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Abstract: Legendre’s equation is key in various branches of physics. Its general solution is a linear 1

function space, spanned by the Legendre functions of first and second kind. In physics however, 2

commonly the only acceptable members of this set are the Legendre polynomials. Quantization of the 3

eigenvalues of Legendre’s operator is a consequence of this. We present and explain a stand-alone, 4

in-depth argument for rejecting all solutions of Legendre’s equation, but the polynomial ones, in 5

physics. We show that the combination of the linearity, the mirror symmetry and the signature of the 6

regular singular points of Legendre’s equation is quintessential to the argument. We demonstrate 7

that the evenness or oddness of the Legendre polynomials is a consequence of the same ingredients. 8
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1. Introduction 11

1.1. Motivation 12

From the point of view of mathematical physics, it is a curious fact that the full solution 13

of Legendre’s equation, i.e. a myriad of algorithms for evaluation of all Legendre functions, 14

has been meticulously documented in the solid, special functions literature [1–5], while 15

what is really needed in many crucial applications in physics is a clear argument explaining 16

why only the Legendre polynomials – and these don’t need any specialized literature to 17

document how to evaluate them at all – are acceptable solutions. As it seems, such an 18

argument and explanation are not at all easily found in the literature. It is the aim of the 19

present manuscript to unearth such an argument. 20

1.2. Singularities; Fuchsian and Legendre Equations. 21

The common argument to reject Legendre functions, both of the first and second 22

kind, as acceptable functions in a given context in physics, is that they are singular, and 23

unbounded indeed on the application domain. Indeed, the possibility of singular solutions 24

is an important feature of Fuchsian differential equations, of which Legendre’s equation is 25

a particularly important example. 26

Fuchsian 2nd order differential equations [6–8] are key in many subdisciplines of 27

mathematical physics [3]. Regular singular points of these equations are commonly associ- 28

ated with special points of curvilinear coordinate systems, and hence with the geometry 29

and symmetry of the situation of application. In this manuscript we address Legendre’s 30

equation, for dependent variable y = y(ξ) as a function of independent variable ξ: 31

(1 − ξ2) y′′ − 2 ξ y′ + ν (ν + 1) y = 0 . (1)

This equation emerges [3,5] by separation of variables from Laplace’s operator in spheroidal, 32

including spherical, coordinates. Coordinate ξ then is associated with a latitudinal coordi- 33

nate, its domain is the closed interval [−1, 1] and the regular singular points ξ = ±1 are 34

associated with the poles of the spheroidal coordinate system. In the context of Laplace’s 35
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operator, equation (1) actually is a special case of the general, or associated Legendre equa- 36

tion [5]. The solutions of this more general equation are actually easily expressed in terms 37

of solutions of equation (1), and unboundedness really arises if and only if the involved 38

solutions of equation (1) are unbounded. 39

The unboundedness of the Legendre functions of the first kind is a crucial argument, 40

in many application domains of mathematical physics, for rejecting these functions. It is 41

the very reason why only the Legendre polynomials remain as the sole physically acceptable 42

solutions of the (2nd order!) Legendre equation (1). A direct implication, but one that 43

is even more important for physics, is that the parameter ν, and hence the eigenvalues of the 44

Legendre operator 45

L[y(ξ), ξ] = − d
dξ

(
(1− ξ2)

d
dξ

y
)

, (2)

become quantized; it seems hardly an exaggeration to mention that this is at the foundation 46

of our understanding of the periodic system of chemical elements. Indeed, in the quantum 47

mechanics of atoms, the discrete integer values of the parameter ν are the quantum num- 48

bers of orbital angular momentum [9,10]. In geophysical fluid dynamics, they label the 49

fundamental modes of the atmosphere, i.e. the planetary Rossby-Haurwitz waves [11]. In 50

as far as there is value in understanding why such quantization occurs, the value of any 51

argument that helps explaining it can hardly be exaggerated. Therefore, it is certainly of 52

value to unearth arguments that imply and explain the unboundedness of the Legendre 53

functions Pν(ξ), as we aim to do in this manuscript. 54

In this study we focus on Legendre’s equation (1) and its solutions, but our reasoning 55

and some of the results have broader validity. 56

1.3. Frobenius’ Theory 57

It is well-known that solutions of Fuchsian differential equations about regular singular 58

points can have singularities. The character of selected solutions about regular singular 59

points can be diagnosed by Frobenius’ theory [12,13]. Frobenius’ theory indeed renders 60

generalized series solutions about regular singular points, including possibly singular 61

factors of the form ξr, in which r is some number, and, also possibly, logarithmic factors. 62

In case of Legendre’s equation (1), about ξ = 1, by means of Frobenius’ method, two 63

solutions are readily found, one analytical (Legendre function Pν(ξ) of the first kind) and 64

another (Legendre function Qν(ξ) of the second kind) with a logarithmic singularity. This 65

easily establishes the singularity, the unboundedness indeed, of Legendre’s functions of the 66

second kind, so that these mathematically well-defined solutions Qν(ξ) can be rejected, based 67

on physical arguments, in important physical application domains, such as in quantum 68

mechanics (atomic physics) [9], electro-magnetism [14, e.g.] and in geo- and astrophysical 69

domains, e.g. gravitation and fluid dynamics [11,15]. 70

For the Legendre functions Pν(ξ) of the first kind however, although they are analytical 71

about ξ = 1, so that they may seem to be more straightforward, the situation actually is 72

less trivial. The decision about whether or not these functions are physically acceptable 73

commonly depends on whether or not they are bounded at the other regular singular 74

point, ξ = −1, and Frobenius’ theory offers no direct solace in this respect. Only when 75

ν takes integer values n, the series expansions of the Pν(ξ) can be shown to have only a 76

finite number of non-zero terms, so they are actually the Legendre polynomials and hence 77

physically acceptable solutions indeed. 78

In all other cases, one can show that the series expansion about ξ = 1 rendered by 79

Frobenius’ method for the Pν(ξ) does not converge at ξ = −1. However, then the hurdle 80

arises that – although some sources [14,16] seem to suggest some argument along this 81

line of thought – non-convergence of a series in itself, at some point, provides no convincing 82

argument for e.g. the being-unbounded of the function it aims to represent. Specifically, in 83

the case at hand, mere divergence, at ξ = −1, of their series expansions about ξ = 1 does 84

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2022                   doi:10.20944/preprints202201.0438.v1

https://doi.org/10.20944/preprints202201.0438.v1


Version January 27, 2022 submitted to Symmetry 3 of 8

not provide a truly solid argument, at least not at any elementary level, for rejecting the 85

functions Pν(ξ) on physical grounds. 86

1.4. Aim and prospect 87

The aim of this manuscript is to present an argument, at a level that is as elementary as 88

possible, that shows that, and explains why, Legendre functions of the first kind, Pν(ξ), are 89

unbounded at ξ = −1. We shall show that the reasons include the symmetry of Legendre’s 90

equation (1) about ξ = 0, and that the singularity of Pν(ξ) at ξ = −1 is in that sense a 91

consequence, in some sense a mirror image indeed, of the singularity of Qν(ξ) at ξ = 1. 92

We shall, as a by-catch, see that the fact that Legendre polynomials are either even or odd is 93

also implied by the symmetry of Legendre’s equation, but only because this symmetry is 94

combined with the fact that Qν(ξ) is unbounded. 95

Hence, explanation will be found in the symmetry of the situation and in the signature 96

and its consequences of the regular singular points. This latter aspect resonates with 97

Gray’s [8] recognition of Fuchs, as having been the first to see the decisive importance of 98

regular singular points. 99

2. Form Invariance of an Equation and Implied Transformation Properties of Solutions. 100

Under the coordinate transform 101

ξ = −η, (3)

Legendre’s equation (1) transforms into 102

(1 − η2) y′′ − 2 η y′ + ν (ν + 1) y = 0 ; (4)

comparison of representations (1) and (4) reveals that Legendre’s equation is form invariant 103

under transformation (3). In the remainder of this manuscript, we shall refer to this 104

symmetry as mirror symmetry. Now, let 105

y = y(ξ) := f (ξ) , (5)

represent a solution of equation (1). In expressions (5), the sign “=” means, “the value of y 106

is calculated as a function of ξ (without specifying what the functional relationship between y 107

and ξ would be, nor how it would be called). In the second part of expressions (5), the symbol 108

“:=” specifies that “this value is calculated by some functional expression f ”; (note that the 109

symbol f in itself does not specify which variable would obtain the calculated value). For example, 110

if y would be the sine of x, f would be ‘sin’. 111

Using this notation, we can describe any solution of equation (4) as 112

y = y(η) := g(η) . (6)

Using (5) however, i.e. the fact that y := f (ξ) solves (1), we see, by (3) and using the chain 113

rule, that a special solution of equation (4) can be found as 114

y = y(η) := f (ξ(η)) := f (−η) . (7)

Because equations (4) and (1) are equal in form however, we can conclude that, if y := 115

f (−η) solves (4), then y := f (−ξ) solves (1). 116

In summary: the form invariance of Legendre’s equation under transformation (3) 117

implies that, whenever y := f (ξ) is a solution of Legendre’s equation (1), then so is 118

y := f (−ξ). N.B: it does not follow that the solutions themselves are form invariant: we 119

may not conclude that solutions must be even, i.e. it is not implied (nor excluded) that 120

f (ξ) = f (−ξ). 121

The argument applies to any differential equation that has the same symmetry. For 122

example, y′′ − y = 0 is form invariant under transformation (3); so the fact that y = exp(x) 123
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is a solution implies that y = exp(−x) is also a solution; but neither of these functions is 124

even. 125

3. Mirror symmetric Fuchsian, 2nd order ODE’s, with regular singular points at ξ = ±1. 126

Now consider a Fuchsian, 2nd order differential equation, with regular singular points 127

at ξ = 1 and ξ = −1. Because the equation is linear, its general solution is the span of a 128

fundamental set {y1 := f (ξ), y2 := g(ξ)}. Mirror symmetry, i.e. form invariance under 129

transformation (3), then implies that 130

f (−ξ) ∈ span{ y1 := f (ξ), y2 := g(ξ) } , (8)

or 131

f (−ξ) = α f (ξ) + β g(ξ) , for some numbers α, β. (9)

We now further confine cases to equations for which, as for Legendre’s equation, y2 is 132

unbounded, while y1 is bounded, for ξ ↑ 1; so f (1) is assumed to be finite. 133

Then, if f (ξ) would be bounded at both regular singular points ξ = ±1, then, consid- 134

ering (9) in the limit ξ ↑ 1 implies β = 0, because g(ξ) is unbounded in this limit. Hence, 135

under the adopted restrictions, relation (9) reduces to 136

f (−ξ) = α f (ξ) , (10)

from which we deduce 137

f (−ξ) = f (−(−ξ)) = α f (−ξ) = α2 f (ξ) , (11)

so that we must have α2 = 1, so α = ±1. Hence, with (10), we arrive at the following 138

Lemma 1. If a mirror symmetric, 2nd order Fuchsian ordinary differential equation with regular 139

singular points at ξ = ±1 has a fundamental solution y2 that is unbounded at the regular singular 140

point ξ = ±1, while the other fundamental solution y1 is bounded at both regular singular points, 141

then y1 is either even or odd. 142

Corollary 1. Legendre polynomials must be either even or odd. 143

Reversely, it follows that, 144

Corollary 2. If a mirror symmetric, 2nd order Fuchsian ordinary differential equation with regular 145

singular points at ξ = ±1 has a fundamental solution y2 such that limξ↑1 y2(ξ) is unbounded, 146

while a first solution y1(ξ) is finite at ξ = 1, then, unless y1(ξ) is either even or odd, limξ↓−1 y1(ξ) 147

is unbounded. 148

Note that thus such a singularity of y1(ξ) at ξ = −1 is a consequence of the mirror 149

symmetry, as well as of the linearity, of the Fuchsian differential equation and of the 150

singularity of the other fundamental solution y2 at the other regular singular point ξ = 1. 151

As we shall see, this argument applies to Legendre Functions of the first kind, and 152

hence demonstrates and explains their unboundedness at ξ = −1. 153

4. Legendre functions of the first kind are neither even, nor odd. 154

From our result in the previous section it follows that the singularity (unboundedness) 155

of Legendre functions of the first kind, Pν(ξ), would be implied by the fact that, for non- 156

integer values of ν, their curves are not mirror symmetric in the vertical axis, nor point- 157

mirror symmetric in the origin. That is, to prove that these functions are unbounded at 158

ξ = −1, is suffices to show that the functions are neither even nor odd. This absence of 159

evenness and oddness can be confirmed from their series expansions about ξ = 0. This we 160

shall explore in this section. 161
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A technical complication is rooted in the fact that Legendre functions of the first kind, 162

Pν(ξ), are defined as those solutions of Legendre’s equation (1) that take a finite value at the 163

regular singular point ξ = 1. The functions are conventionally normalized as 164

Pν(1) = 1 , (12)

which sets the leading coefficient of their power series expansion about ξ = 1 equal to 165

a0 = 1. As a consequence however, finding their exact value Pν(0) at the origin ξ = 0 is not a 166

trivial affair, and hence neither is finding their series expansions about ξ = 0, from scratch, 167

as we wish to do here, for the sake of offering a self-contained treatment of our topic. 168

Indeed, because Pν(ξ) is defined as the non-singular solution of Legendre’s equation (1), 169

that obeys condition (12), following Frobenius [12] we start by looking for generalized 170

power series solutions 171

y(x) =
∞

∑
n=0

an xn+r , (13)

of equation (1), as rewritten in terms of a shifted coordinate x 172

x = ξ − 1 . (14)

In terms of x, equation (1) takes the form 173

− x (x + 2) y′′ − 2 (x + 1) y′ + ν (ν + 1) y = 0 . (15)

Following Frobenius’ method [12,13,16–20], we readily find that r needs to satisfy the 174

indicial equation [6,7] 175

F(r) = 0 with F(r) = 2 r2 . (16)

From Frobenius’ theory and the fact that the indicial equation (16) has a double root, r1 = 176

r2 = 0, it immediately follows that equation (15) has one analytical solution y1(x) about the 177

regular singular point x = 0, with y1(x)|x=0 6= 0, while consequently the second, linearly 178

independent solution is unbounded in the limit x → 0, due to a logarithmic singularity. 179

Hence, we see that the characters of the Legendre functions of first and second kind 180

about the regular singular point x = 0, i.e. ξ = 1, are immediate from the indicial equation. 181

The same is implied for any Fuchsian differential equation that has (16) as an indicial 182

equation. 183

Proceeding with Frobenius’ method, for the recurrence relation of the coefficients an 184

for y1(x) as in (13) we readily find 185

an+1 = −n (n + 1)− ν (ν + 1)
F(n + 1)

an ; (17)

from this, with a0 = 1, all an can be obtained, in principle. The resulting series are the series 186

expansions of the Legendre functions of the first kind, Pν(x), about the regular singular 187

point x = 0, or ξ = 1. 188

From recurrence relation (17) it follows that the Legendre functions Pν(x) of the first 189

kind are polynomials PN(x), (the Legendre polynomials indeed), if and only if ν takes 190

an integer value N. Indeed, negative values for such N would not add any independent 191

solutions, that are not already obtained for positive N, while for ν = N and 0 ≤ N, 192

relation (17) implies an = 0 for all n, N < n. 193

To decide whether or not the Legendre functions of the first kind are even, or odd, 194

we need their representation in terms of ξ, so we substitute (14) for x, together with r = 0, 195

into (13) and expand binomially, to find 196

Pν(ξ) =
∞

∑
n=0

n

∑
m=0

(−1)n−m
(

n
n−m

)
an ξm , (18)
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which can be rearranged to 197

Pν(ξ) =
∞

∑
m=0

∞

∑
n=m

(−1)n−m
(

n
m

)
an ξm , (19)

so that we have 198

Pν(ξ) =
∞

∑
m=0

cm ξm , (20)

with 199

ck =
∞

∑
j=k

(−1)j−k
(

j
k

)
aj ; (21)

in expressions (18) to (21) we have used the notation 200(
n
i

)
=

n!
i! (n − i)!

. (22)

5. Pν(ξ) is neither odd nor even when n is non-integer. 201

Because the graph of 202

f (ν) = ν (ν + 1) (23)

is a parabola, with a minimum for ν = − 1
2 , f (ν) takes all its possible (real) values for 203

− 1
2 ≤ ν, so we need to consider Pν(ξ) only for these values for ν: 204

− 1
2
≤ ν . (24)

The function f (ν) then is strictly increasing, as a function of ν, so that 205

m < ν implies m (m + 1)− ν (ν + 1) < 0 . (25)

According to the recurrence relation (17) then, with (16), i.e. 0 < F(n + 1) for all n, and 206

given that Pν(x)|x=0 = a0 = 1, we have 207

0 < am for all m < ν . (26)

Now, assume that ν is not an integer and let M be the smallest integer, such that ν < M, 208

then from (17), (25) and (26) we find the following sign pattern for the coefficients an: 209

a0, . . . aM, aM+1, aM+2, . . .
+ + + − + (alternating)

, (27)

that is: up until and including aM all coefficients an will be positive, aM+1 will be negative, 210

and from then on, the signs of the coefficients will alternate. Furthermore, we may conclude 211

from the recurrence relation (17) that, for non-integer ν, none of the coefficients am will take 212

the value zero: 213

0 6= an , whenever ν is non-integer. (28)

As a consequence, because (21) implies 214

cM =
∞

∑
j=M

(−1)j−M
(

j
M

)
aj , (29)

we may conclude from (27) and (28) that 0 < cM. Similarly, from 215
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cM+1 =
∞

∑
j=M+1

(−1)j−(M+1)
(

j
M + 1

)
aj , (30)

combined with (27) and (28) we conclude that cM+1 < 0. 216

Therefore, we have found two subsequent, non-zero coefficients cn, and hence the 217

Legendre function of the first kind, Pν(ξ), for non-integer ν, is neither odd nor even. 218

Combined with corollary 2, this completes our proof that Pν(ξ) is unbounded in the 219

limit ξ ↓ −1, i.e. at the opposite regular singular point. 220

6. Conclusion 221

To summarize our focus and line of reasoning, we list the following observations. 222

In important applications in physics, such as atomic physics, electro-magnetism, 223

classical gravitation, and in astro- and geophysical fluid dynamics, in particular when 224

Laplace’s operator is involved in spheroidal coordinates, Legendre’s equation (1) is key. 225

The literature about special functions offers extensive and detailed documentation of 226

the general solution of this equation, in terms of the Legendre functions of the first and 227

second kind. 228

The complete problem statement in physics however often does not merely consist of 229

Legendre’s equation, but rather of Legendre’s equation supplemented with the requirement 230

that we are looking for functions that solve this equation while they remain finite throughout 231

the domain of application. A consequence of this condition is that all of the Legendre functions, 232

except Legendre polynomials, are unacceptable, not as solutions of Legendre’s equation, 233

but as solutions of the problem statement in physics. 234

From the point of view of physics therefore, a theoretical treatment that includes 235

detailed documentation of all Legendre functions is at least uneconomical, and it risks 236

missing quintesential arguments. 237

In the present manuscript we offer an alternative, in the form of an argument, in as 238

elementary terms as possible, that shows, and explains why, only the Legendre polynomials 239

are bounded, hence acceptable, solutions of the stated problem. As a by-catch, we found 240

that these polynomials must be either even or odd. 241

There seems to be added value in that our argument shows that these results are all 242

consequences of a mirror symmetry of the situation, but only if and because this symmetry 243

is combined with the signature of the regular singular points of Legendre’s equation, as it 244

can be readily obtained from Frobenius’ theory. That the signature of the regular singular 245

points has such a decisive role in the argument is fully in accordance with the classical 246

works of Fuchs on the class of differential equations that are now named after him. 247
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