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Abstract

Nucleosome positioning plays an important role in crucial biological processes like replication,
transcription, and gene regulation. It has been widely used to predict the genome’s function
and chromatin organisation. So far, the studies of patterns in nucleosome positioning have
been limited to transcription start sites, CTCFs binding sites, and some promoter and loci
regions. The genome-wide organisational pattern remains unknown. We have developed a
theoretical model to coarse-grain nucleosome positioning data in order to obtain patterns in their
distribution. Using hierarchical clustering on the auto-correlation function of this coarse-grained
nucleosome positioning data, a genome-wide clustering is obtained for Candida albicans. The
clustering shows the existence beyond hetero- and eu-chromatin inside the chromosomes.
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Introduction

The genomes of all higher eukaryotes are organised in different structures on multi-length scales (I
2). Of these organisational structures, the chromosome is the biggest one, being observable
under a normal light microscope. The smallest organisational structure, one level above the
double helix DNA| is the nucleosome where 147 base pairs (bp) of DNA are wrapped 1.65 times
around a histone octamer (3; [4; 5). The arrays of nucleosomes organize to form the chromatin
fibre, which folds into two mutually excluded structural domains, namely "heterochromatin" and
"euchromatin". The "heterochromatin" regions are enriched with inactive/repressive genes and
are usually positioned closer to the periphery of the nucleus. The "euchromatin" regions contain
transcriptionally active chromatin (3;[6} [7), genes being located in the interior of the nucleus.
The hierarchical packaging of chromatin renders the genome a very compact conformation that
provides controlled accessibility of the regulatory DNA sequences (genes) by other DNA binding
proteins (DBPs)(8; 9)). The chromatin organisation is thus, tightly linked to gene regulation and
warrants detailed investigation. Various experimental techniques have been developed to probe
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the hierarchical chromatin organisation at different length scales. For instance, the "chromatin
conformation capture" experiment (e.g. 3C and HiC) (10 1} 2) captures organisation of
chromatin in kbp to Mbp length scale, revealing formation of topologically associated domains
(TADs) (12) and chromatin loops (I3;[14). Further characterisation of the chromatin fiber at the
length scale of genes (~kbp) is achieved by Micro-C technique that captures the intra-chromatin
interactions at a resolution of ~100bp within an organisation module called chromosomal
interaction domains (CIDs) (15} 16). CIDs are much smaller but still similar to TADs. These
structural organisations are strongly regulated by the nucleosome positions, length of linker
regions, and presence of nucleosome depleted regions (NDR) across the chromosome ([17).

The term "nucleosome positioning" refers to the location of nucleosomes along the sequence
of genomic DNA. Nucleosome positioning is determined by several factors including DNA
sequence, DNA-binding proteins, nucleosome remodelers;, RNA polymerases, and more. Although
nucleosome positioning is a dynamic process, the sequence-based mapping approach identifies
its position only in a cell- and time-averaged manner. The technology of micrococcal nuclease
(MNase) digestion combined with high-throughput sequencing (MNase-seq) (18) is a powerful
method to map the genome-wide distribution of nucleosome positioning and its occupancy. The
resulting occupancy maps are ensemble averages of heterogeneous cell populations. However,
it is necessary to retrieve the cell specific features from the population average to reveal the
mechanism of nucleosome organisation and its translocation along the genome. Zhang et
al. has developed an algorithm called "Nucleosome Positioning from Sequencing" (NPS) to
predict accurate nucleosome positioning from the MNase-seq data, which was later improved to
iNPS (improved NPS) (19). Furthermore, extensive studies have been performed to recognise
nucleosome positioning patterns around CTCFs, transcription start sites (TSSs), exons and
introns, promoter and loci regions locally. For instance, a typical nucleosome distribution around
T'SSs indicates nucleosome depletion, resulting in a nucleosome-free region (NFR) whereas
the nucleosomes downstream of TSS are equally spaced (20]). A similar observation around
CTCF is obtained: An array of well-positioned nucleosomes flank the sites occupied by the
insulator binding protein CTCF across the human genome (21)). Despite the efforts, the global
picture of nucleosome positioning remains elusive until a recent study that has reported three
types of nucleosomal arrangement by analyzing the nucleosome spacing and phasing in a
genome(22)). The evenly spaced nucleosomes in the array are termed as a regular array and
irregular otherwise. At a given genomic location in the cell population, nucleosomes may also
assume similar positions and are referred to as phased arrays. The phased-regular nucleosome
arrays, being most prominent, are the hallmark of chromatin and found to be conserved from
yeast to mammals. These phased-regular nucleosome arrays are mostly found near promoter
regions of transcribed genes in the yeast genome and near binding sites of high-affinity DBPs in
higher eukaryotes. The findings are, however, have limited applicability only at local regions of
the chromatin fiber and provide absolutely no information about the nucleosome organisation
along a complete chromosome or genome.

We used a theoretical approach to obtain a novel classification of segments across the
chromosome based on the similarity in nucleosome patterns. The nucleosome positioning data
are used as inputs that are systematically coarse-grained to analyze their auto-correlation
function to search for any pattern. The results are processed using hierarchical clustering
techniques to investigate if there exists any unique pattern of nucleosome. Our results suggest
that the positions and occupancy of nucleosomes in a chromosome are not random, rather they
reveal distinct patterns of distribution within a chromosome. Interestingly, the patterns appear
to be conserved within the genome as well and are in agreement with the previous study that
has reported three distinct nucleosome organisations across the genome. Furthermore, at the
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chromosome level, our approach could capture a few unique patterns in the range of ~ 50
kbp length scale which repeatedly occur throughout the chromosomes, indicating they might
play crucial role in regulating gene networks at a more local scale. The study underpins the
nucleosome positioning architecture inside a genome that can provide insights into the genome
organisation(c.f. Figure [1)) not known before.

Data

The technology of micrococcal nuclease (MNase) digestion combined with high-throughput
sequencing (MNase-seq) (18) is used to map the distribution of nucleosome occupancy genome-
wide. In order to map the MNase-seq data to nucleosome positioning data, several programs were
developed, such as NPS (23)), nucleR (24) and DANPOS (25). A nucleosome sequencing profile is
generated to depict nucleosome distribution in wave-form where nucleosome peaks are detected.
The improved nucleosome-positioning algorithm (iNPS) can be applied to identify peaks and
correctly detect nucleosome positions (19). One possible output of the iNPS algorithm is in the
binary format, with 1’s representing a nucleosome being present and 0’s for the nucleosome-free
regions or linker regions.

The genome-wide study of the species is a challenging task due to its large sequence size
which needs theoretical expertise and computational power. For our study, we focused on the
species Candida albicans due to its comparable smaller genome size (20). It consists of 8 sets of
chromosome pairs whose complete genome sequence is available. The raw data of the MNase-seq
is available from the Gene Expression Omnibus (GSM1542419) and was measured by Puri et.
al. (27). We also accessed the processed iNPS data in the NucMap database by Zhao et al. (2§]).

Methods

To obtain a consistent classification of the nucleosomal positioning data in genome-wide classes,
we perform the following steps (explained in more detail below the list):

1. Each chromosome is divided into segments of 75 kbp of length.
2. For every chromosome, positioning data is coarse-grained.

3. The coarse-grained nucleosome positioning data is used to calculate auto-correlation
functions over the different sections.

4. A distance matrix is calculated over all the auto-correlation function data.

5. These segments are clustered. Various distance matrix and clustering algorithms are used
to generalize the results.

Genome section classification

In order to extract the global pattern for areas in a genome, the whole genome is separated into
sections with equal length. The section length L is an important scale parameter and needs to
be properly set. L should not be too large to avoid all features from different areas bounded
together. At the same time, L also should not be too small; otherwise, the global structure is
flooded by the subtle differences and becomes a pattern for only a single nucleosome. The single
nucleosome wrapping length L,, can be used as a lower bound for the choice of L. However, to
obtain relevant structure we require that L >> L,,. Considering the nucleosome length L, is
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Figure 1: Panel A shows the performed coarse-graining procedure and results for coarse-graining
lengths b of 500 bp, 1000 bp and 5000 bp. More structure is visible as b is increased.
Going up even further washes out the structure. This is typical for systems with
an intrinsic length scale. Panel B shows the correlation among the coarse-grained
super nucleosomes. The structure is that of a system exhibiting short range-order
that is liquid-like with first and second nearest neighbors. On larger scales larger
than 50000 bp there is no order, i.e. there is no correlation. Panel C shows for two
chromosomes how the structure differs within as among chromosomes. Nevertheless,

common structures are found.
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about 147 bp (3; 4), L is chosen to be 50 kbp. Additionally, to avoid boundary effects, for each
section a 12.5 kbp intersection on both sides with its neighbor is added. Hence the total section
length L is 75 kbp. This binning is applied to each chromosome. Chr. 2 for example, with a
length of 2,231, 883 bp, is separated into 44 sections.

Coarse-graining

The idea of coarse-graining is an established ansatz and tool in physics to describe complex
systems on a scale that allows identifying structure. Typically, the structure appears as a
collective phenomenon among smaller entities. The idea is to eliminate degrees of freedom, i.e.,
find a representation of the system on a larger time or space scale, iteratively moving to larger
scales without changing the system. Over the last few years, coarse-graining has emerged as a
way to model large complex systems and has successfully been applied to other biomolecules
like proteins (29).

After the whole genome is separated into sections, coarse-graining is applied for each section.
The method we implemented for coarse-graining is the rolling mean method (30). This method
takes a window with a certain size (e.g. b = 5kbp), computes the averaged value of the nucleosome
positioning inside the window, and moves the window to the following location. After this value
is computed for each location, coarse-grained data on the scale of the window size is returned.
Here, Python pandas.DataFrame.rolling (31)) is used to obtain the coarse-graining. To exclude
the effect of telomeres, discrete ends of the sections and to incorporate the window size and
offset was chosen to be at least

offset > window size/2 (1)

Auto-correlation function calculation

An auto-correlation function is a well-known approach in physics and pattern recognition,
capturing the inner interaction pattern inside the data (30). Particularly for structures that
are liquid-like the auto-correlation function, or in this context the radial distribution function,
identifies typical length scales and patterns.

For each section j, it is applied on all the coarse-grained data p;. The normalized auto-
correlation function CY(7) with respect to distance 7 for section j is :

Bl(p = p)(pff = )]

(JO‘J)Q (2)

C™I(1) =

where pf’j is the data at position i within the section j of chromosome a. E(...) is the mean
of everything in the parentheses over all indices 7. 1/ is the mean of p and o7 is the variance
for the section j. Thus, associated with each section j is the function C*7(7) of chromosome
«a, hence, at the end we will have N functions C*J(7) where N is the section number for the
particular chromosome.

Distance matrix calculation

To classify the functions, a similarity measure is applied and a resulting distance matrix is
computed. The distance matrix is a square matrix containing the pairwise distances between all
the elements available in the dataset, measuring the proximity between the correlation functions.
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Interpreting the functions as high-dimensional vectors, we use the p-norm to define the distance
d, between two functions:

d
dy(a,b) = lla=bll, = O _(Jai = bif")"/? (3)
i=1
where a and b are the functions in form of vectors. For p = 2, the p-norm this corresponds to
the Euclidean distance.

Clustering

To identify the unique nucleosome organisation or distribution function, there is a need to cluster
the sections together on the basis of similarity among them. We used a clustering approach, i.e.,
hierarchical clustering (32). This is an unsupervised algorithm that groups similar objects into
groups called clusters. It uses a distance matrix to identify the two closest clusters first and
then merge the two most similar clusters. This iterative process continues until the clusters are
merged to get distinct clusters in a hierarchical manner.

Hierarchical clustering builds a hierarchy of clusters using two methods: agglomerative and
divisive algorithms. We used the former, i.e. the Ward method (33) where each observation
starts in its own cluster and pairs of clusters are merged moving up the hierarchy.

Statistical Distributions Fitting

Fitting of the distributions was performed using the scipy stats package (34) under Python.

Results

The first indication of non-trivial ordering is given by the distribution of the nucleosome
positioning data. The binary nucleosome positioning data for all chromosomes of Candida
albicans (NucMap database (35))) is subjected to the described coarse-graining and then analyzed
(see the histogram of densities in the supplementary information Figures[1.1] [1.1.1] and [I.1.2)).
The genome-wide normalized nucleosome density shows a non-gaussian behavior with a slight
negative skew. Overall, a log-logistic distribution gives the best consistent fit for all chromosomes
compared to a normal distribution on the same bin size and rolling average for all chromosomes.

Recall that each chromosome is divided into chunks of 75 kbp with 25 kbp overlapping on
each side. The auto-correlation of each chunk is obtained on the coarse-grained nucleosome
positioning data. The respective correlation function of each section for all chromosomes are
shown in Figure 2 and in detail in supplementary information (Figures @ to . Shown are the
correlation functions on the coarse-grained scale as well as a further smoothing to make the
features that are common among a class more apparent(see below). The color bar indicates
the class. Even though there are variations within a class, certain common features are seen.
These features are the first and second peak structure, the height of the peaks, and how long
a structure persists. Recall that the zero line indicates that there is no correlation, i.e. there
the structure is that of a gas or an unordered behavior. The first peak indicates an increased
probability to find a coarse-grained nucleosome at the distance of the peak position, the same
applies to the second and additional peaks. If these peaks are of similar height, then there is a
stronger long-range ordering. A particular example showing similar heights up to a third peak
is in section 12 of chromosome no. 3 (see Figure , while section 6 shows a drop in the peak
heights. Nevertheless, due to the overall similarity, these fall into the same class.
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Figure 2: Panel A shows the genome-wide distance matrix between the correlation functions
between segments of size 7hkbp. Hierarchical clustering was applied to identify
common patterns. The matrix was sorted according to the patterns. The left side
shows the clustering. Panel B shows the coarse-grained nucleosomal density correlation
functions of Candida albicans at 5kb coarse-graining. Panel C shows the genome-wide
distribution of segments. The pattern classification was done genome-wide to yield
three main patterns. These three patterns were assigned colors and the segments of
each chromosome corresponding to one of the three patterns are marked.
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With diminishing height the likelihood of the ordering and the strictness of ordering vanishes.
Notice that for some of the sections (within one class) many sub-peaks or side-peaks exist,
indicating possible sub-orderings. An example on the more extreme side is chromosome 3 and
sections such as 3,5, 16 etc. Overall, the short-range order is much less pronounced. The orange
smoothed line indicates that in this class the salient feature is a smoothly decreasing function
indicating a different kind of order than for the class with sections 0, 8,12, ....

Even looking at the correlation functions without the indicated class mapping shows that
there are universal features beyond fluctuations. Within a class, a more or less pronounced
ordering feature is visible. Comparing the different correlation data between the chromosomes,
these become apparent.

These observations can be proven more rigorously by applying similarity measures between
the correlation functions. Figure 2 shows the resulting distance matrix between all chromosomes
and all sections (the individual results are shown in the supplementary information Figure (4| to
@) Shown is the distance matrix after reordering on the basis of similarity between sections.
The color indicates the similarity between the correlation functions. Notice the patterns that
emerge from the sorting of the data into classes.

These classes, represented by different colors, are shown in the dendrogram. These classes
were obtained by hierarchical clustering. In the lower part of the figure on the left are the
typical correlation functions representing the corresponding class with its color code. The orange
colored class shows a regular pattern on a short scale whereas the light blue class shows a less
stringent regular but still pronounced pattern on a slightly larger scale. The blue colored class
shows a rather irregular pattern compared to the other two classes.

These observations are consistent with the typical classification from microscopy data into
hetero- and euchromatin. The data shows that the orange and light blue classes can be mapped
on heterochromatin. The blue colored class thus is euchromatin. The data also shows that still
within any of these classes, the features have many sub-features that we salvaged for the larger
patterns to allow a "coarse-grained" view on the ordering of the nucleosomes.

Notice that this partitioning into classes is genome-wide. A consistent classification can be
established. This is shown in the mapping of the positions of the section to the chromosomes.
Notice that, as expected, not a random mixture of the three colors emerges but rather a clear
pattern. The larger chromosomes appear to have more internal structuring compared to the
smaller chromosomes that are more homogeneous in their internal structure.

Discussion

The structural organisation of the genome depends on the patterns of nucleosome positioning
and their distribution in the genome. At a higher scale, the nucleosome positioning distribution
varies across the chromosomes which appear to be conserved along the entire genome. The
classification of the chromosomes into segments of the distinct nucleosomal distribution shown
here is inline with earlier studies. Although, two major classifications of the chromosomal
region as heterochromatin and euchromatin are suggested, we find that their organisations
can be further subdivided. Nucleosomes can be well-positioned to form phased and un-phased
arrays consisting of regularly spaced nucleosomes or can be fuzzy to form irregular arrays of
nucleosomes. The three distinct nucleosome distribution patterns along the genome obtained
in our result are in agreement with this study. Moreover, further classification of nucleosomal
distribution is obtained along each chromosome. Around five to seven different nucleosome
distribution patterns are observed for all chromosomes. However, for the entire genome, three
patterns are found to be conserved.
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We have analyzed the effect for different p = 2,7 in the p-norm on the outcome of the
clustering of similar correlation functions and the outcome comes to be similar for all p. For high
p values some of the clusters split into further clusters. In addition, the cosine similarity norm
was tested for further verification, yielding similar clustering (see Supplementary Information
Section . This rules out that the clustering is an artifact of the model and its architecture.

Three distinct patterns of nucleosome organisation appear to be conserved in the genome.
These kinds of distinct patterns observed in the genome correspond to different gene densities
and gene expressions inside the cell. Recent studies by Wiese et. al.(16) suggested that domain
formation and genome organisation can be predicted with nucleosome positioning only. So,
the distinct patterns obtained from our calculation correspond to different ways of nucleosome
positioning and may control domain formation and genome organisation in the cell.
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Supporting information
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Nucleosome Density: chrl Nucleosome Density: chrs
4 a
2 2
€2 €2
" window size = 5000 ol windowsize - so00
6 .
o 500000 1000000 1500000 2000000 2500000 3000000 o 200000 400000 600000 800000 1000000 1200000
00
-6 -4 -2 0 2 4 -2 0 2 4
densiy (centralized) density (centralizeq)
Nucleosome Density: chr2 Nucleosome Density: chré
a
25
2
00
Z Z o
225 g
] indow size = 5000 g,
=50
indow size = 500
-15 - dow size = 5000
500000 1000000 1500000 2000000 o 200000 400000 600000 800000 1000000
Zoa
go3
fo2
Eoa
00 00
-8 -6 -4 -2 o 2 4 -a -2 0 2
densiy (centralized) densiy (centralized)
Nucleosome Density: chr3 Nucleosome Density: chr7
2
z
70
-2
_a{__window size = 5000
o 250000 500000 750000 1000000 1250000 1500000 1750000 o 200000 400000 600000 800000
§
-8 -5 -4 -2 o 2 -
densiy (centralized) densiy (centralized)
Nucleosome Density: chrd Nucleosome Density: chrR
4
4
2 2
8 -2 8 -2
4 windowsize = 5000 -4 window size = 5000
6 i
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 o 500000 1000000 1500000 2000000
Zoa
§o3
&
£o2
Eoa
00
-4 2 4 -6 -4 4

o
density (centralized)

o
density (centralized)

Figure 1: Shown is the nucleosomal density after applying a rolling average with a window
size of 5000 of all of the chromosomes (upper panels). The lower panels show the
corresponding histogram of the densities with a bin size of 50. The black line is the fit
with a gaussian distribution.

11


https://doi.org/10.20944/preprints202201.0471.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2022 d0i:10.20944/preprints202201.0471.v1

1.1.1 Nucleosome Density at b = 2500

Chromosome Distribution chi square D _statistic
chrl fisk 1.675740e+-05 0.026701
chrl norm 4.029705e+05 0.047346
chr2 fisk 2.215488e-+05 0.034197
chr2 norm 4.888579e+05 0.049294
chr3 fisk 2.315703e-+05 0.038608
chr3 norm 1.174085e+-06 0.083966
chrd fisk 1.530916e+-05 0.034538
chr4 norm 6.824904e+05 0.070372
chrb fisk 9.322028e-+04 0.030918
chrb norm 2.783759e-+05 0.056306
chr6 fisk 1.280710e+-05 0.037654
chr6 norm 2.753396e+05 0.052656
chr7 fisk 5.100021e+04 0.032512
chr7 norm 7.679109e+04 0.031660
chrR fisk 2.258400e+05 0.033580
chrR norm 6.023527e+05 0.054608

Table 1: The Fisk distribution, also known as the log-logistic distribution gives the best consistent
fit. The fit was done for the bin size of 50 and the rolling average of size 5000. Statistical
Kolmogorov-Smirnov test for goodness of fit was done using SciPy.org scipy.stats.kstest
function (34). The D statistic is the absolute max distance (supremum) between the
CDFs of the two samples. All results show small values D values corresponding to
p-values close to 1, the log-logistic distribution may explain the data.

12


https://doi.org/10.20944/preprints202201.0471.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2022

d0i:10.20944/preprints202201.0471.v1

normalized frequency normalized frequency normalized frequency

normalized frequency

Figure

0.6
—— mnorm — @,
indow size = 2500 — fisk indow size = 2500 — fisk
0.5 window size = 25 = chrl J window size = . = chrs
0 : ’
4 | I8 M-
A : x
o
[
1 =
0.3 A / pa
(9]
N
E
0.2 A 57
i
0.1 A b
0.0 T T T T— T T T T T T T— T T
density density
0.6
—— norm — dlor;
ind o — fisk ind o — fisk
0.5 window size = 2500 ul = chr2 i window size = 2500 . = chré
A > Ay
0.4 JIH ok 1%
L) 3
o
J : ;
= ,
0.3 A =
(]
N
©
0.2 1 g_
f=
0.1 A b
0.0 T T T T T T T T T T T T T T
density density
0.6 b
il ~—— mnorm —— mnorm
ind ize = 2 — fisk ind ze = 2 — fisk
0.5 - window size = 2500 I = chr3 4 window size = 2500 = chr7
] I z
4 MhH c |
0.4 g - 7:3\
= ,
: %
0.3 , gl
(]
N
©
0.2 g
f=
0.1 A 1
0.0 T T T T— T T T T T T T T T
density density
0.6
—— morm — aarm
ind ize = 2500 l fisk ind ize = 2500 fisk
0.5 - window size = =1 chra J window size = B =1 chrR
n . "\
0.4 - MH é- H
3
o
A\ (9] a
0.3 A pa
(]
N I
E
0.2 £+
c
0.1 A 4
0.0 T T T T T T T T T T T T T
-2 2 -2 2

-6 -4

density

0

T
4
density

2: Normalized nucleosome density distributions for all of the chromosomes. The data
shows the non-gaussian behavior (red line). For comparison a fit to a Log-logistic
distribution is shown yielding a much better consistent fit. The bin size was 50 and

the rolling average of size 2500 was used.
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1.1.2 Nucleosome Density at b = 5000

Chromosome Distribution chi square D _statistic
chrl fisk 1.678610e+05 0.021809
chrl norm 4.310806e+05 0.040372
chr2 fisk 1.011539e+05 0.024922
chr2 norm 4.873082e+05 0.048215
chr3 fisk 2.078474e-+05 0.038179
chr3 norm 1.362080e+06 0.094966
chr4 fisk 9.270418e-+04 0.027728
chr4 norm 6.014198e+05 0.069622
chrb fisk 4.004712e+04 0.020815
chrb norm 1.715085e+05 0.048451
chr6 fisk 1.347119e+04 0.020806
chr6 norm 1.609603e+05 0.038205
chr7 fisk 1.682594e+04 0.022172
chr7 norm 1.636277e+04 0.016584
chrR fisk 9.955245¢e-+04 0.025810
chrR norm 4.967464e+05 0.052443

Table 2: The Fisk distribution, also known as the log-logistic distribution gives the best consistent
fit. The fit was done for the bin size of 50 and the rolling average of size 5000. Statistical
Kolmogorov-Smirnov test for goodness of fit was done using SciPy.org scipy.stats.kstest
function (34). The D statistic is the absolute max distance (supremum) between
the CDFs of the two samples. As the all the results show small values D values
corresponding to p-values close to 1, the log-logistic distribution may explain the data.
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3: Normalized nucleosome density distributions for all of the chromosomes. The data
shows the non-gaussian behavior (red line). For comparison a fit to a Log-logistic
distribution is shown yielding a much better consistent fit. The bin size was 50 and

the rolling average of size 5000 was used.
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1.2 Distance Matrix for Individual Chromosomes

chrl

chrl chrs

chr2
chré

chr2 chré
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chr7
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chra
chrR

chra

chrR

Figure 4: Shown are the distance matrices for all chromosomes. Distance refers to the dis-
tance between two correlation functions as measured by the euclidean distance
(np.linalg.norm(x-y,ord=norm), with norm = 2. The ordering along the axes corre-
sponds to the coarse-grained sections. The rolling average was of size 5000.
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1.3 Clustering for Individual Chromosomes

Analysis for Chromosome: chrl Analysis for Chromosome: chrs

Analysis for Chromosome: chr2 Analysis for Chromosome: chr6

1o

Analysis for Chromosome: chr3 Analysis for Chromosome: chr7

b

Analysis for Chromosome: chrd

Figure 5: Shown are the dendrograms resulting from the distance matrices for all chromosomes.
Results are for the hierarchical clustering on the individual chromosome. The Ward
distance was used for the variance minimization algorithm used by SciPy (34). The
labels correspond to the distance matrix entries. Labels in parentheses give the number
of labels corresponding to the leave. The rolling average was of size 5000. Labels in
parentheses give the number of labels corresponding to the leaf.
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1.4 Distance Matrix and Clustering for Individual Chromosomes

chrl

chr2

chr3

chra

chrR

Figure 6: Shown are the distance matrices and corresponding dendrograms for all chromosomes.
The matrix entries are sorted to correspond to the identified clusters. The rolling

average was of size 5000.
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1.5 Cluster Pattern in Chromosomes

Figure 7: Part 1: Shown are the distance matrices and corresponding mapping of the pattern on
the chromosomes. The matrix entries correspond to the positions on the chromosome.
The rolling average was of size 5000.

19


https://doi.org/10.20944/preprints202201.0471.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2022 d0i:10.20944/preprints202201.0471.v1

Figure 8: Part 2: Shown are the distance matrices and corresponding mapping of the pattern on
the chromosomes. The matrix entries correspond to the positions on the chromosome.
The rolling average was of size 5000.
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1.6 Correspondence between Pattern and Correlation Function within
individual Chromosome

Figure 9: Shown are the correlation functions and the corresponding mapping of the pattern
on the chromosome 1. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure 10: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 2. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure 11: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 3. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure 12: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 4. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.

24


https://doi.org/10.20944/preprints202201.0471.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2022 d0i:10.20944/preprints202201.0471.v1

Figure 13: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 5. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure 14: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 6. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure 15: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome 7. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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Figure 16: Shown are the correlation functions corresponding mapping of the pattern on the
chromosome R. The rolling average was of size 5000. The orange line marked
"smoothed" is a smoothed representation of the correlation function (rolling average
of size 10000 to highlight the feature commonality between the clustered correlation
functions.
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1.7 Genome-Wide Distance Matrix

chrl-chr2-chr3-chr4-chr5-chr6-chr7-chrR

chrl-chr2-chr3-chr4-chr5-chr6-chr7-chrR

Figure 17: Shown is the genome-wide distance matrice. Distance refers to the distance between
two correlation functions as measured by the euclidean distance (np.linalg.norm(x-
y,ord=norm), with norm = 2. The ordering along the axes corresponds to the
coarse-grained sections. The rolling average was of size 5000.
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1.8 Genome-Wide Clustering

Dendrogram for Chromosomes: chrl-chr2-chr3-chr4-chr5-chr6-chr7-chrR
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Figure 18: Shown is the dendrograms resulting from the genome-wide distance matrix. Results
are for the hierarchical clustering on the individual chromosome. The Ward distance
was used for the variance minimization algorithm used by SciPy (34). The labels
correspond to the distance matrix entries. Labels in parentheses give the number of
labels corresponding to the leave. The rolling average was of size 5000.
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1.9 Genome-Wide Distance Matrix and Clustering

chrl-chr2-chr3-chrd-chr5-chr6-chr7-chrR

Figure 19: Shown is the genome-wide distance matrix and the corresponding dendrogram. The
matrix entries are sorted to correspond to the identified clusters. The rolling average
was of size 5000.
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1.10 Correspondence between Pattern and Correlation Function

Genome-Wide

Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 1
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Figure 20: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 2 (1)
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Figure 21: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 2 (2)
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Figure 22: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 2 (3)
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Figure 23: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 2 (4)
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Figure 24: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 3 (1)

Correlation and Cluster Analysis for Ch Correlation and Cluster Analysis for Chromosomes chrl-chr2-chr3-chrd-chr5-chr6-chr7-chrR

— Corestonat3

— Corrtation at 117
ors ]\ [—— ied

m
oo — Correlation at 136
s = oeter
aso 5
oz
oo

»

T ioko0 20000 30800 10300 sobon Gosoo 700 5 1000 20500 30300 4a6an 50000 w00 7000 Toko0 20000 30800 40300 3080 G0s00 70000 Lok 20000 30800 40300 3080 G0s00 70000
» » o o
Correlaton and Cluster Anaysis for Ch Correlation an Cluster Anaiysis for Chromosomes ch1ch2-chr3-chrd-chr-chr-chrT-chri
Lo o n at 40 oo — Carrelation at 137 — Carrelation at 157
i o — fnosnes = smaniea

os

o
-0

10

G 10000 20000 30000 40000 50000 60000 70000 G 10000 20000 30000 40000 50000 60000 70000 10000 20000 30000 40000 50000 60000 70000 10000 20000 30000 40000 50000 60000 70000
o o o b

Figure 25: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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Correlation Function corresponding to the Pattern Genome-Wide Pattern No. 3 (2)
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Figure 26: Shown are the correlation functions corresponding mapping of the pattern on the chro-
mosomes. The rolling average was of size 5000. The orange line marked "smoothed"
is a smoothed representation of the correlation function (rolling average of size 10000
to highlight the feature commonality between the clustered correlation functions.
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1.11 Comparison of Different Metrics
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Figure 27: The upper panel shows the classification of the structures with respect to the euclidean
distance ||.||2 while the middle one shows the result for ||.||7. Note that ||.||; shows a
further subdivision of the orange colored regions. Otherwise, the structure is stable
against the two metrics for the distance between two correlation functions. The black
line shows the gene density and the red line the GC content. The lower panel shows
the application of the cosine similarity measure. While there are differences between
the different metric, overall, a stable pattern is observed. What is remarkable is that
the similarity measure shows less variation within certain domains than the other
measures.
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