This adaptation is mediated by PGC-1α [73]. 

 

In asymptomatic mice with ALS, the muscle cell mitochondria were no longer able 

to regulate calcium signaling around the NMJ, and an excessively high concentration of 

calcium in the cytosol may have contributed to the progression of muscle atrophy. These 

data confirmed a close link between mitochondrial dysfunction and calcium dysregula-

tion. The latter would consequently cause a defect in the mitochondrial respiratory chain, 

triggering a vicious cycle. This is where ER and Golgi membranes, specifically MAMs, 

come into play. The ER comprises more than half of the total amount of cell membrane 

and occupies approximately 35% of the cytoplasmic volume. However, the intracellular 

membranous space is more extensive in secretory cells and cells with extended neural 

processes such as axonal-type terminals, which have developed ER even in distant neu-

rites. This is due to the fact that increased synthesis of peptides and other secretory mol-

ecules, their accumulation in the ER and vesicles, and Ca2+-dependent polarized vesicular 

release require tightly coupled interactions with mitochondria, the Golgi apparatus, and 

other organelles. For this reason, the ER has been called a "neuron within a neuron" [23]. 

 

The mitochondria play a fundamental role in calcium homeostasis. The absorption 

of this ion has physiological consequences of great importance for muscle cells, in addi-

tion to preventing signaling cascades from firing at certain times by reducing the con-

centration of calcium in the cytoplasm. Free calcium in the mitochondrial matrix is 

known to increase the ATP synthesis rate by modulating the activity of various enzymes 

that have products of the Krebs cycle as substrates. Therefore, the flow of electrons is 

controlled by creating a very large transmembrane potential. This represents a strong net 

force that draws the cation into the mitochondrial matrix. The process of calcium uptake 

by the mitochondria must be finely regulated; if calcium enters the matrix continuously, 
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there is an overload that causes energy losses, and morphological alterations that pro-

mote the release of apoptotic factors or produce necrosis.  

 

Rizzuto and Mootha laboratory team discovered the system that allows the divalent 

cation to enter the mitochondrial matrix: the mitochondrial calcium uniporter (MCU) 

[74]. This system exhibits low activity when calcium concentrations are at rest (~100 nM). 

The calcium-concentration-dependent MCU activity is regulated by the elements associ-

ated with the transporter and that form a multiprotein complex consisting of MICU1 and 

MICU2. These elements form heterodimers that do not allow the MCU to open when the 

calcium concentration is basal. However, when the calcium concentration increases, the 

dimer cooperates and allows the passage of said ion towards the matrix of the mito-

chondria. 

 

Patron et al. [74] demonstrated that MICU1 and MICU2 have antagonistic regula-

tory activities. MICU2 is the element that regulates the opening function of the complex, 

and MICU1 is necessary for MICU2 to perform its function, since when MICU1 is not 

present, the dimer cannot be formed. In the opposite case, when MICU2 is not expressed, 

MICU1 homodimers are formed, which allow greater flow of Ca2+ to the interior because 

there are then two activating elements. Indicating that MICU2 is the element responsible 

for the regulation of calcium entry into the mitochondria conflicted with the previous 

concept that MICU1 was responsible for both the positive and negative regulation of the 

MCU. Therefore, MICU2 was suggested to be an important factor for optimal cellular 

performance that prevents the continuous accumulation of calcium in the mitochondrial 

matrix [75]. Dafinca et al. demonstrated in iPSC-MN by RNA sequencing that both 

C9ORF72 and TARDBP have upregulated Ca2+-permeable AMPA and NMDA subunits 

and impaired mitochondrial Ca2+ buffering due to an excess of MICU1, indicating that 

impaired absorption of mitochondrial Ca2+ contributes to glutamate excitotoxicity and is 

a shared feature of NMs with C9ORF72 or TARDBP mutations [76]. Matteucci et al. 

supported a model in which the E3 ubiquitin ligase parkin participated directly in the 

selective regulation of MICU1, and asa gatekeeper of MICU2 MICU2 stability was af-

fected by parkin overexpression, probably as a consequence of increased MICU1 degra-

dation, indicating that the loss of parkin’s function could contribute to the deterioration 

of the ability of the mitochondria to handle Ca2+ [77]. We proposed that the overexpres-

sion of the parkin protein, especially through its ubiquitin ligase activity, favors neuro-

protection after uncontrolled dysregulation of mitochondrial Ca2+ levels. 

 

MAM collapse is a common pathogenesis mechanism in ALS linked to SIGMAR1, 

SOD1, VAPB, TARDBP, and FUS [78, 79]. When analyzing ER mitochondria calcium cy-

cle dynamics (ERMCC) in murine model swith hSOD1-G93A (overexpressing mutant) 

MNs—as a model for ALS—with sub-sector resolution, using fluorescent calcium imag-

ing, and comparing vulnerable MNs and non-neurons from hSOD1-G93A mice with 

their non-transgenic littermates, decelerated clearance of cytosolic calcium was associ-

ated with hSOD1-G93A. While both the non-transgenic MNs and the G93A mutants 

showed high absorption of mitochondrial calcium by the mUP uniporter, the mitochon-

drial calcium extrusion system was disrupted in the presence of hSOD1-G93A. Further-

more, ER calcium uptake by the sarcoplasmic reticulum ATPase (SERCA) was increased 

in mutant MNs compared to wild type MNs. In survival tests using SERCA inhibitors in 

mutant mice, it was shown that the endoplasmic reticulum proteins associated with ALS 

in denervated skeletal muscle explained the course of the disease from the contracted 

muscle to the MN. 

 

Levels of VAPB, a type IV membrane protein found in plasma and intracellular 

vesicle membranes that is involved in vesicle trafficking, were decreased in cells from 

patients with sporadic ALS, and in a murine model of familial ALS caused by a gene 

unrelated to VAPB. Considering the recent findings on ER-mitochondrial contacts me-
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diated by VAPB–PTPIP51 and on the role of Ca2+ in mitochondrial energy metabolism, it 

has been investigated whether chronic depletion of VAPB in MN-like NSC34 cells affects 

mitochondrial function. Borgese et al. in July 2021 [80] found that this cell line has been 

widely characterized, and alterations have been seen in the homeostasis of phospho-

inositides, which act as second messengers in the signal transduction of the cells and the 

elongation of neurites. Furthermore, a decrease in the uptake of the mitochondrial 

membrane potential sensor tetramethylrhodamine methyl ester perchlorate (TMRM) has 

been observed in the mitochondria of VAPB-depleted cells, suggesting reduced oxidative 

phosphorylation. This observation agrees with the observations of reduced ATP produc-

tion via oxidative phosphorylation in neuronal cell lines and primary cortical neurons 

under conditions in which the ER-mitochondria contacts were diluted. 

 

The relevance of these findings to ALS has been reinforced by computational models 

that predict that even small decreases in ATP availability can disrupt neuronal ion ho-

meostasis and functionality. Importantly, VAPB–PTPIP51-mediated contacts were pre-

sent in nerve endings, and the silencing of VAPB or PTPIP51 in primary cultures of hip-

pocampal neurons reduced ER-mitochondrial contacts concomitantly with synaptic ac-

tivity [80]. Using MAMtrackers with a library of expression plasmids of genes causing 

ALS, it was observed that 76% (16/21) of the genes altered the integrity of MAM. These 

results suggest that MAM disruption is a common pathological feature in ALS and that 

VAPB could transiently interact with hyperpolarization-activated cyclic nucleo-

tide-driven (HCN) channels 1 and 2 in the ER, facilitating the assembly of subunits into a 

competent tetramer for export to the cell surface. 

 

We know that these HCN channels play a crucial role in the spontaneous firing of 

the action potentials of neurons. Therefore, VAPB would act as an intramembrane chap-

erone necessary for synaptic transmission [80]. We proposed that the action potential 

threshold to trigger depolarizing discharges in MNs falls as a compensatory process as 

ALS (i.e., hyperexcitability) progresses; hence, the hands, feet, extremities, and in general, 

the skeletal muscles of patients, remain rigid and seized, as if they have received large, 

continuous electric shocks that have been maintained over time. As they a suitable for 

high-throughput assays, MAMtrackers may be valuable tools to better understand MAM 

dynamics in ALS and other neurodegenerative diseases. Therefore, elucidating the 

structure and function of MAMs may be a novel strategy for the treatment of ALS [81, 82, 

83]. 

 

5. The chaperone SIGMA1R is a key regulator in TDP43 proteinopathy 

 

Sigma-1 receptor (S1R) is an ER transmembrane molecular chaperone that modu-

lates the activity of multiple effector proteins. S1R associates with cholesterol through an 

intracellular domain. Vladimir Zhemkov et al. found recently that the association of S1R 

with cholesterol induces the formation of cholesterol-enriched microdomains in the ER 

membrane that could retain secreted and signaling proteins [84]. Zhemkov et al. pro-

posed that S1R agonists allow the disassembly of cholesterol-enriched microdomains and 

the release of accumulated proteins such as ion channels, signaling receptors, and 

ER-trophic factors [85, 86]. 

 

Spinal cord MN activation occurs, in part, through large ventral horn cholinergic 

synapses called C-boutons/C-terminals. In ALS, the chronic excitation of the MNs and 

alterations in the C-terminals have been observed. S1R plays an important role in the 

regulation of MN function in that high levels of S1R are localized in subsurface cisterns of 

the postsynaptic endoplasmic reticulum (ER) that contain type 2 muscarinic acetylcholine 

receptors (M2AChR), potassium channels that are activated by calcium (Kv2.1), and slow 

potassium channels (SK). An increase in action potential frequency in murine S1R-KO 

MNs indicated a critical role for S1R as a "brake" on motor neuron function, possibly 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2022                   doi:10.20944/preprints202202.0013.v1

https://doi.org/10.20944/preprints202202.0013.v1


 

 

through calcium-dependent hyperpolarization mechanisms involving calcium channels 

and potassium, as mentioned above. The longevity of SOD1-S1R-KO mice was signifi-

cantly reduced, as compared to SOD1-WT controls [86]. 

 

In this sense, the role of the Ca2+-dependent autophagic pathway in ALS has been 

demonstrated through the use of the Ca2+ blocker, L-type channel called verapamil. Ve-

rapamil has been found to significantly delay disease onset, prolong lifespan, and extend 

disease duration in SOD1-G93A mice. Furthermore, verapamil administration improved 

motoneuronal survival and improved skeletal muscle denervation in SOD1-G93A mice. 

Furthermore, verapamil significantly reduced SOD1 aggregation and improved au-

tophagic flow, which could be mediated by the inhibition of calpain-1 (i.e., a stomach and 

muscle-specific intracellular cysteine protease) in the spinal cord marrow of these trans-

genic mice. Furthermore, verapamil reduced ER stress and suppressed glial activation in 

SOD1-G93A mice. Collectively, these data indicated that verapamil was neuroprotective 

in the ALS murine model and that the Ca2+-dependent autophagic pathway is a possible 

therapeutic target for the treatment of ALS [87]. 

 

Overexpression of the S1R-E102Q mutant promoted dissociation of the membrane 

protein from the ER and cytoplasmic aggregation, which in turn impaired mitochondrial 

ATP production and proteasomal activity. Under ER stress conditions, wild-type S1R 

overexpression suppressed stress-induced mitochondrial injury, whereas S1R-E102Q 

overexpression aggravated mitochondrial damage and induced autophagic cell death. 

Furthermore, cells that overexpress S1R-E102Q showed aberrant foreign-nuclear locali-

zation of the DNA-binding protein TDP-43, a condition exacerbated by ER stress. 

Treatment of cells with a mitochondrial Ca2+ transporter inhibitor (Ru360) mimicked the 

effects of S1R-E102Q overexpression, indicating that aberrant S1R-mediated mitochon-

drial Ca2+ transport likely underlies the foreign localization of TDP-43, segregation in in-

clusion bodies, and ubiquitination. Interestingly, the enhancement of ATP production 

promoted by methyl pyruvate (MP) treatment relieved the deterioration of the pro-

teasome and the foreign localization of TDP-43 caused by overexpression of S1R-E102Q 

[88]. 

 

Finally, in relation to S1R, we must emphasize that a new line of zebrafish deficient 

in said transmembrane protein has been characterized, presenting visual and locomotor 

deficiencies in comparison with the wild line. A critical role for S1R in ER stress path-

ways and mitochondrial activity has been demonstrated. Using qPCR to analyze the gene 

response to unfolded proteins, it has been observed that loss of S1R leads to alterations in 

the bioenergetics of mitochondria—decreased basal, ATP-linked, and non-mitochondrial 

respiration, and the same after tunicamycin challenge (an antibiotic mixture that causes 

cell cycle arrest in the G1 phase that has been used as an experimental tool to induce the 

unfolded-protein response). In conclusion, this new zebrafish model confirmed the im-

portance of S1R activity in ER–mitochondria communication and in stopping proteotoxic 

stress [89]. 

 

6. The immune activation spreads like prions throughout all the neuromotor system 

 

Activation of the microglial inflammasome NLRP3 has emerged as a key contributor 

to neuroinflammation during neurodegeneration. Aggregates of pathogenic proteins 

such as β-amyloid and α-synuclein trigger microglial activation of NLRP3, leading to 

caspase-1 activation and IL-1β secretion. Both caspase-1 and IL-1β contribute to disease 

progression in the murine ALS SOD1-G93A model, suggesting a role for microglial 

NLRP3. In knock-in SOD1-G93A mice with the Nlrp3-GFP gene that expresses the mi-

croglial NLRP3, it was shown that both aggregated and soluble SOD1-G93A activated the 

inflammasome in the primary microglia, leading to caspase-1 cleavage and IL-1β and 

IL-1β secretion in a dose- and time-dependent manner. Importantly, SOD1-G93A was 
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unable to induce IL-1β secretion from microglia deficient in Nlrp3 or pretreated with the 

specific NLRP3-inhibitor MCC950, confirming NLRP3 as the key inflammatory complex 

that mediated microglial IL-1β secretion induced by SOD1. Microglial upregulation of 

NLRP3 was also observed in the ALS murine model TDP-43-Q331K, and wild-type and 

mutant proteins TDP-43 were also capable of activating microglial inflammasomes in an 

NLRP3-dependent manner. The generation of ROS and ATP were mechanically identi-

fied as key events required for SOD1-G93A-mediated activation of NLRP3. Taken to-

gether, these data demonstrate that ALS microglia expressed NLRP3, and that ALS 

pathological proteins activated the NLRP3 microglial inflammasome. Therefore, inhibi-

tion of NLRP3 may be a potential therapeutic approach to arrest microglial neuroin-

flammation and ALS disease progression [70, 90, 91, 92]. 

 

It is striking that the proteinopathy that characterizes ALS is due to the accumula-

tion of TDP-43 aggregates. This protein is the product of another mutated gene in ALS, 

TARDBP. Under normal conditions, its location is nuclear, but in ALS and other neuro-

degenerative diseases (albeit to a lesser extent in the latter), the protein passes into the 

cytosol and self-aggregates into oligomers that can be soluble and affect synaptic func-

tion. Maintaining a balance between TDP43 production and clearance is essential to 

preserving brain health, as accumulations of TDP43 aggregates will lead to increased 

oligomer production and neurotoxicity. In recent years, the role of inflammation in ALS 

has gained relevance. Mitophagy is a vital form of autophagy for the selective removal of 

dysfunctional or redundant mitochondria. Much evidence shows the elimination of 

dysfunctional mitochondria to be a powerful means employed by autophagy to keep the 

immune system in check. The mitophagy process can restrict inflammatory cytokine se-

cretion and directly regulate mitochondrial antigen presentation and immune-cell ho-

meostasis. There has been direct and indirect evidence linking mitophagy to inflamma-

tion and autoimmunity, which underly the pathogenesis of autoimmune diseases. MTAP 

appears to be inhibited by mitophagy, directly linking mitophagy with adaptive im-

munity [30, 31, 32, 33, 34].  

 

TDP43 oligomers are excreted and spread to neighboring cells through a mechanism 

termed “prionic”. They interact with the microglia as part of their regular clearance pro-

cess, and this triggers the activation of immunity and the secretion of pro-inflammatory 

cytokines and chemokines that recruit more microglia and astrocytes to the site of in-

flammation [92]. This disproportionate release of pro-inflammatory mediators has been 

proposed as a contributor to neurodegeneration [94, 95]. TDP43 oligomers were found in 

the plasma of ALS patients and activated not only innate but also peripheral immunity 

[69, 94]. Not surprisingly, TDP43 increased mitochondrial fusion, inhibited mitophagy, 

regulated fat deposition and glucose homeostasis [97], and induced the p53-mediated cell 

death of cortical progenitors and immature neurons [98]. Once again, the discovery of the 

new role of the tumor suppressor p53 in the regulation of glucose biosynthesis through 

the direct inactivation of glucose-6-phosphate dehydrogenase has proven vital [98, 99]. 

Taken together, these data have indicated synergy between TDP43, p53, and inflamma-

tory cytokines that may start early in the disease and would allow treatment, which has 

already been proposed for another proteinopathies, such as Alzheimer’s disease [100], in 

the first stages of ALS with the therapeutic plasma exchange (TPE) technique. TPE has 

been used in neurology for many years, and not all the indications for which it is per-

formed are mediated by autoantibodies, which are not negligible in ALS either [71, 72]. 

Some of the diseases for which it has been administered, such as multiple sclerosis, are 

mediated by neuroinflammation. Therefore, the goal of TPE is to remove harmful cyto-

kines, chemokines, and other substances from the blood that can degenerate MNs after 

crossing the blood–brain barrier (BBB). Peripheral immune cells directly cross or indi-

rectly transmit signals through the BBB to modulate or interfere with brain function. The 

pleiotropic properties of albumin, the main extracellular antioxidant with immunomod-

ulatory properties, could play a key role if used as a replacement fluid in the PE-based 
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therapeutic strategy for the treatment of ALS [101]. It seems paradoxical that technology 

developed for other neurodegenerative diseases has not yet been applied to a fatal dis-

ease without treatment, ALS, when in the literature there has only been one study, from 

1980, suggesting that the technique would be ineffective. Only four patients were in-

volved, and their genetic backgrounds and medical histories were not noted; however, 

according to the limited-sample study, they experienced some improvement after the 

first plasma exchange [102]. 

 

However, given the significant inflammatory load that occurs after the onset of ALS, 

especially in those with a rapid progression and those with the bulbar type, it will be 

necessary, in addition to all the above, to consider other therapies, such as tocilizumab, 

since it is safe and well-tolerated in patients with ALS and high levels of mRNA of in-

flammatory markers [103]. Inflammation plays a crucial role in the pathogenesis of cere-

brovascular accidents, and there have been many cases of stroke associated with ALS. 

Until very recently, strokes were thought to be a risk factor for the disease and not a 

consequence. Studies such as those by Anna Manberget al. [104] found that the variability 

of the sporadic progression of ALS may depend on less defined contributions from the 

glia and blood vessels. Patients with sporadic ALS have presented patterns of cellular 

activity, consistent with two murine models, in which vascular cell gene enrichments 

preceded the microglial response. In particular, during the presymptomatic stage, peri-

vascular fibroblast cells showed the strongest genetic enrichments, and their marker 

proteins osteopontin (OPN) or SPP1 and COL6A1 accumulated in enlarged perivascular 

spaces in patients with sporadic ALS [104, 105]. 

 

New evidence has also indicated the role of OPN in skeletal muscle diseases. Oste-

opontin has been described as a component of the inflammatory environment in dys-

trophic and injured muscles and has also been shown to increase diaphragm-muscle 

healing in aged dystrophic mice. In a recent study, OPN has been identified as a deter-

minant of the severity of disease in patients with Duchenne muscular dystrophy. In ad-

dition, a mutation in the promoter of the OPN gene, which causes low levels of expres-

sion of the protein, has been associated with a decrease in age until loss of ambulation 

and muscle strength in patients with other skeletal muscle diseases [104, 106, 107]. 

 

The etiology and pathophysiological mechanisms of inflammatory neuropathies are 

only partially understood, but it is likely that humoral and cellular immunity have roles 

in their pathogenesis. Autoantibodies against peripheral nerve molecules, such as gan-

gliosides or proteins of the ganglion of Ranvier, have been described, allowing the iden-

tification of subgroups of patients with specific clinical phenotypes. Although the exact 

mechanisms underlying the development of immunopathology remain unknown, im-

mune-mediated neuropathies are considered treatable. The main challenge in success-

fully selecting immunotherapy has been the great variability in underlying pathobiology, 

leading to variable clinical presentation and disease course. As in classic CIDP pathology, 

ALS is associated with macrophage and T-cell infiltration of peripheral nerves. It is not 

clear how the breakdown of the blood-brain barrier BBB occurs in CIDP, but in animal 

models, it is one of the first events in nerve inflammation and may be mediated by in-

flammatory molecules released by inflammatory cells in the peripheral immune com-

partment. This phenomenon can be triggered by an autoimmune attack against the pu-

tative antigen, but allows access of autoantibodies, macrophages, and other immune 

mediators to the endoneurial space to cause nerve damage. 

 

Recent findings by Pozo et al. point to Th17 cells (i.e., T-helper 17 cells) among pe-

ripheral blood mononuclear cells (PBMC) as those most correlated with ALS. Th17 cells 

are potent inducers of autoimmune diseases through the activation of inflammatory 

mediators, angiogenesis, and the induction of immune-cell activation. In fact, elevated 

levels of Th17 cells have been associated with other inflammatory autoimmune diseases, 
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such as multiple sclerosis and systemic lupus erythematosus, and could also be im-

portant in the neurological progression and rapid spread of ALS pathogenesis [69].  

 

7. Proposed therapies for the treatment of ALS 

 

In addition to those already cited in this review of the literature, including such 

novel proposals as plasma replacement therapy with albumin, administration of intra-

venous immunoglobulins (IVIg), and the daily administration of metformin with Lipi-

nova's Solutex, additional therapeutic approaches warrant consideration, especially 

given the paucity of choice in ALS treatments. ALS has various types with particular 

presentations and complications, though they all result in the same progression: muscle 

energy failure and sustained motor neuronal apoptosis until the death of the patient. 

Therefore, we propose an individualized therapeutic approach. The preliminary data of 

each patient will determine the most appropriate combination of compounds, and a 

complete genetic analysis clarifying which genes may be failing will be required. To date, 

the generic treatment of ALS with riluzole has never been sufficiently studied in humans 

with ALS, since negative controls were impossible and the populations of patients under 

study have had ALS of different types, progression levels, times of diagnoses, etiology, 

genetics, etc. Riluzole can cause liver damage, the extent of which can vary, and it does 

not make the disease chronic; it only lengthens it for a few months. We suggest elimi-

nating it as a first-line treatment both due to its unsatisfactory outcomes and due to it 

being counterproductive when administered together with those treatments proposed in 

this paper.  

 

7.1. Withaferin A 

The highly innocuous withaferin A reduces SOD1 aggregates in murine ALS mod-

els, extends SOD1’s useful life, and selectively inhibits the activation of NF-Κb, which 

induces p53-dependent apoptosis, thereby avoiding apoptosis in the event of failure in 

organelle autophagy [108]. 

 

7.2. Carbamazepine vs. verapamil 

 Carbamazepine (CBZ) is a well-known antiepileptic drug that has been used in 

clinical practice for more than four decades. CBZ has been reported to stimulate au-

tophagy by decreasing the intracellular level of inositol, and long-term treatment with 

CBZ exhibited a protective effect in a murine model of Alzheimer's disease, possibly 

through improved autophagic flux [109]. Treatment with CBZ reduced MN loss by ap-

proximately 46.6% and improved altered muscle morphology and NMJs. Furthermore, a 

study of the mechanism revealed that CBZ treatment activated autophagy through the 

AMPK–ULK1 pathway and promoted the removal of mutant SOD1 aggregation [109, 

110]. Verapamil blocks calcium channels, improves skeletal muscle innervation and mo-

tor neuronal regeneration, reduces SOD1 aggregation, and suppresses glial activation. 

Verapamil has been used with success in heart disease and hypertension and would be a 

fantastic clinical trial candidate for treating ALS, all the more so given its success in trials 

for diabetes [38]. However, the use of CBZ together with verapamil is not recommended. 

 

7.3. Edaravone 

Widely used for ALS, edaravone has not provided noticeable results when com-

bined with riluzole, the only drug previously approved by the U.S. Food and Drug Ad-

ministration (FDA) for ALS. The deterioration of mitochondrial oxidative phosphoryla-

tion in skin fibroblasts from patients with SALS and FALS was improved by in vitro 

treatment with ROS scavengers; therefore, we suggest oral edaravone and an antioxidant 

diet [111]. 

 

7.4. Trehalose 
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Autophagic markers have been observed as upregulated in both MNs from ALS 

patients and in animal models. In addition, several ALS-causing genes have been identi-

fied—such as optineurin (OPTN) [112, 113, 114]; sequestration-1, also known as ubiqui-

tin-binding protein p62 (SQSTM1); valosin-associated protein (VCP), containing a 

DNA-PK, and it regulates its degradation based on ubiquitin-proteasome; and the subu-

nit 1 of dynactin, which collaborates in bidirectional intracellular transport by binding to 

dynein (DCTN1)—which play important roles in the autophagy system. Growing evi-

dence has indicated that autophagy activation may play a protective role in animal 

models. OPTN suppression caused neuronal cell death through the nuclear factor kap-

pa-light-chain-enhancer of activated B cells (NF-Κb) pathway [115]. Mutant SOD1 ag-

gregates related to ALS interfered with mitophagy by sequestering OPTN from the au-

tophagy receptor [116, 117]. Trehalose has already been widely studied by Hetz et al., 

and it may have potential when administered together with other compounds for the ac-

tivation of autophagy in those patients who have favorable genetics. Similar to metfor-

min, it may be effective for fatty liver disease, which occurs in a large number of ALS 

patients [118]. 

 

7.5. L-serine amino acid 

The global development of cyanobacterial blooms has increased significantly in 

marine and inland waters over the last century due to the eutrophication of water. This 

phenomenon is characterized by the ability of planktonic cyanobacteria to synthesize gas 

vesicles that allow them to float in water columns. In addition, the benthic cyanobacteria 

that thrive at the bottoms of lakes, rivers, and coastal waters form dense mats near the 

shore. The massive proliferation of cyanobacteria is harmful to animal and human health, 

particularly due to the ability of certain strains of cyanobacteria to produce hepatotoxic 

and neurotoxic compounds. Cholinergic synapses and voltage-gated sodium channels 

are the targets of choice for cyanobacterial neurotoxins. Anatoxin-a and homoanatoxin-a 

are agonists of nicotinic acetylcholine receptors. Anatoxin-a is an irreversible acetylcho-

linesterase inhibitor. Saxitoxin, kalkitoxin, and jamaicamide are voltage-gated sodium 

channel blockers. Antillatoxin is an activator of these channels. Furthermore, the neuro-

toxic amino acid BMAA has been shown to be produced by various taxa of cyanobacteria. 

In vivo and in vitro evidence has suggested a link between the ingestion of BMAA and 

the development of the amyotrophic lateral sclerosis–parkinsonism–dementia complex, a 

neurodegenerative disease that was described for the first time in the indigenous people 

of Guam. Supplementation with L-serine would be of interest in those cases of ALS 

where there is suspicion of environmental contamination by cyanobacteria [49, 51, 52, 

53]. In addition, as we said above, the amount of L-serine and ROS regulates the plastic 

metabolic response by p53 in muscle [36, 37]. 

 

7.6. Thiamine or vitamin B1 

Pyruvate dehydrogenase deficiency presenting as isolated dystonia induced by 

paroxysmal exercise was successfully reversed with thiamine/vitamin B1 supplementa-

tion [119]. By coupling glycolysis and the mitochondrial tricarboxylic acid cycle, the py-

ruvate dehydrogenase (PDH) complex (PDHC) is highly sensitive to cellular demands 

through multiple mechanisms, including the phosphorylation of PDH [57, 58]. PDHC 

also produces acetyl-CoA for the acetylation of proteins involved in the circadian regu-

lation of metabolism. Thiamine diphosphate (vitamin B1) (ThDP) is known to activate 

PDH as a coenzyme and inhibitor of PDH inactivating kinases. The molecular mecha-

nisms that integrate the role of thiamine-dependent PDHC in general redox metabolism 

underlie the physiological fitness of a cell or organism. There are diurnal and thia-

mine-dependent changes in the function, expression, and phosphorylation of PDHC in 

the rat brain, and its impacts on protein acetylation and metabolic regulation have been 

evaluated. The morning administration of thiamine significantly regulated the phos-

phorylation of PDH at both the Ser293 and SIRT3 protein levels [56], but these effects 

were not observed with evening administration. This action of thiamine abrogates the 
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diurnal dependent changes in brain PDHC activity and mitochondrial acetylation, in-

ducing the diurnal differences in cytosolic acetylation and total brain protein acetylation. 

Screening for diurnal dependence among central metabolic enzymes and proteins of thi-

ol/disulfide metabolism revealed that thiamine also eliminates daily changes in malate 

dehydrogenase activity, as opposed to PDHC activity. A correlation analysis indicated 

that thiamine abrogated the strong positive correlation between total acetylation of brain 

proteins and PDHC function. Simultaneously, thiamine increased the relation between 

the expression of PDHC components and total acetylation of the SIRT2 protein level. 

These effects of thiamine on the brain acetylation system changed the metabolic impact of 

acetylation. Therefore, the diurnal action of thiamine on PDHC and SIRT3 may be of 

therapeutic importance for correcting disturbed diurnal metabolic regulation and defects 

after exercise. Furthermore, the interaction of ThDP with p53 and PDH kinases indicates 

that this vitamin may be a suitable and inexpensive candidate for daily supplementation, 

even more so if it is combined with melatonin for regulation of the circadian rhythm in 

night workers and other patients unable to regulate their wake/sleep cycles. Furthermore, 

melatonin has positive effects on the regulation of autophagy [120]. 

 

7.7. Vitamin B12/vitamin D/folic acid 

Some types of ALS commence with a diet low in animal protein for extreme 

weight-loss therapies (according to confidential patient data). The supply of vitamin B12 

is essential for normal functioning of the brain and the blood. The majority of ALS pa-

tients have had insufficient or deficient levels of 25(OH)D (i.e., calcifediol) at the begin-

ning of the disease. Increasing vitamin D levels can aid mobility and immune control in 

ALS patients [121]. Folic acid inhibits apoptosis of motoneuronal stem cells, alleviating 

telomere wear induced by oxidative damage. This effect and other protective effects in-

dicate that supplementation of folic acid may be useful in patients with ALS [122]. 

 

7.8. Ion-channel modulators 

Peripheral nerve hyperexcitability can increase Ca2+ influx into the lower motor 

neurons, leads to activation of degenerative enzymes, causes mitochondrial dysfunction, 

produces free radicals, causes deficient production of adenosine triphosphate, and results 

in the death of motor neurons. As such, hyperexcitability of the peripheral nerves would 

exacerbate the degenerative process of ALS. Furthermore, overexpression of N-type cal-

cium channels in cortical neurons based on murine models of ALS and the persistent in-

creases in sodium current have been widely demonstrated to determine cortical hyper-

excitability in a genetic model of amyotrophic lateral sclerosis. In addition, synaptic in-

terruption and CREB-regulated transcription are restored by K+ channel blockers, and it 

has been observed in other parallel tests that there are anti-K+ channel antibodies in cer-

tain types of ALS. Hyperexcitability could be a cause or consequence of this autoim-

munity in those cases. Further study of these ion channels to discern when and why cor-

tical and peripheral hyperexcitability begins is crucial. Its modulators could correct 

muscle fiber stiffness in ALS and stabilize motoneuronal action potentials [123, 124, 125, 

126].  

 

7.9. Fluvoxamine/duloxetine 

Cells with high levels of DNA damage associated with senescent muscle fibers stop 

proliferating and acquire pro-inflammatory properties that contribute to the progression 

of ALS (i.e., aged muscle that activates p53 in a sustained manner, causing the cells to lose 

the ability to regenerate). Fluvoxamine/duloxetine inhibits p53 and its apoptotic path-

ways in peripheral nerves. In addition to its function of modulating p53, it is a 

high-affinity agonist of the SIGMA1R chaperone that has been shown to be essential in 

ALS [127]. 

 

7.10. 7,8-Dihydroxyflavone 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2022                   doi:10.20944/preprints202202.0013.v1

https://doi.org/10.20944/preprints202202.0013.v1


 

 

7,8-Dihydroxyflavone is a selective agonist of the receptor tyrosine kinase B (TrkB). 

As we have discussed in previous sections, it manifests all the therapeutic effects of 

brain-derived neurotrophic factor (BDNF), such as protecting neurons with damaged 

mitochondria from apoptosis [64]. 

 

7.11. A diet high in calories, zinc, and hydration 

ALS patients need to compensate for the energy expenditure of hypermetabolism 

and maintain a high body mass index, which protects against the progression of the 

disease and from which they can obtain the lipids that will serve as energy for 

β-oxidation. They must also maintain adequate hydration, especially during exercise and 

in warm weather. Additionally, zinc is an essential mineral found especially in the mus-

cles. This mineral is important for cell division, wound healing, blood-sugar regulation, 

and immune defense. In addition, it participates in the production of testosterone, which 

is why extra is beneficial for men. Finally, as a cofactor together with copper in the anti-

oxidant enzyme SOD1, we suggest that daily intake of zinc can compensate for envi-

ronmental copper toxicity.  

 

7.12. Intense daily muscle physiotherapy plus Clonazepam 

According to our hypothesis, ALS begins at the muscular level; therefore, a contin-

uous exchange of innervation/denervation is necessary so that the negative feedback that 

from damaged and paralyzed muscle fibers to the MNs does not induce apoptosis. Due 

to the extremely high plasticity of the nervous system and considering that the brain has 

been developed for movement, muscles that do not move will end up degenerating the 

entire neuromotor and vascular system, as the hypertension that patients develop due to 

lack of muscle movement and the absence of nutrients and oxygen in this tissue will 

cause a hardening of the walls and changes in the fibroblasts and macrophages in the 

blood vessels; this has all already been observed in murine models and is characteristic of 

ALS patients. Physiotherapy would also be beneficial in treating ALS-related muscle 

cramps, which are sudden, involuntary, and painful contractions. These range from mild 

cramps that do not affect daily activities or rest, to very severe and intense cramps. Some 

drugs have been tried to treat cramps in ALS, and we suggest clonazepam (i.e., Rivotril). 

Likewise, it is necessary to design learning courses on muscle treatment in ALS for 

physiotherapists, since many may not understand the disease’s biochemical landscape. 

 

 

8. Concluding remarks and perspectives 

 

Studies such as those by Barbeito et al. [65] have suggested that molecules such as di-

chloroacetate (DCA), but also FDA-approved drugs such as ranolazine (RAN) or 

trimetazidine (TMZ), which inhibit the β-oxidation of fatty acids, should be reconsidered 

as therapeutic treatments for ALS due to restoring glycolysis in murine models and ex-

erting positive effects on muscle strength [65]. However, we have questioned whether 

these positive effects were only momentary and may only occur in certain types of ALS 

where the necessary glycolytic enzymes and p53 remain in optimal conditions for ob-

taining glucose. Therefore, we proposed the diversion of glycolysis as a method of ob-

taining aerobic energy towards β-oxidation to treat ALS in a broader approach, as this 

mechanism is, we suspect, compensatory since the beginnings of the disease and could be 

supported with the administration of daily metformin. This way, NMJs would be intacts. 

Furthermore, glial inflammation that was generated in the faulty NMJs could be relieved 

by taking solutex together with metformin such as we have proposed before [9]. 

 

ALS is not only a neuronal disease, but it targets MNs, that is, skeletal muscle, which 

is key during the onset and progression of the disease. In addition, the type of metabo-

lism that muscle fibers develop (i.e., glycolysis versus β-oxidation) is also critical to its 

progression. The multiple pathophysiological mechanisms that trigger ALS disease re-
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quire parallel studies. There are many mutated glycolysis and oxidative phosphorylation 

chain genes in ALS. Sustained, overexcited muscles case glucose consumption due to 

exhaustion, and their metabolism likely adjusts to obtaining energy from fatty acids. 

There is an evident change in the metabolism of the glycolytic pathway towards 

β-oxidation from the onset of the disease, long before clinical symptoms develop. This 

may contribute to the increase in oxidative stress since, at a given demand for ATP, the 

production of cellular fuel from β-oxidation consumes more oxygen and, subsequently, 

increases the production of ROS. It would also explain why a high BMI protects against 

the progression of ALS and would provide a plausible explanation for why ALS patients 

lose weight rapidly when using the fatty acids mobilized from their adipocytes. More 

research on muscle energy metabolism is needed to define new therapeutic approaches 

for the treatment of ALS, particularly those that focus on patients and their medical his-

tories and lifestyle habits as well as primary cell cultures to discern how tissues, both 

motoneuronal and supportive, are mutually influenced [13]. 

 

Magnetic resonance imaging and PET studies in ALS have undoubtedly shown 

patterns of functional and structural changes considered to be the pathological signatures 

of the disease. The most advanced neuroimaging techniques should be for all ALS cases 

to investigate the neurodegenerative cascade and symptoms at a refined and more de-

tailed level. There are still patients who do not receive the benefits of these studies due to 

the current medical understanding that the physical examination in a consultation and 

the electromyogram (EMG) are sufficient. Multicenter studies and the implementation of 

new methodologies could confer a fundamental role to neuroimaging in the clinical set-

ting, accelerating the diagnosis of ALS and allowing rapid prognosis regarding the pro-

gression of the disease [128]. 

 

ALS has more than 150 years of history. Its incidence remains low, but life expec-

tancy has increased across the board. Still, a healthy person at 30, 40, 50, or even 60 years 

old can normally expect many more years of life and activity, so when ALS is diagnosed, 

the scientific and medical community should strive to offer them much more than a pa-

per on which to write their last wishes. ALS is a cruel disease that devastates not just the 

patient but their entire family. Underlying genetic factors in sporadic ALS, not just in 

familial ALS, have opened the door to deeper study and exploration of this disease. It is 

urgent to expand genetic analysis in people with a history of sporadic ALS and in those 

who are or have been exposed to environments conducive to triggering the disease: Ep-

stein-Barr virus, elite athletes [50], workers in direct contact with toxins or cyanobacteria, 

people with a family history of diabetes or epilepsy [38, 51, 58, 61, 62], etc. If we can an-

ticipate the diagnosis, we may be able to treat it much earlier, and perhaps one day, to 

cure it. 
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