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Abstract: The opioid epidemic is an ongoing public health crisis, and the United States health system is 

overwhelmed with increasing numbers of opioid-related overdoses. Methocinnamox (MCAM) is a novel 

mu-opioid receptor antagonist with an extended duration of action and potential to reduce the burden of 

the opioid epidemic through overdose rescue and could treat opioid use disorder (OUD) long-term. We 

compared the efficacy and effects of MCAM to the current treatments available to treat OUD including 

naloxone, naltrexone, methadone, and buprenorphine which have their own limitations including short 

duration of action, patient non-compliance, and diversion. A literature review was conducted using 

PubMed and Google Scholar databases covering the history of the opioid epidemic, pain receptors, current 

OUD treatments and the novel drug MCAM. MCAM could potentially be used as both a rescue and long-

term treatment for opioid misuse. This is due to its pseudo-irreversible antagonism of the mu opioid 

receptor, abnormally long duration of action of nearly two weeks, and the possibility of using kappa or 

delta opioid receptor agonists for pain management during OUD treatment. MCAM’s novel 

pharmacokinetic and pharmacodynamic properties open a new avenue for treating the opioid crisis. 
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1. Introduction 

Over one-million Americans have died from 

overdoses during the opioid epidemic.1 Opioid 

addiction and misuse remains a prevalent issue in 

the United States (US) leading to millions of deaths.2 

Opioids were originally discovered from poppy 

plants and were used to reduce pain sensation 

ranging from acute to severe, but they have become 

more accessible for recreational use outside of pain 

relief therapy.3,4 The intended use of opioids was for 

the reduction of pain sensation by agonizing the 

opioid receptors located in the central nervous 

system (CNS).5 There are three major opioid 

receptor types, mu (μ), delta (δ), and kappa (κ), but 

the mu-receptor is the main target of exogenous 

opioids5,6. In the past, many people turned to opioids 

to relieve daily suffering from chronic pain, and the 

drugs easily became addictive and created 

dependence.2 The ubiquitous use of opioids and the 

addiction to these drugs in the US have exacerbated 

the strain on resources in hospitals, emergency 

rooms, and on first responders as they try to save 

lives with the limited resources currently available.2 

Naloxone is the only drug available to treat opioid 

overdose to be approved by the US Food and Drug 

Administration (FDA) in the last 50 years, and the 

opioid users are younger and experimenting with 

synthetic opioids beyond pain relief.7,8 Naloxone is a 

competitive mu opioid antagonist with a high 

affinity for the mu-receptor used to reverse 

respiratory and CNS depression in those enduring 

an opioid overdose.9,10 Naloxone does not help 

decrease future use of opioids, and the use of 
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synthetic opioids will require higher doses of 

naloxone which could increase adverse effects such 

as tachycardia and hypertension.11,12 Naloxone is 

also currently misused at “Narcan parties,” where 

attendees intentionally overdose knowing they will 

be rescued by naloxone.13 Naltrexone has extended-

release formulas intended to reduce relapse and 

promote compliance, yet patient noncompliance 

and retention continue to be limiting factors.14 

Methadone is commonly used to treat opioid 

addiction as a replacement for illicit opiates but is 

itself an addictive substance that can lead to 

withdrawal if dosage is not closely monitored by a 

licensed professional.15 Buprenorphine is currently 

used to treat OUD and while it reduces illicit drug 

use, it is equal to or even less effective than 

methadone in patient retention in treatment.15 

Additionally, buprenorphine is sold on the black-

market for those attempting to treat opioid 

dependency on their own and was involved in more 

drug arrests than methadone.16,17 Methadone and 

buprenorphine are substitution treatments with 

substantial reduction of opioid deaths during 

treatment but immediately following release from 

treatment mortality risk notably returns to increased 

levels.18 For these reasons,1,2 there is a dire need for a 

new opioid misuse intervention.19 

Methocinnamox (MCAM) is a novel drug 

candidate that is a pseudo-irreversible antagonist 

for the mu opioid receptor (MOR), thereby 

preventing other opioid agonists from binding for a 

two-week period19–21. Due to the long-lasting effect 

of MCAM, it can be a safer and more effective 

alternative medication for the misuse of opioids.22,23 

MCAM has the potential to change the course of 

opioid misuse and help prevent relapse after 

administration.24,25 This brief review will explore 

how MCAM’s unique function could be useful in 

reducing the burden of the opioid crisis. 

 

 

2. Methods  

A literature review was conducted using 

PubMed and Google Scholar databases utilizing the 

following key terms: methocinnamox, MCAM, 

naloxone, naltrexone, buprenorphine, 

buprenorphine-naloxone, methadone, opioid 

overdose, opioid crisis, opioid abuse, mu-receptor, 

kappa-receptor, delta-receptor, inverse agonist, and 

naloxone and placebo. These terms and 

pharmacotherapies were included due to their 

relevance to the opioid epidemic, opioid overdose, 

and MCAM. Chemical structure was constructed 

with ChemDraw version 19.0.0. No date range or 

journal exclusion criteria were applied.  

3. Discussion 

3.1 Opioid Epidemic 

In the 1800s, opiates were widely marketed 

as a safe and effective form of pain alleviation.26 

Consequently, the absence of federal regulation on 

frequent opioid prescription and use drew 

widespread concern, which eventually led to the 

enactment of the 1914 Harrison Narcotic Control 

Act.27 While this prompted nationwide 

stigmatization of opioid use for non-cancer chronic 

pain management, it was later followed by a drastic 

shift in 1995 in public attitude that advocated for the 

recognition of pain as a ‘fifth vital sign’.28 As a result, 

several entities such as the Institute of Medicine, the 

Federation of State Medical Boards, and the Drug 

Enforcement Agency, pushed for fewer regulations 

over opioid prescriptions, thereby encouraging 

healthcare providers to provide adequate pain relief 

for patients. Additionally, the FDA approved an 

extended-release oxycodone formulation in 1995 as 

a safer opioid alternative to the fast-release version 

because of its slow and sustained release of 

medication.29 Pressure by pharmaceutical 

companies, patients, and federal funding 

requirements further contributed to the 
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overaggressive prescription of opioid analgesics 

that ultimately led to the opioid epidemic in the 

US.30,31 The Centers for Disease Control reported that 

in 2016, more than 42,000 Americans died from an 

opioid overdose, marking a 27% increase from the 

previous year.32 In 2017, the rate increased by 45.2%, 

indicating the increased prevalence of opioid 

misuse.33 More than 11.5 million Americans misused 

opioids and roughly 2.1 million were formally 

diagnosed with an OUD.34 Later that year, the US 

Department of Health and Human Services declared 

the opioid epidemic a public health emergency. 

Despite concerted efforts by medical practitioners to 

reduce opioid prescriptions and increased 

availability of buprenorphine, methadone, and 

naloxone,35–37 opioid overdose continues to rise with 

one-hundred thousand annually,38 with the illegal 

manufacturing of fentanyl and its analogs as the 

leading cause.39 This can be attributed to fentanyl’s 

high potency, with a strength that is 30-50 times 

greater than that of heroin, its rapid onset of action, 

long duration of desired effect, and low production 

costs. While the rate of heroin-related overdose 

deaths has started to stabilize, from 2013-2016 

synthetic opioid related deaths, such as those caused 

by fentanyl and its analogs, increased by 88%.30,40  

Public health experts agree that tackling the 

opioid epidemic will require interdisciplinary 

collaboration between medical providers, social 

service agencies, federal regulation, and community 

support.8,41,42 The lingering effects of the epidemic 

are rampant in low-income communities, 

predominantly African American and Hispanic 

communities, and are currently exacerbated by 

COVID-19’s social and health impacts.43,44 Potential 

proposed solutions include increasing harm-

reduction programs, educating medical providers 

on safe opioid prescribing, eliminating stigma 

around OUDs, as well as finding safer alternatives 

to pain management.3,42,45 Current OUD therapeutics 

include methadone, buprenorphine, naloxone, and 

extended-release naltrexone, all of which function 

by reducing opioid withdrawal symptoms and 

cravings.5,46 However, drug addiction is generally 

recognized as a complex biopsychosocial condition. 

These medications can only successfully resolve the 

opioid crisis by working in tandem with public 

health efforts that include both prevention and 

harm-reduction approaches.47 MCAM presents 

potential for a new avenue of OUD treatment. 

3.2 Pain Receptors 

MCAM is a long lasting, pseudo-irreversible 

(non-covalent binding), potent, MOR antagonist 

which reversibly binds kappa opioid receptors 

(KOR) and delta opioid receptors (DOR) that has no 

known interaction with other nociceptors. Thus, 

kappa and delta agonists could be provided 

concomitantly for pain relief during treatment for 

OUD.20,22–24,48,49 This unique pharmacodynamic 

mechanism of MCAM contributes to its long-lasting 

effects. The need for new MORs to induce the 

euphoric and depressive effects of opioid receptor 

agonists as receptor turnover is what limits the 

DOA.19,24 This is crucial because MOR agonists can 

not only induce the G protein-coupled receptor 

(GPCR) pathway, but can also induce β-arrestin 

activation, leading to adverse effects such as 

respiratory depression.50,51 The opioid receptors: 

MOR, KOR, and DOR, belong to the largest 

membrane receptor family called the trimeric GPCR 

superfamily, with opioids activating the inhibitory 

(Gi) signaling pathway to initiate analgesic 

functions.52–55 The GPCRs are known for their 

trimeric subunits consisting of alpha (Gα), beta (Gβ), 

and gamma (Gγ).56 After the opioid agonist 

(endogenous or exogenous) binds, a signal 

stimulates Gα to migrate and suppress adenylate 

cyclase activity, thereby reducing cyclic AMP 

production.56 The Gβγ acts as a modulator for the 

signaling pathway, resulting in reduced 

neurotransmitter release and membrane 

hyperpolarization.56 

Since GPCRs are so widespread, these are 

the target for 50% of marketed pharmacological 
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therapeutics, revolving around the common amino-

terminal peptide sequence, Tyr-Gly-Gly-Phe, which 

is referred to as the “opioid motif” as it directly 

interacts with the opioid receptor57. The MOR 

agonists include oxycodone, fentanyl, heroin, 

morphine, and methadone. Buprenorphine is a 

partial MOR agonist and KOR antagonist.58,59 MOR 

antagonists include naloxone, naltrexone, and 

MCAM. It is believed the activation of KORs 

antagonizes MOR mediated analgesia; activation of 

the KOR hyperpolarizes neurons that are active 

indirectly by the MOR.7 Pain is multidimensional 

and dependent on subjective thresholds. Chronic 

pain, which may be concurrent with anxiety, may be 

associated with neuroplastic changes in the 

amygdala, which may heighten the emotional and 

affective consequences of pain.60,61 Analgesics are 

highly effective in most cases against acute pain, but 

the desired effects mediated by the opioid receptor 

family may lead to craving, addiction, or 

dependence as a result of neurological changes.62–65 

Repetitive opioid use will thus increase the 

threshold for analgesic effects secondary to 

compensatory upregulation of vesicular calcium 

content while developing opioid tolerance and may 

decrease one’s quality of life.53,66,67 

3.3 Current OUD Treatments  

The current pharmacological treatments for 

opioid overdose and misuse are administration of 

methadone, buprenorphine, naloxone, and 

naltrexone.9,10,12,68–70 Methadone and buprenorphine 

are opioid agonists which may prevent withdrawal 

symptoms in those recovering from OUD, but pose 

risk for opioid overdose particularly when 

combined with other substances.68,71,72 However, 

naltrexone and naloxone are opioid antagonists, the 

latter being the only emergency rescue for opioid 

overdose and opioid induced respiratory 

symptoms.10,73 Naltrexone is used to treat OUD and 

opioid dependency, usually post-opioid cessation, 

whereas naloxone can be used concomitantly with 

prescribed opioids such as buprenorphine.68–70,74 

Other pharmacological uses have been identified for 

naloxone and naltrexone such as treatment for 

alcohol dependence, and possible treatments for 

internet sex addiction, and Hailey–Hailey disease, 

but studies show these medications are not effective 

for smoking cessation.75–78  

Administration of methadone or 

buprenorphine significantly reduced opioid-related 

deaths caused by nonfatal opioid overdose over a 

12-month follow-up period by 59% and 38%, 

respectively.79 The abrupt discontinuation of opioids 

does not show great success rates and may result in 

relapse.8,68 Use of these drugs in conjunction with 

psychosocial therapy are the best for treatment 

success in those with OUD.8,68,70 While both 

methadone and buprenorphine are synthetic 

derivatives of opiates and used in medication 

assisted treatment (MAT) of OUD, they possess 

different mechanisms of action and adverse drug 

reactions (ADRs). Methadone is a long-acting full 

agonist that binds the MOR, preventing withdrawal 

symptoms such as nausea and vomiting for at least 

24 hours, while conferring analgesia and reducing 

opioid cravings.80,81 Dextromethadone is an NMDA 

glutamate receptor antagonist. Conversely, 

buprenorphine is a partial agonist at the MOR, 

making it less potent than methadone with 

decreased ADRs.81,82 Buprenorphine and its 

metabolite norbuprenorphine also bind to KOR as 

an antagonist and DOR as an agonist.58,82 Methadone 

has restricted availability in the US and requires 

daily dosing raising the issue of patient compliance; 

close monitoring of dosing for detoxification by a 

practitioner for each individual is an additional 

healthcare burden.83 Buprenorphine is less effective 

for patient retention than methadone, even at high 

doses.15 Buprenorphine’s purported ‘ceiling effect’ 

reduces the risk of misuse or overdose by 

preventing the increase of opioid effects, or 

euphoria, beyond a designated threshold.81 

However, buprenorphine may precipitate 

withdrawal, a condition that occurs without an 

adequate detoxification period from opioid drugs, 

due to its high affinity for the MOR.81,82 The 
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combination of buprenorphine with 

benzodiazepines causes respiratory depression.81,82 

An additional drug that is also used in MAT 

programs is naloxone, which is often paired with 

buprenorphine in an oral tablet form to prevent 

strong withdrawal symptoms and block the 

euphoric effects induced by other opioids.69 The 

mechanistic action of naloxone is by competitive 

binding to the MOR as a high affinity antagonist, 

and some researchers suggest it acts as an inverse 

agonist.10,84 Administration of naloxone 

intravenously, intramuscularly, subcutaneously, 

intranasally, and even inhalation through 

endotracheal tube for intubated patients during an 

opioid overdose, competitively binds the opioid 

receptors to reverse respiratory and CNS 

depression.85 The time to decrease fentanyl 

occupancy at the receptor after 2 mg intramuscular 

naloxone administration was three minutes, after 25 

ng/ml and ten minutes after 50 ng/ml, but there is an 

increased dose requirement of naloxone due to 

larger doses of self-administered opioids.12 After a 

13 μg/kg dose of naloxone, 50% of the receptors in 

the brain were occupied, but due to the rapid 

association and successive dissociation of naloxone 

from the receptors, toxicity reversal may be 

insufficient and the patient may experience 

renarcotization requiring subsequent doses.12,85,86 

Although regarded as exceedingly safe, ADRs for 

naloxone can include tachycardia, hypertension, 

gastrointestinal upset, hyperthermia, cravings, 

nausea, vomiting, and rarely severe cardiovascular 

events.9,12,85 Naloxone also blocks the descending 

pain control system, thus diminishing the placebo 

pathway for pain perception by interfering with the 

coupling between the rostral anterior cingulate 

cortex and the periaqueductal gray area structures 

in the brain.87,88 Though not the first-line treatment 

for opioid overdose, as it is not as efficacious as 

naloxone, naltrexone is used to reduce opioid use in 

those with OUD.70,73  

Naltrexone is commonly characterized as an 

opioid receptor antagonist, although some suggest 

an inverse agonist function based on its intracellular 

signaling properties, that is prescribed to reduce 

opioid use in those attempting to practice abstinence 

from opioids but suffer from OUD.70,73 Interventions 

for opioid misuse involving naltrexone, rather than 

receptor agonists like buprenorphine, have been 

successful when paired with behavior intervention 

and are a promising alternative treatment for opioid 

misuse in pregnant women.89,90 For opioid 

dependent pregnancies, naltrexone had reduced 

opioid misuse in mothers and significantly 

decreased neonatal abstinence syndrome in infants 

when compared to buprenorphine.89 In contrast to 

naloxone’s associated acute withdrawal symptoms, 

naltrexone reduces symptoms of withdrawal for 

patients and even lowers the risk for overdose with 

the use of buprenorphine as an OUD treatment with 

no significant ADRs.74 While also having a 

considerable safety profile like naloxone, the 

potential side effects of naltrexone include mild to 

moderate injection site reaction, nausea, and 

gastrointestinal upset.91 See Table 1 for a summary 

comparison of drug treatments. With the 

intervention’s limitations outlined above, MCAM 

may prove beneficial as a treatment to combat the 

opioid crisis. 
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Table 1. Comparison of opioid use disorder and opioid 

overdose treatment drugs. Table includes naloxone104,105, 

naltrexone106,107, methadone108,109, buprenorphine110,111 and 

methocinnamox (MCAM)19,24,96,98,99,101. 

Treatment 

Drug 

Method of 

Administration 

Mechanism of 

Action 

Onset and 

Duration of 

Action 

Strengths Limitations 

naloxone 

Intravenous 

Intramuscular 

Subcutaneous 

Intranasal 

Inhalation 

Reversible 

MOR, KOR, 

DOR 

competitive 

antagonist 

Rapid onset 

or 1-5 

minutes 

 

1–2 hours 

Rescue from 

overdose, wide 

therapeutic window 

Short DOA, community 

misuse, risk of 

renarcotization, 

precipitates withdrawal, 

drug-drug interactions, 

surmountable 

naltrexone 

Intravenous 

Intramuscular 

Subcutaneous1  

Oral 

Reversible 

MOR, KOR, 

DOR 

competitive 

antagonist 

15 - 30 

minutes 

 

>72 hours 

Use during 

pregnancy, 

extended-release 

formula 

May precipitate 

withdrawal, patient 

noncompliance, drug-drug 

interactions 

methadone 

Intravenous 

Intramuscular 

Subcutaneous 

Oral 

MOR, DOR 

agonist, NMDA 

antagonist 

Rapid onset 

 

4–8 hours, 

single dose; 

22-24 hours, 

continuous 

dosing 

Prevents 

withdrawal, reduces 

opioid cravings, 

pain relief  

Patient noncompliance, 

dependence, misuse and 

diversion, restricted 

availability in US, close 

monitoring of dosage, 

many drug-drug 

interactions, ADRs 

buprenorphine 

Intravenous 

Intramuscular 

Subcutaneous 

Oral 

Buccal 

Sublingual 

Transdermal 

Partial MOR 

agonist, KOR, 

DOR 

competitive 

antagonist 

10-30 

minutes 

 

2–24 hours 

Prevents 

withdrawal, use 

during pregnancy, 

prevents euphoria 

and overdose 

symptoms 

Less potent than 

methadone, patient 

retention inferior to 

methadone, may 

precipitate withdrawal, 

drug-drug interactions, 

ADRs 

MCAM 
Intravenous 

Subcutaneous 

Pseudo-

irreversible 

MOR, not 

competitive 

antagonist2, 

reversible KOR, 

DOR 

competitive 

antagonism 

15-45 

minutes 

 

5 days to 2 

weeks 

Long DOA, not 

surmountable, 

prevents 

renarcotization, 

lacks notable drug-

drug interactions, 

antinociceptive 

concomitant 

treatment possible 

Precipitates withdrawal, 

not yet tested in humans 

1 Subcutaneous formula is a pellet implant 
2 MOA incompletely understood 

3.3 Methocinnamox  

MCAM, shown in Figure 1, was first 

mentioned in a publication in 2000 by researchers 

from the University of Michigan Medical School and 

the University of Bristol, but was initially discarded 

because it was believed to be useful only for MOR 

research.8,92 However, it is currently being studied 

for its promise in the opioid crisis as a long-term 

OUD treatment.93,94 In animal models, a single 
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subcutaneous dose of MCAM rescues a subject from 

acute opioid overdose and prevents subsequent 

overdose for up to two weeks with minimal adverse 

effects.21,22,92,95,96 Currently, the only known possible 

adverse effect for MCAM in non-dependent 

individuals was hyperventilation upon rescue.96 

Interestingly, one study noted a slightly increased 

response to food (a non-drug alternative) several 

days following a single injection.22 Some studies 

have shown no statistically significant adverse 

effects nor potential ADRs with benzodiazepines 

and alcohol.19,22,97 MCAM has not been shown to 

cause a decrease in response to food or alter heart 

rate, blood pressure, body temperature, or social 

and physical activity and no indication of 

developing tolerance nor physical dependence.19,22 

MCAM is currently the most potent and selective 

MOR antagonist and shows no agonistic effects, 

even at high concentrations, with the longest 

duration and highest potency when injected 

subcutaneously over other methods of 

administration.20,96 

 

Figure 1. Methocinnamox chemical structure. Molecular 

Formula: C30H32N2O4, PubChem CID: 46877713, 

IUPAC name: (E)-N-(4R,4aS,7aR,12bR)-3-

(cyclopropylmethyl)-9-hydroxy-7-oxo-2,4,5,6,7a,13-

hexahydro-1H-4,12-methanobenzofuro3,2-eisoquinolin-

4a-yl-3-(4-methylphenyl)prop-2-enamide 

(compound/methocinnamox)112. 

Naltrexone and naloxone injections become 

ineffective in less than a single day with durations of 

action lasting 1-2 hours.85,86 A single injection of 

MCAM has a duration of action of thirteen days, 

reaching peak concentration 15-45 minutes after 

injection with a half-life of roughly 70 minutes.19,24,98 

MCAM’s exact mechanism of action is currently 

unknown, but the effectiveness at very low plasma 

levels suggests the pharmacodynamic properties 

play a significant role in its long-lasting effects 

rather than pharmacokinetic factors.19 The evidence 

for pseudo-irreversible binding includes its non-

reversible, insurmountable, and time-dependent 

antagonism of mu agonist-inhibition of cAMP 

production.99 A recent study using human 

embryonic kidney (HEK) cells expressing human 

opioid receptors showed that in addition to pseudo-

irreversible orthosteric antagonism of MORs, 

directly blocking binding, MCAM also utilizes 

allosteric antagonism at an unknown site at a lower 

affinity, which alters ligand affinity and/or intrinsic 

efficacy of MOR agonists.99 As for MCAM’s 

mechanistic interaction with DORs and KORs, the 

behavior was consistent in the opioid receptor 

expressing HEK cells, and in vivo, with simple 

competitive antagonism.99 

Repeated administration of MCAM every 

twelve days in rodents remained effective for over 

two-months without altering the duration of opioid 

withdrawal with no major ADRs and no decrease in 

effectiveness, suggesting positive potential for long-

term OUD treatment.19,21,96 Naltrexone, naloxone, 

and MCAM are effective for acute reversal and 

prevention of respiratory depression and other 

overdose symptoms due to their effects on opioid 

receptors, but only MCAM prevents renarcotization 

in the hours and days following emergency 

intervention.19,48,96,98,100 Naltrexone and naloxone 

bind competitively, meaning higher amounts of an 

agonist will overcome their intended effects 

requiring a higher dose of either therapy to reverse 

initial and subsequent overdoses post-antagonist-

injection.98 MCAM binds non-competitively, 

making it insurmountable and therefore more 
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effective at blocking effects of opioids in the short- 

and long-term.19,24,99,100 Additionally, MCAM is 

naloxone‐insensitive with no notable drug 

interactions meaning there is a possibility that the 

two drugs could be administered concurrently for 

immediate rescue and prevent subsequent 

renarcotization.99 With over-the-counter availability 

of naloxone, overdose related deaths have decreased 

but subsequent renarcotization and therefore 

consequent overdoses leading to death remains an 

issue.85,99 If a shorter acting formulation of MCAM 

was combined with naloxone, renarcotization risk 

could significantly decrease and potentially further 

reduce opioid overdose related deaths without 

inducing withdrawal.  

MCAM can act as a preventative therapy for 

opioid misuse, indicating possible use at discharge 

from treatment facilities following a detoxification 

period, as well as use during ongoing therapeutic 

intervention negating the need for, and misuse of, 

buprenorphine and methadone.22,24,48,100 Its 

prolonged dosing interval is hypothesized to 

relatively prevent patient noncompliance that is 

seen with extended-release naltrexone for 

outpatient treatment, including eliminating the 

possibility of an individual removing an implant.22,24 

In cases where effects lasting roughly five days or 

less are needed, such as preventing renarcotization 

in the hours and few days following an overdose but 

not for long term treatment of OUD, intravenous 

administration of MCAM would be preferable.96,98 

There is discussion of creating an oral pill form of 

MCAM, an extended release form, and faster acting 

intranasal and intramuscular formulations, but 

further study of the drug is needed before these will 

be developed.19,22,98 MCAM also blocks the 

physiological and behavioral effects of MOR 

agonists such as unfavorable impacts of sensitivity 

to mechanical stimulation, gastrointestinal motility, 

appetite, and memory and other cognition, 

suggesting the adverse effect profile is 

encouraging.21,22,25,97,101 However, it is important to 

recognize that no testing has been conducted in 

humans.92 It is currently unknown if long-term 

blockade of the mu receptor would attenuate 

endorphin and enkephalin signaling sufficiently to 

reduce mood. Given the wide-spread impact of 

opioid overdoses, novel strategies are desperately 

needed. 

4. Conclusion 

The increased prevalence of OUD cases and 

opioid related deaths are an ongoing public health 

crisis in the US. While opioid antagonists, 

naltrexone and naloxone, are essential drugs used to 

treat OUD and reverse the effects of an overdose, 

respectively, they have risks that pose considerable 

limitations to their efficacy. These risks include 

withdrawal, poor patient compliance, short 

durations of action, lack of concurrent 

antinociceptive treatment, ability to surmount 

opioid receptor blockade, and potentially dangerous 

drug-drug interactions, especially for those with 

comorbid addictions.12,19,22,85,91 Opioid agonists 

methadone and buprenorphine present their own 

limitations in OUD treatment such as dependence, 

restricted availability, poor patient retention, patient 

noncompliance, drug-drug interactions necessary 

detoxification and potential withdrawal.15,81–83 

Buprenorphine is a Schedule III and methadone is 

Schedule II substance in the US, so misuse and 

diversion of these substances is an ongoing 

challenge.16,17 The demand for novel therapeutics to 

decrease the misuse and overuse of opioid drugs 

and resulting overdoses provides an opportunity for 

MCAM to make a positive impact. By retaining the 

safety benefits of naltrexone and naloxone and 

providing a longer DOA with a novel mechanism, 

MCAM is a promising pharmacological addition. 

Using non-MOR agonists such as the KOR agonist 

spiradoline concomitantly with MCAM also 

presents a potential intervention method allowing 

for antinociceptive effects during the withdrawal 

process and OUD treatment.48,98,102,103 The preclinical 

phase of MCAM drug development began in 2005 

with testing in mice, rats, and non-human primates. 

21,48,95–101 Researchers aim to begin phase I clinical 

trials by 2022.92 MCAM has the potential to 
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transform the future of OUD treatment, thereby 

reducing the healthcare and societal burden caused 

by the opioid epidemic,1,2 and improving the lives of 

millions. 
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