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Abstract 

During the last two years the COVID-19 pandemic has affected the world population in several ways. 

An important increase in mental health problems is a consequence of this pandemic that is ubiquitous  

worldwide. In this work we study the effect of the pandemic on the mental health of a population of 

teenagers and youth based on the analysis of natural language processing, machine learning algorithms 

and expert knowledge.  The data analysed was obtained from a chat helpline called Safe  time from the   

It Get’s Better Foundation in Chile. The data consists of 10, 986 conversations gathered from 2018 till 

2020 between volunteers from the foundation and users of the platform. We compared the conversations 

before and during the pandemic in terms of their thematic content. Our analysis found: a significant 

decrease in self-image appreciation during the pandemic; a significant decrease in the quality of personal 

relationships during the pandemic, and a significant increase of performance appreciation. 

 

1 Introduction 

Mental health may become the next pandemic [1]. Recent studies show that the global prevalence of depres- 

sion has gone up from 9,6 percent to 28 percent and anxiety from 12,9 percent to about 26 percent [2, 3]. 

During the COVID-19 crisis, about 16,4 percent of the global population shows a prevalence of suicidal 

thoughts, and over 50 percent of the population shows symptoms of loneliness, stress and low levels of well- 

being [2]. These studies also point to the fact that structural inequality and poverty are highly related to the 

prevalence of mental health and psycho-social problems, as well as countries’ abilities to respond and assess 

them [3, 2].  In a post-pandemic world, governments will have  to deal with the mental health consequences    

in a context of continuing distress produced by the likely economic recession [4]. Moreover, this scenario has 

shown the need to rethink and drastically improve public health services for the future [5, 6]. 

Assessing the mental health impact of the COVID-19 pandemic is a challenging endeavour as it requires 

information and data gathered before and during the pandemic [7]. Most mental health population studies 

depend on large-scale self-reports [8, 9, 10, 11]. Conducting such large-scale population studies can be costly 

[12, 13]. This has led to a paradigm shift in many fields of research. For  instance, human-mobility studies  

used to rely on active solicitation of data through travel surveys and self-reports but has since embraced 
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inferences based on computational analysis of passive data generated by cell phones users[14]. Analyzing 

direct behavior can also lead to more precise interpretations. For instance, researchers have found that 

liberals tend to self-report less happiness than conservatives but display more in their actual behavior [15]. 

Lately, computer-based tools, such as Natural Language Processing (NLP) and Machine Learning (ML), 

have increasingly been adopted to study mental health [16]. Using large amounts of text from either patient 

records, emergency room data or even social media, researchers have been able to extract symptoms, classify 

the severity and identify psycho-pathological clues [16]. NLP has even been used to design chat-bots for 

complementary mental health treatment [17]. Combining linguistics and computer science, researchers have 

tested automated markers for mental health, such as excessive self-focus shown by first-person pronouns and 

negative emotions using word dictionaries [18]. Recent studies have sought to use these new computational 

approaches for population studies in mental health using non-clinical data [19]. They often rely on social 

media data and the Linguistic Inquiry and Word Count (LIWC) dictionary [20, 21]. Other studies also use 

machine learning/deep learning approaches to inductively assess mental health symptoms in social media 

forums and communities [12, 22]. 

Dictionary approaches for characterizing mental health problems involve generating groups of words that 

are hypothesized to  relate  to  specific psychological constructs and then  scanning texts  for the  frequency    

of those words [23]. In this sense, dictionary approaches presuppose the existence of a data ontology or 

taxonomy that connects terms in conceptually meaningful ways [23]. For instance, the  LIWC proposes a  

series of words that are hypothesized to relate to particular emotions, cognitive processes and social relations 

and does not need a model to do inference. On the other hand, deep learning approaches involve supervised 

training of algorithms using neural networks to estimate the model for classification. Nonetheless, there are 

some serious limitations of the current uses of both of these approaches that ought to be considered. 

’Off-the-Shelf’ dictionaries [24] such as the LIWC provide stable and rich markers for psychological 

constructs and have now been translated into multiple languages. However, these sorts of dictionaries are 

context-blind [25] in the sense that they do not account for changes of meaning in words depending of the 

whole context of the phrase and its use in different ’language games’ [26]. General use dictionaries, such  as 

the LIWC, have top-down bias, as they operate with pre-defined ontologies that are assumed to be stable  

across domains and discourses, which can lead to significant inaccuracies [24]. Most of the population-level 

studies using dictionaries utilize rough sentiment analysis to measure the mood valence and emotion shifts 

over time [19]. This is because current markers of the LIWC can only serve as features and complementary 

data in more specific mental health studies. Despite the value of its emotion, cognitive processes and social 

relation markers, they lack more specific mental health constructs, such as symptoms or psychopathology 

markers. For this reason, computational studies tend to still rely on the application of self-reports to assess 

mental health symptoms and other domain-specific constructs [21]. 

Machine learning and, particularly, deep learning studies have shown great accuracy in predicting the 

mental health status of people using their social media data [27, 28, 29].  However,  Deep Learning models   

are perceived as ”black boxes” in which inputs are computed  and  conclusions  are  reached  without  too 

much explanation of its inner working [27]. This lack of transparency is critical when trying to convince 

mental health experts to embrace the possibilities and conclusion of machine learning models [27]. Moreover, 

understanding why an algorithm is making certain ’decisions’ is important for the goal of learning about      

that phenomenon. There have been discussions about incorporating Explainable Artificial Intelligence (XAI) 

techniques for making sense of algorithmic decision-making in health science, but this is still a pending 

challenge [30]. Some studies include mental health experts, but mostly for labeling data and not for co- 

constructing the conceptual underpinnings used for interpretations of the data [31]. 

Social media has proven to be an effective source of big data for mental health analysis [31]. However, 

the informality of social media data and its public availability raises questions about its quality and its 

ability to protect the privacy and anonymity of participants[16, 12]. This makes it a sub-optimal data source 

alternative in comparison to clinical interviews and notes or other forms of clinical data in which practitioners 

are able to exercise content regulation [31]. Although presumably of higher quality, these records would likely 

be difficult to acquire in the necessary volume because of institutional restrictions in the public sector or the 

lack of a centralized source of data in the private sector. 
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As an alternative,  mental health helplines are a growing and global phenomenon.  Just in the UK there    

are over 2,500 helplines in operation [32]. In Europe, the International Federation of Telephone Emergency 

Services (IFOTES) estimates that four million telephones conversations are held every year [33]. In these 

helplines (both chat-based and telephone-based and  mixed),  conversations  are  held  between  participants 

and paid workers or volunteers. Because of this, conversations are better guided, in the sense that they are 

deliberately covering important information pieces somewhat consistently across users,  which is necessary   

for better data interpretations[31]. In sum, these data sources  seem  to  provide  higher  quality  data than 

social media, with rich free-text and higher accessibility than medical files and interviews. 

In this work we study helpline chat data from the Safe time program that belongs to the It Get’s Better 

Foundation in Chile in order to assess the effect of the pandemic on the mental health of teenagers.   We      

first selected seven volunteers from the Foundation who were interviewed. From these interviews, several 

patterns were identified in terms of the strategy implemented by  the volunteers in the conversation and         

the conversation thematic contents.  Once we  had identified the categories in which each conversation can    

be classified we selected six expert volunteers from the foundation plus two professional psycologists from  

our team to manually label a set of a 1000 conversations to train our models. We assessed whether the  

thematic contents of the conversations changed during the pandemic, whether the strategy implemented by   

the volunteers changed also during the pandemic. Further, we identified features associated with depressive, 

anxious or suicidal symptomatologies. 

 

 
2 Results 

2.1 Data ontology construction using qualitative research 

We explore the linguistic patterns, beliefs and perceptions of expert volunteers of a mental health assistance 

NGO. This, in order to construct a contextually-driven data ontology that would serve as the basis for 

identifying lexical markers associated with mental health problems, as well as to inductively find research 

questions to drive quantitative testing. 

By interviewing seven expert volunteers we were able to identify key aspects on which each conversation 

could be classified. The resulting thematic model (data ontology) contains four dimensions (See Figure 1). 

First,  the theme of ”Gravity” describes perceptions about the seriousness of each case.  It is perceived as      

the presence of suicidal behaviors and as the lack of personal resources (which can either be social networks, 

hobbies or interests and/or access to professional care). 

Second, ”Thematic Family” describes overarching topics (semantic context) of each conversation. We 

identified six main thematic families: 

1. Relational themes: Conversations about family, friends, partners or lack thereof. 

2. Self-image themes: Conversations about personal value, personal devaluation, over-demands, questions 

about self-identity 

3. Sexual diversity themes: Conversations about gender identity, roles, sexual orientation or sexual dissi- 

dence. 

4. Performance themes: Conversations about academic, financial or other forms of perceived performance. 

5. Emotional management themes: Conversations about emotional control, rage, lability or  emotional 

crisis. 

6. Violence themes: Conversations about sexual, physical or emotional abuse. Verbal or physical violence. 

Abandonment. Economic violence or infidelity or any other form of perceived violence. 

Third, ”Introduction patterns” describes linguistic patterns related to how users start conversations. We 

identified four main patterns. Users may start by timidly greeting volunteers and waiting to be acknowledged 

before starting to present the reason to access the channel (acknowledgment solicitation).  Users may try to 
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Figure 1: Data ontology produce through the qualitative analysis 
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fully expose their mental health issues as the first message or at the earliest (problem presentation). Users 

may also start a conversation by conveying their imminent desire to self-harm or commit suicide (imminent 

risk). Finally, users may start a conversation by greeting but then leave or refuse to answer volunteers 

(conversation declined). 

Fourth, the theme of ”Intervention” describes the pragmatic responses that mental health volunteers 

use to address different user scenarios. We identified seven main intervention options frequently used by 

volunteers: 

1. Exploration of the problem: Questions about the extent, origin, gravity and expressions of mental 

health issue 

2. Emotional containment: Regulation of emotions and calming of users. 

3. Identification of personal resources: Questions and assertions about personal networks, hobbies, inter- 

ests and/or access to professional mental health services. 

4. Inducing reflection: Questions aimed at perspective-taking. 

5. Validation of personal experience: Generalization or normalization of user’s statements in order to 

validate them as expected or normal. 

6. Psychoeducation: Assertions aimed at explaining or conceptualizing the user’s subjective experience. 

7. Professional derivation: Suggestions about accessing other professional mental health services. 

 
Several research questions were identified, drawing from the participants’ expert knowledge and the 

researcher’s analytical memos. These questions are the following: 
 

1. How does the relative frequency of thematic families change during the pandemic? 

2. How do thematic families relate to mental health symptomatologies and whether these changed during 

the pandemic? 

3. How do different intervention get reflected on the mental health symptomatologies and whether these 

changed during the pandemic? 
 

To be able to answer the questions above, a set of a 1000 conversations was selected randomly and 

classified by an expert volunteer in the four dimensions mentioned in the previous section: Gravity, thematic 

families, introduction patterns and interventions. These set was then used as a training set to estimate all 

the classifiers developed in the study. In what follows, the analysis to answer these questions are described 

and the findings are presented. 

 

2.2 Effect of the pandemic on the thematic content of the conversations 

Table 1 shows the list of terms associated with each of the thematic families. The accuracy and precision 

metrics were estimated by  comparing the dictionary-based classification with the expert’s tagging on the   

1000 conversation database. Dictionary-based classification performance varies among different thematic 

families. The performance increases when the semantic families are less prone to contextual changes, i.e., if 

the addition of new concepts contributes to saturate the family. 

Using the dictionary-based classification on the full dataset, we estimated the prevalence of each thematic 

family from 2018 to 2020 at the monthly level. The differences in prevalence before and during the pandemic 

were tested with a Welch Two Sample t-test between both periods. A significant difference at the 0.01 level 

was found in Self-image (t = -6.1341, p-value = 2.272e-06), Relational (t = -6.3912, p-value = 5.924e-07) 

and Performance (t = 3.6293, p-value = 0.001828). A positive/negative value of t means a decrease/increase 

of theme prevalence during the pandemic. Figure 2 shows the evolution of these thematic families from 2018 

to 2020. This period covers ten months of the pandemic in Chile, from March 2020 to December 2020. 
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Table 1: List of terms and performance of thematic families. 
Thematic family Accuracy Precision Recall Words 

Self-image 0.73 0.66 0.58 body, self-esteem, ugly, 

insecure, hate, negative, 

disgusted, graceful, attractive, 

rejection, eat, abnormal, fat, 

pretty, obesity, obese, 

self-image, smarten 

Violence 0.86 0.77 0.52 raped, rape, bullying, abuse, 

abused, violence, aggression, 

hitting, yelling, humiliate, 

harassment 

Sexual diversity 0.93 0.82 0.74 gay, homosexual, orientation, 

trans, bisexual, lesbian, closet, 

gender, homophobic, straight, 

transgender, binary’, 

hermaphrodite, intersex, fluid, 

bisexual, demisexual, 

pansexual , non-gender 

Relational 0.80 0.83 0.90 friend, friends, single, alone, 

lonely, father, dad, family, 

relatives, parents, partner, 

boyfriend, girlfriend, discuss, 

finished, brothers, mother, 

mom, toxic, home 

Emotional management 0.66 0.65 0.56 crisis, cry, anxiety, panic, 

chest, anguish, breathing, 

sweating, trembling, tremble, 

pulse, fears 

Performance 0.71 0.54 0.61 career, study, salary, 

university, grades, test , 

insufficient, work, money, 

performance, effort, try 
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Figure 2: Theme prevalence, normalized by the total number of conversations in a month/year. The vertical 

dotted line indicates the starting of COVID-19 pandemic in Chile. 
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Self-image: The pre-post-pandemic change may respond to the greater exposure to body and appearance 

issues. Looking at their own faces in virtual platforms all the time resembles a ”mirror” on screen, allowing 

them to inspect their appearance simultaneously [34]. The zoom effect caused by videoconferencing systems 

raises body image concerns were associated with self-focused attention and with increased concern about 

appearance and how to change it due to time spent on video calls [35]. Looking at oneself during video 

chatting is associated with self-objectification and appearance comparison on face satisfaction and body 

satisfaction [34]. Also, exposure to weight-stigmatizing content on social media increased during the pan- 

demic among adolescents [36]. Using hide self-view on videoconferencing systems and ”touch up” features 

can increase bodily discomfort by having an ideal image on the screen [35, 34]. Furthermore, daily routine 

disruptions, increased snacking and the lack of outdoor activities may raise weight and shape concerns [37].   

In addition, the pandemic and social distance may have diminished social support and adaptative coping 

strategies, which may increase discomfort with the body [37]. 

Relational: family and social relations have suffered due to confinement, which could explain the change  

in this topic. It has been reported an increase in tensions between LGBTI and adolescents with their families, 

and also among young adults with friends and partners, as a result of the pandemic and confinement [38]. 

Performance: the decrease in academic performance conversations may reflect the inconsistent empirical 

research on the impact on academic demands [39, 40, 41, 42]. On the other hand, domestic monetary concerns 

may have been relaxed due to state money transfers and various withdrawals from pension funds. 

Violence: As some studies reported an increase in domestic violence due to the confinement [43, 44, 45], 

we would expect a higher presence of this thematic family in the pandemic. However, our results show no 

difference pre-post pandemic. This suggests that the violence exerted on this segment of the population finds 

causes in contexts other than confinement. Also, mentions of violent situations are generally not complaints 

but rather arise as part of the narrative of other problems. 

 

2.3 Association of the type of intervention/thematic families with symptoma- 

tologies 

Logistic regression models were fitted to the three symptomatologies: Suicidal, anxious and depressive.The 

different intervention strategies corresponds to dichotomous predictive variables for these models. Table 2 

shows the results of the logistic regression on each symptomatology (suicidal, depressive, and anxious), using 

the thematic families and interventions as predictors. These models were trained with the 1000 conversation 

tagged dataset. 

For suicidal behavior, the main positively associated themes are Emotion management and Self-image. 

While the former describes the crisis itself, the latter can be seen as a crisis motive. In other words, a self-

image problem may generate - along with other factors - emotional management issues. The prevalence of 

both topics could respond to a ”cause-effect” or ”description-explanation” scheme. Regarding the strate- 

gies, Emotional containment shows the highest positive association with suicidal behavior. This strategy 

corresponds to the immediate action in such a crisis since the main objective is to stop the suicidal act. 

The Identification of personal resources also shows a positive and significant effect, with a slightly lower 

magnitude. This strategy may point to the crisis management itself - as in finding someone who can help 

in the crisis, for example, driving to the hospital - but to the non-immediate causes as well. In this sense, 

personal resources can also correspond to activities and personal relations that contribute to personal welfare 

in daily life. 

In the case of depressive symptoms, several themes have a positive and significant effect. In order of 

importance, they are Emotion Management, Performance, Self-image, Violence. This could indicate that 

depressive tendencies are aggravated by multiple causes of a personal or relational nature. Again, Emotion 

Management seems to describe the symptom itself. Regarding the strategies, the Identification of personal 

resources appears as the most important predictor, followed by Validation of personal  experience.  In this 

case, the identification of personal resources probably refers to the search of activities, interests and personal 

relations that help the user to better face the depressive episode.  Validation of personal experience also plays  

a relevant role because greater validation is associated with decreased negative affect [46]. 

From our sample of 1000 tagged conversations, suicidal and depressive are the only symptomatologies 
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Table  2:  Logistic regression results. 

 
Suicidal Depressive Anxious 

Intercept -0.693∗∗∗ -1.354∗∗∗ -2.269∗∗∗ 
 (0.203) (0.214) (0.262) 

Themes    

Self-image 0.405∗∗∗ 0.481∗∗∗ -0.186 
 (0.153) (0.154) (0.168) 

Performance -0.259 0.504∗∗∗ 0.060 
 (0.159) (0.159) (0.170) 

Sexual diversity -0.554∗∗∗ -0.492∗∗ -0.012 

 

Emotional management 

(0.202) 

0.599∗∗∗ 
(0.198) 

0.802∗∗∗ 
(0.212) 

1.076∗∗∗ 
 (0.148) (0.150) (0.164) 

Relational -0.350∗∗ 0.140 -0.190 
 (0.170) (0.171) (0.187) 

Violence 0.335∗ 0.422∗∗ -0.170 

 (0.172) (0.179) (0.189) 

Strategies    

Emotional containment 0.529∗∗∗ 0.233 -0.125 
 (0.185) (0.178) (0.203) 

Professional derivation 0.290∗ 0.247 -0.130 
 (0.163) (0.171) (0.179) 

Psycho-education 0.231 -0.113 0.330∗ 
 (0.179) (0.185) (0.186) 

Exploration of the problem -0.908∗∗∗ -0.598∗∗∗ 0.253 

 

Identification of personal resources 

(0.209) 

0.503∗∗∗ 
(0.213) 

0.849∗∗∗ 
(0.252) 

0.336∗∗ 
 (0.156) (0.152) (0.171) 

Inducing reflection 0.050 -0.111 0.256 
 (0.170) (0.173) (0.178) 

Validation of personal experience 0.100 0.581∗∗∗ 0.730∗∗∗ 
 (0.166) (0.163) (0.192) 

Observations 1,000 1,000 1,000 

Pseudo R2 0.08938 0.1441 0.1027 

Df residual 986 986 986 

Df model 13 13 13 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
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that show a positive and significant association. In  this  case,  the  ϕ  correlation  coefficient  equals  0.29. 

This value can be tested for statistical significance with a χ2 test, and the resulting p-value is lower than 

0.001. However, even when suicidal and depressive symptomatologies show a significant association, the 

strategy scheme in each case is slightly different. The element that separates them is the preponderance of 

containment in suicidal behavior and validation as a relevant element in depressive behavior. 

Finally, there is only one theme with a significant and positive effect on anxious symptomatology and its 

Emotional management. This suggests that people with this symptomatology usually use the platform in a 

crisis context, probably as a last resource. Regarding strategies, Validation of personal experience is the most 

important predictor, followed by Identification of personal resources.  Psycho-education also appears,  but  

with low significance, although its magnitude is similar to Identification of personal resources. Since Psycho- 

education and Inducing reflection strategies have an ϕ correlation coefficient of 0.39 (the highest association 

among symptomatologies, themes and strategies), we ran the model without the Inducing reflection strategy,  

in which case Psycho-education becomes significant at the 5 percent level, and takes second place after 

Validation of personal experience. 

 

 
 

3 Discussion 

This article set out to show the efficacy of alternative means to conduct population studies on mental health. 

Considering the high cost of survey-based approaches, the black-boxing produced by unsupervised machine 

learning, and the de-contextualization produced by off-the-shelve dictionaries, our manuscript argued for the 

use of interdisciplinary approaches driven by qualitative understanding. 

We employed qualitative research methods to produce a context-driven data ontology to identify analyt- 

ical categories. These categories allowed us to organize the corpus, identify markers and concepts related to 

those categories, and research questions to use those categories in meaningful ways. For instance, we were 

able to map the topics of conversation (thematic families) that operate as the source of distress beyond the 

type of distress (depressive, anxious or suicidal symptoms). These included relational, self-image, sexual 

diversity, emotional management, and violence themes. We also identified the strategies used by volunteers 

to address the concerns of users. These ranged from helping users explore their problems to providing psy- 

chological education. Future studies may use these sorts of categories in combination with other frequently 

assessed variables in text-based psychological assessment, such as personality traits [47, 48]. Incorporating 

more variables with strong empirical support is especially critical if an automatic analysis is used at the 

individual level and not only for large cohorts. 

We operationalized our qualitative findings using both expert human taggers and automatic computa-  

tional methods.  This enabled us to describe how topics of conversations changed during the COVID-19   

crisis, how mental health symptomatologies relate to conversation themes and the lexical markers associated 

with each major symptomatology. 

We observed how the thematic composition of conversations changed before and during the COVID-19 

crisis. Relational issues and self-image issues were more dominant during COVID-19. This first insight 

possibly reflects the increase of home interpersonal relationships and the decrease of in-person friend inter- 

actions. The interpretation of the increase of self-image issues is more complex but perhaps pointing to the 

manifestation of personal life through social media, which raises self-worth questions, particularly in adoles- 

cents. The decrease of performance issues relates to the inconsistent findings of the effects of COVID-19 in 

educational settings and the provision of economic aid by the local government. Overall, these findings show 

that although the dictionaries are contextually bounded, they enable discussions with previous evidence on      a 

global scale. 

Gathering mental health conversations from chats means that the nature of the data is dialogical instead 

of monological. That means that the text’s characteristics are modified both by users and volunteers. 

Controlling by the volunteer’s interventions, we associated how thematic families link to mental health 

symptoms. In all three depressive, anxious, and suicidal cases, emotional management was a major topic of 

conversation. For depressive and suicidal symptoms, self-image themes were also relevant. Performance and 
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violence themes were also significantly related to depressive symptoms. These findings point out the need to 

contextualize population mental health issues within their semantic content. In other words, understanding 

what people are hurting about, rather than only quantifying their illness. For instance, depressive symptoms 

are associated with more themes, possibly reflecting that the person is more likely affected by different sources 

of life’s challenges. On the other hand, anxiety symptoms are related primarily to emotional management, 

indicating that the person is focusing on the immediate discomfort and consequences of the mental health 

crisis. 

Identifying features associated with mental health symptoms allowed  us  to  understand  what  factors  

were significantly associated with the classification of mental health symptomatologies. For Anxious and 

Depressive symptoms, we observed that participants’ self-report was highly consistent with our classifiers. 

Beyond explicit self-reporting, we observe that in Anxious and Suicidal symptomatologies, crisis-related terms 

were among the most relevant predictors. In this sense, we conclude that Anxious and Suicidal symptoms 

operate with greater emphasis immediate moment (the ”right now”).  In the case of Anxious symptoms, this    

is consistent with its only significant correlation with emotional management themes. 

 

 

 
4 Methods 

4.1 Data Source 
 

This study uses the data of a Chilean-based NGO helpline that provides free-access mental health support 

through chat. Overall, we sought to test our interdisciplinary method with the 45944 available conversations 

of the NGO and through a qualitative inquiry with its volunteers. Using this method, mental health research 

questions were identified and tested using NLP. Overall, our sample consisted of 45944 text entries, of which 

10986 were included in this article after filtering for conversations with less than 10 messages. Of these, 2335 

were produced in 2018, 4974 in 2019, and 3701 in 2020. Participants can freely decide to share personal 

information when reaching out to the helpline. During these three years, 4643 participants revealed their 

age. Out of these participants, the average age was 18.89 years old (5.17 years Standard Deviation). The 

average amount of words per conversation in our final database was 742. The total amount of different 

volunteers registered in the NGO was 210 for all years. (Ethical review committee: Universidad Adolfo 

Ibañez; Approval number: N°02b/2021). 

 

4.2 Interviews 

In order to identify the key dimensions that structure mental health conversations within our sample, we 

conducted a qualitative inquiry. For this qualitative study, we conducted semi-structured in-depth interviews 

[49] with expert volunteers of the NGO. In this sense, we utilized purposive sampling through a critical case 

approach [50]. Supervisor recommendations alongside user evaluations were used to determine the expertise  

of volunteers.   The inclusion criteria were set as belonging to the top quartile in the user assessment and   

being recommended by a supervisor. 

The topics covered by the in-depth interview were the following: 

• Representations of ”a typical case” 

• Perceived typology of users and cases 

• Expert response patterns associated with different case scenarios 

• Specific lexical constructions used for different scenarios 

• Beliefs about the impact of COVID-19 on the mental health of participants 

• Specific linguistic patterns associated with tagging 
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Seven in-depth interviews were conducted, lasting approximately 1 1/2 hours. The resulting audio files 

were professionally transcribed and analyzed using thematic analysis [51]. An investigator triangulation 

approach was used [52] in which a subset of researchers held critical discussions about coding and the 

thematic structure of the text.  After the fifth interview,  qualitative saturation [53] was achieved using  

the criteria of code saturation [54] as no new themes emerged from the data. This reflects on the highly 

consistent set of practices that conform to the expert knowledge of these volunteers. The last interviews were 

used to add nuances to existing schemes and to confirm saturation. Analytic memos [55] were iteratively 

written throughout the qualitative research process in order to raise research questions about mental health 

associated behaviors based on participants’ expert knowledge. Finally, a thematic model was developed that 

served as the data ontology of these conversations (See Figure 1). The final thematic model was triangulated 

[52] with direct analysis of a random sample of 20 conversations. The selection criteria for this random  

sample were having more than 10 messages and balancing conversations that the NGO tagged as containing 

depressive, anxious and/or suicidal symptomatology. 

 

4.3 Labeling of conversations 

An expert tagging process was employed in order to construct and validate data analysis tools, such as 

dictionaries and automatic classifiers.  Two mental health experts of the research team independently tagged    

a random sample of 200 conversations (with more than 10 messages) based on the data ontology produced     

in Study 1.  This process was used to validate and improve the new categories.  Additionally, they tagged     

the conversations for the three main symptomatologies used in the NGO, namely, depressive, anxious, and 

suicidal. These symptoms were used as the basis for comparison as they implicate the largest interpretative 

load. On the 200 conversations, they achieved agreement in 85% in depressive, 88% in anxious and %89 in 

suicidal symptoms. 

NGO volunteers were invited to tag a greater volume of conversations. They were selected based on a test 

in which they tagged 10 random cases already tagged in agreement by our two experts. Accepted volunteers 

were required to correctly tagg at least 80% of conversations according to the displayed symptomatology. 

Overall, 12 volunteers took the test and 6 passed. The conversations tagged by the 6  volunteers  plus 

additional conversations tagged by our experts added up to 1000 assessed conversations. 

 
4.3.1 Change of thematic families during COVID pandemic. 

To assess how the relative frequency of thematic families changes during the COVID-19 pandemic, we  build  

a dictionary of thematic families. In this context, a dictionary is a structure of words and categories, where 

each word is associated with one or more categories. In our dictionary, each category corresponds to one 

thematic family. The set of words belonging to each category was derived as follows: 
 

• Using the sample of 1000 conversations tagged by the experts, we  trained a Random Forest classifier  

for each thematic family.  We  then selected the 40 most predictive features in each case and generated    

a preliminary list of words. 

• Then, if any word in a conversation is contained by the dictionary, the conversation is labeled according 

to the corresponding category. 

• We evaluate the dictionary’s performance by  comparing its classification with that of the experts.  In  

this phase, some words were added or removed in order to improve the dictionary’s performance. 

• The lists of words were refined by our psychology experts. 

Once the dictionary is ready,  we  count how many conversations are labeled in each thematic family        

by month and year and normalize by the total number of conversations. Then, we compare the relative  

presence of the thematic family before and after the pandemic arrives in Chile (March 2020), by comparing  

the prevalence between both periods with a Welch Two Sample t-test. 
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4.3.2 Forms of interventions, thematic families and symptomatologies 

To assess how the thematic families and interventions are related to different mental health issues, we set 

up a logistic regression model for each symptomatology: suicidal, depressive, and anxious. We used the 

1000 conversation dataset tagged by the experts to train these models. The independent variables are the 

presence/absence of the 6 thematic families and 7 forms of interventions identified in each conversation by 

the experts. Thus, all regressors are binary variables, and the reference category is 0 (absence). 

Several classifiers were trained and compared, using SkLearn library in Python: Logistic Regression, 

Random Forest, Support Vector Machine, and Gaussian Naive Bayes. For each model and classifier, the 

main hyper-parameters were tuned. 
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